Measurement of Dijet Azimuthal Decorrelations in \( pp \) Collisions at \( \sqrt{s} = 7 \) TeV

The ATLAS Collaboration

Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets. We present a measurement of the normalized differential cross section based on the full dataset \((\int L dt = 36 \text{ pb}^{-1})\) acquired by the ATLAS detector during the 2010 \( \sqrt{s} = 7 \) TeV proton-proton run of the LHC. The measured distributions include jets with transverse momenta up to 1.3 TeV, probing perturbative QCD in a high energy regime.

PACS numbers: 13.87.Ce, 12.38.Qk

The production of events containing high transverse-momentum (\( p_T \)) jets is a key signature of quantum chromodynamic (QCD) interactions between partons in \( pp \) collisions at large center-of-mass energies \((\sqrt{s})\). The Large Hadron Collider (LHC) opens a window into the dynamics of interactions with high-\( p_T \) jets in a new energy regime of \( \sqrt{s} = 7 \) TeV. QCD predicts the decorrelation in the azimuthal angle between the two most energetic jets, \( \Delta \phi \), as a function of the number of partons produced. Events with only two high-\( p_T \) jets have small azimuthal decorrelations, \( \Delta \phi \sim \pi \), while \( \Delta \phi \ll \pi \) is evidence of events with several high-\( p_T \) jets. QCD also describes the evolution of the shape of the \( \Delta \phi \) distribution, which narrows with increasing leading jet \( p_T \). Distributions in \( \Delta \phi \) therefore test perturbative QCD (pQCD) calculations for multiple jet production without requiring the measurement of additional jets. Furthermore, a detailed understanding of events with large azimuthal decorrelations is important to searches for new physical phenomena with dijet signatures, such as supersymmetric extensions to the Standard Model [3].

In this Letter, we present a measurement of dijet azimuthal decorrelations with jet \( p_T \) up to 1.3 TeV as measured by the ATLAS detector, beyond the reach of previous colliders. The normalized differential cross section \((1/\sigma)(d\sigma/d\Delta \phi)\) is based upon an integrated luminosity \( \int L dt = (36 \pm 4) \text{ pb}^{-1} \) [2]. The \( \Delta \phi \) distribution is normalized by the inclusive dijet cross section, \( \sigma \), integrated over the same phase space. This construction minimizes experimental and theoretical uncertainties. Previous measurements of \( \Delta \phi \) from the D0 [3] and CMS [4] collaborations are extended here to higher jet \( p_T \) values.

Jets are reconstructed using the anti-\( k_t \) algorithm [5] (implemented with FASTJET [6]) with radius \( R = 0.6 \), and the jet four-momenta are constructed from a sum over its constituents, treating each as an \((E, \vec{p})\) four-vector with zero mass. The anti-\( k_t \) algorithm is well-motivated since it is infrared-safe to all orders, produces geometrically well-defined cone-like jets, and is used for pQCD calculations (from partons), event generators (from stable particles), and the detector (from energy clusters [7]). The azimuthal decorrelation, \( \Delta \phi \), is defined as the absolute value of the difference in azimuthal angle between the jet with the highest \( p_T \) in each event, \( p_T^{\text{max}} \), and the jet with the second-highest \( p_T \) in the event. There are nine analysis regions in \( p_T^{\text{max}} \), where the lowest region is bounded by \( p_T^{\text{max}} > 110 \) GeV and the highest region requires \( p_T^{\text{max}} > 800 \) GeV [5]. Only jets with \( p_T > 100 \) GeV and \(|y| < 2.8\), where \( y \) is the jet rapidity [5], are considered. The two leading jets that define \( \Delta \phi \) are required to satisfy \(|y| < 0.8\), restricting the measurement to a central \( y \) region where the momentum fractions \((x)\) of the interacting partons are roughly equal and the experimental acceptance for multijet production is increased. In this region where \( 0.02 < x < 0.14 \), the parton distribution function (PDF) uncertainties are typically \( \pm 3\% \) (at fixed factorization scale) [9]. The cross sections, measured over the range \( \pi/2 < \Delta \phi < \pi \) and normalized independently for each analysis region, are compared with expectations from a pQCD calculation [10] that is next-to-leading order (NLO) in three-parton production. The perturbative prediction for the cross section is \( \mathcal{O}(\alpha_s^3) \), where \( \alpha_s \) is the strong coupling constant.

The angular decorrelation is sensitive to multijet configurations such as those produced by event generators like SHERPA [11], which matches higher-order tree-level pQCD diagrams with a dipole parton-shower model [12]. Samples for \( 2 \rightarrow 2 - 6 \) jet production are combined using an improved CKKW matching scheme [13]. The progression of the parton shower is vetoed to avoid double counting of emissions. Event generators such as PYTHIA [14] and HERWIG [15] use \( 2 \rightarrow 2 \) leading order pQCD matrix elements matched with phenomenological parton-cascade models to simulate higher-order QCD effects. Such models have been successful at reproducing other QCD processes measured by the ATLAS collaboration [7, 10].

The ATLAS detector [17, 18] consists of an inner tracking system surrounded by a thin superconducting solenoid providing a 2T magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer based on large superconducting toroids. Jet measurements depend most heavily on the calorimeters. The electromagnetic calorimeter is a lead liquid-argon (LAr) detector with an accordion geometry. Hadron calorimetry is based on two different detector technologies, with scintillator tiles or LAr as the active medium, and with either steel, copper, or tungsten as the absorber material. The pseudorapidity \((\eta)\) [8] and \( \phi \) segmentations of
the calorimeters are sufficiently fine to ensure that angular resolution uncertainties are negligible compared to other sources of systematic uncertainty.

A hardware-based calorimeter jet trigger identified events of interest; the decision was further refined in software [17, 18]. Events with at least one jet that satisfied a minimum transverse energy ($E_T$) requirement were recorded for further analysis. The events in each $p_T^{\text{max}}$ range are selected by a single trigger with a given $E_T$ threshold, and the lower end of the range is chosen above the jet $p_T$ at which that trigger is $\approx 100\%$ efficient. Three sets of triggered events with different integrated luminosity are considered: 2.3 pb$^{-1}$ for $100 < p_T^{\text{max}} \leq 160$ GeV, 9.6 pb$^{-1}$ for $160 < p_T^{\text{max}} \leq 260$ GeV, and 36 pb$^{-1}$ for $p_T^{\text{max}} > 260$ GeV [2]. Events are also required to have a reconstructed primary vertex within 15 cm in $z$ of the center of the detector; each vertex had $\geq 5$ associated tracks. The inputs to the anti-$k_t$ jet algorithm are clusters of calorimeter cells seeded by cells with energy that is significantly above the measured noise [3]. Jets reconstructed in the detector, whether in data or the GEANT4-based simulation [19, 20], are corrected for the effects of hadronic shower response and detector-material distributions using a $p_T$- and $\eta$-dependent calibration [7] based on the detector simulation and validated with extensive test-beam [17] and collision data [21] studies. Jets likely to have arisen from detector noise or cosmic rays are rejected [22].

The resulting $\Delta \phi$ distribution is shown in Fig. 1 for jets with $p_T > 100$ GeV. There are 146788 events in the data sample, 85 of which have at least five jets with $p_T > 100$ GeV. Also shown is the PYTHIA sample with MRST 2007 LO PDF [23] and ATLAS MC09 underlying event tune [24], processed through the full detector simulation and normalized to the number of events in the data sample. Two- and three-jet production primarily populates the region $2\pi/3 < \Delta \phi < \pi$ while smaller values of $\Delta \phi$ require additional activity such as soft radiation or more jets in an event. Fig. 1 illustrates that the decorrelation increases when a third high-$p_T$ jet is also required. Events with additional high-$p_T$ jets widen the overall distribution.

The measured differential $\Delta \phi$ distributions in data are corrected in a single step with a bin-by-bin unfolding method [7] to compensate for trigger and detector inefficiencies and the effects of finite experimental resolutions. These correction factors, evaluated using the PYTHIA sample, lie within $\pm 9\%$ of unity. The leading sources of systematic uncertainty on the normalized cross sec-
tion are the jet energy scale calibration ($2 - 17\%$) [7], the bin-by-bin unfolding method ($1 - 19\%$), and the jet energy and position resolutions (0.5 – 5\%). The ranges in parentheses represent the magnitude of the uncertainties near $\pi$ and $\pi/2$, respectively, and correspond to the analysis region with the smallest statistical uncertainty ($160 < p_T^{\text{max}} \leq 210$ GeV). Uncertainties due to multiple $pp$ interactions in the same beam crossing ($< 0.8\%$ on the cross section for all analysis regions) are included in the evaluation of the jet energy scale uncertainties.

The normalized differential cross section is shown for each of the nine $p_T^{\text{max}}$ analysis regions as a function of $\Delta\phi$ in Fig. 2. As $p_T^{\text{max}}$ increases, and the probability for the emission of a hard third jet is reduced, the fraction of events near $\pi$ becomes larger. Overlaid on the data are the results from a NLO pQCD [$\mathcal{O}(\alpha_s^3)$] calculation, NLOJET++ [10] with fastNLO [25] and using the MSTW 2008 PDF [9]. The factorization and renormalization scales are set to $p_T^{\text{max}}$ and are varied independently up and down by a factor of two to determine the scale uncertainties. The scale uncertainties are larger between $\pi/2 < \Delta\phi < 2\pi/3$ where the pQCD calculation is effectively leading order in four-parton production. The PDF uncertainties are treated as the envelope of the 68\% CL uncertainties from MSTW 2008 [3], NNPDF 2.0 [24], and CTEQ 10 [27], and are combined with the uncertainties resulting from an $\alpha_s$ variation of $\pm 0.004$; the $\alpha_s$ contributions dominate. The calculation is corrected for non-perturbative effects due to hadronization and the underlying event [28, 29]: the correction is smaller than 3\%. The fixed-order calculation fails near $\Delta\phi \to \pi$ where soft processes dominate and contributions from logarithmic terms are enhanced. Figure 3 displays the ratio of the cross section with respect to the NLO calculation. In most regions, the theory is consistent with the data. However, the prediction in the range $110 < p_T^{\text{max}} < 160$ GeV is relatively low in the central region of $\Delta\phi$ where the scale uncertainties are small.

The data are also compared with predictions from SHERPA, PYTHIA, and HERWIG in Fig. 4. The leading-logarithmic approximations used in these event generators’ parton-shower models effectively regularize the divergence at $\Delta\phi \to \pi$; all three provide a good description of the data in this region. In the region $\pi/2 < \Delta\phi < 5\pi/6$, where multijet contributions are significant, this observable distinguishes between the three generators. SHERPA, which explicitly includes higher-order tree-level diagrams, performs well in most $\Delta\phi$ and $p_T^{\text{max}}$ regions. Having phenomenological parameters that have been adjusted to previous ATLAS measurements, PYTHIA [28] and HERWIG [24] also describe the data.

In summary, we present a measurement of dijet azimuthal decorrelations in events produced in $pp$ collisions at $\sqrt{s} = 7$ TeV. The normalized differential cross sections
are based on the full dataset ($\mathcal{L} dt = 36 \text{ pb}^{-1}$) collected by the ATLAS collaboration during the 2010 run of the LHC. Expectations from NLO pQCD $[O(\alpha_s^4)]$ and those of several event generators successfully describe the general characteristics of our measurements, including the increasing slope of the $\Delta \phi$ distribution with $p_T^{\text{max}}$ and the shape near $\Delta \phi \sim \pi/2$ where events with multiple jets make a considerable contribution. Our data, which include jets with $p_T$ values that significantly exceed earlier measurements, explore QCD in a new kinematic region.

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; CMS CT, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NRC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is gratefully acknowledged, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.
T.T. Voss174, H. von Radziewski167, A. Warburton14, D. van der Ster89a, G. Vegni89a,89b, W. Vandelli82, A. Vest19a, C. Wiglesworth172, Yo.K. Zalite39, C.G. Zhu32d, 20, University of Arizona, Department of Physics, Tucson, AZ 85721, United States of America

University of Alberta, Department of Physics, Centre for Particle Physics, Edmonton, AB T6G 2G7, Canada

Ankara University(a), Faculty of Sciences, Department of Physics, 0610000 Tanlogan, Ankara; Dumluinpar University(b), Faculty of Arts and Sciences, Department of Physics, Kutahya; Gazi University(c), Faculty of Arts and Sciences, Department of Physics, 06500, Teknikokullar, Ankara; TOBB University of Economics and Technology(d), Faculty of Arts and Sciences, Division of Physics, 06560, Sogutozu, Ankara; Turkish Atomic Energy Authority(e), 06530, Lodumula, Ankara, Turkey

LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux, France

Argonne National Laboratory, High Energy Physics Division, 9700 S. Cass Avenue, Argonne IL 60439, United States of America

University of Arizona, Department of Physics, Tucson, AZ 85721, United States of America
10 The University of Texas at Arlington, Department of Physics, Box 19059, Arlington, TX 76019, United States of America
11 Institute of Physics, Azerbaijan Academy of Sciences, H. Javid Avenue 33, AZ 143 Baku, Azerbaijan
12 University of Athens, Nuclear & Particle Physics, Department of Physics, Panepistimiopolis, Zografou, GR 15771 Athens, Greece
13 National Technical University of Athens, Physics Department, 9-Iroon Polytechniou, GR 15780 Zografou, Greece
14 Institute of Physics, Azerbaijan Academy of Sciences, H. Javid Avenue 33, AZ 143 Baku, Azerbaijan
15 Institut de Física d’Altes Energies, IFAE, Edifici Cn, Universitat Autònoma de Barcelona, ES - 08193 Bellaterra (Barcelona), Spain
16 University of Belgrade(a), Institute of Physics, P.O. Box 57, 11001 Belgrade; Vinca Institute of Nuclear Sciences(b) M. Petrovica Alasa 12-14, 11000 Belgrade, Serbia, Serbia
17 University of Athens, Nuclear & Particle Physics, Department of Physics, Panepistimiopolis, Zografou, GR 15771 Athens, Greece
18 Bogazici University(a), Faculty of Sciences, Department of Physics, TR - 80815 Bebek-Istanbul; Dogus University(b), Faculty of Arts and Sciences, Department of Physics, 34722, Kadikoy, Istanbul; (c) Gaziantep University, Faculty of Engineering, Department of Physics Engineering, 27310, Sehitkamil, Gaziantep, Turkey; Istanbul Technical University(c), Faculty of Arts and Sciences, Department of Physics, 34469, Maslak, Istanbul, Turkey
19 INFN Sezione di Bologna(a); Università di Bologna, Dipartimento di Fisica(b), viale C. Berti Pichat, 6/2, IT - 40127 Bologna, Italy
20 University of Bonn, Physikalisches Institut, Nussallee 12, D - 53115 Bonn, Germany
21 Boston University, Department of Physics, 590 Commonwealth Avenue, Boston, MA 02215, United States of America
22 Brandeis University, Department of Physics, MS057, 415 South Street, Waltham, MA 02454, United States of America
23 Universidade Federal do Rio De Janeiro, COPPE/EE/IF (a), Caixa Postal 68528, Ilha do Fundao, BR - 21945-970 Rio de Janeiro; (b) Universidade de Sao Paulo, Instituto de Fisica, R.do Matao Trav. R.187, Sao Paulo - SP, 05508 - 900, Brazil
24 Brookhaven National Laboratory, Physics Department, Bldg. 510A, Upton, NY 11973, United States of America
25 National Institute of Physics and Nuclear Engineering(a) Bucharest-Magurele, Str. Atomistilor 407, P.O. Box MG-6, R-077125, Romania; University Politehnica Bucharest(b), Rectorat - AN 001, 313 Splaiul Independentei, sector 6, 060042 Bucuresti; West University (c) in Timisoara, Bd. Vasile Parvan 4, Timisoara, Romania
26 University of Buenos Aires, FCEyN, Dto. Fisica, Pab I - C. Universitaria, 1428 Buenos Aires, Argentina
27 University of Cambridge, Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
28 Carleton University, Department of Physics, 1125 Colonel By Drive, Ottawa ON K1S 5B6, Canada
29 CERN, CH - 1211 Geneva 23, Switzerland
30 University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637, United States of America
31 Pontificia Universidad Católica de Chile, Facultad de Física, Departamento de Física(a), Avda. Vicuna Mackenna 4860, San Joaquin, Santiago; Universidad Técnica Federico Santa María, Departamento de Física(b), Avda. España 1680, Casilla 110-V, Valparaíso, Chile
32 Institute of High Energy Physics, Chinese Academy of Sciences(a), P.O. Box 918, 19 Yuquan Road, Shijing Shang District, CN - Beijing 100049; University of Science & Technology of China (USTC), Department of Modern Physics(b). Hefei, CN - Anhui 230026; Nanjing University, Department of Physics(c), Nanjing, CN - Jiangsu 210093; Shandong University, High Energy Physics Group(d), Jinan, CN - Shandong 250100, China
33 Laboratoire de Physique Corpusculaire, Clermont Université, Université Blaise Pascal, CNRS/IN2P3, FR - 63177 Aubiere Cedex, France
34 Columbia University, Nevis Laboratory, 136 So. Broadway, Irvington, NY 10533, United States of America
35 University of Copenhagen, Niels Bohr Institute, Blegdamsvej 17, DK - 2100 København 0, Denmark
36 INFN Gruppo Collegato di Cosenza(a); Università della Calabria, Dipartimento di Fisica(b), IT-87036 Arcavacata di Rende, Italy
37 Faculty of Physics and Applied Computer Science of the AGH-University of Science and Technology, (FPACS, AGH-UST), al. Mickiewicza 30, PL-30059 Cracow, Poland
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL - 31342 Krakow, Poland

Southern Methodist University, Physics Department, 106 Fondren Science Building, Dallas, TX 75275-0175, United States of America

University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, United States of America

DESY, Notkestr. 85, D-22603 Hamburg and Platanenallee 6, D-15738 Zeuthen, Germany

TU Dortmund, Experimentelle Physik IV, DE - 44221 Dortmund, Germany

Technical University Dresden, Institut für Kern- und Teilchenphysik, Zellescher Weg 19, D-01069 Dresden, Germany

Duke University, Department of Physics, Durham, NC 27708, United States of America

University of Edinburgh, SUPA - School of Physics and Astronomy, James Clerk Maxwell Building, The Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom

Fachhochschule Wiener Neustadt; Johannes Gutenbergstrasse 3 AT - 2700 Wiener Neustadt, Austria

INFN Laboratori Nazionali di Frascati, via Enrico Fermi 40, IT-00044 Frascati, Italy

Albert-Ludwigs-Universität, Fakultät für Mathematik und Physik, Hermann-Herder Str. 3, D - 79104 Freiburg i.Br., Germany

Université de Genève, Section de Physique, 24 rue Ernest Ansermet, CH - 1211 Genève 4, Switzerland

INFN Sezione di Genova(a); Università di Genova, Dipartimento di Fisica(b), via Dodecaneso 33, IT - 16146 Genova, Italy

Institute of Physics of the Georgian Academy of Sciences, 6 Tamarashvili St., GE - 380077 Tbilisi; Tbilisi State University, HEP Institute, University St. 9, GE - 380086 Tbilisi, Georgia

Justus-Liebig-Universität Giessen, II Physikalisches Institut, Heinrich-Buff Ring 16, D-35392 Giessen, Germany

University of Glasgow, SUPA - School of Physics and Astronomy, Glasgow G12 8QQ, United Kingdom

Georg-August-Universität, II. Physikalisches Institut, Friedrich-Hund Platz 1, D-37077 Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier, CNRS-IN2P3, INPG, Grenoble, France, France

Hampton University, Department of Physics, Hampton, VA 23668, United States of America

Harvard University, Laboratory for Particle Physics and Cosmology, 18 Hammond Street, Cambridge, MA 02138, United States of America

Ruprecht-Karls-Universität Heidelberg: Kirchhoff-Institut für Physik(a), Im Neuenheimer Feld 227, D-69120 Heidelberg; Physikalisches Institut(b), Philosophenweg 12, D-69120 Heidelberg; ZITI Ruprecht-Karls-University Heidelberg(c), Lehrstuhl für Informatik V, B6, 23-29, DE - 68131 Mannheim, Germany

Hiroshima University, Faculty of Science, 1-3-1 Kagamiyama, Higashihiroshima-shi, JP - Hiroshima 739-8526, Japan

Hiroshima Institute of Technology, Faculty of Applied Information Science, 2-1-1 Miyake Saeuki-ku, Hiroshima-shi, JP - Hiroshima 731-5193, Japan

Indiana University, Department of Physics, Swain Hall West 117, Bloomington, IN 47405-7105, United States of America

Institut für Astro- und Teilchenphysik, Technikerstrasse 25, A - 6020 Innsbruck, Austria

University of Iowa, 203 Van Allen Hall, Iowa City, IA 52242-1479, United States of America

Iowa State University, Department of Physics and Astronomy, Ames High Energy Physics Group, Ames, IA 50011-3160, United States of America

Joint Institute for Nuclear Research, JINR Dubna, RU-141980 Moscow Region, Russia, Russia

KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801, Japan

Kobe University, Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, JP Kobe 657-8501, Japan

Kyoto University, Faculty of Science, Oiwake-cho, Kitashirakawa, Sakyou-ku, Kyoto-shi, JP - Kyoto 606-8502, Japan

Kyoto University of Education, 1 Fukakusa, Fujimori, fushimi-ku, Kyoto-shi, JP - Kyoto 612-8522, Japan

Universidad Nacional de La Plata, FCE, Departamento de Física, IFLP (CONICET-UNLP), C.C. 67, 1900 La Plata, Argentina

Lancaster University, Physics Department, Lancaster LA1 4YB, United Kingdom

INFN Sezione di Lecce(a); Università del Salento, Dipartimento di Fisica(b) Via Arnesano IT - 73100 Lecce, Italy

University of Liverpool, Oliver Lodge Laboratory, P.O. Box 147, Oxford Street, Liverpool L69 3BX, United Kingdom

Jožef Stefan Institute and University of Ljubljana, Department of Physics, SI-1000 Ljubljana, Slovenia

Queen Mary University of London, Department of Physics, Mile End Road, London E1 4NS, United Kingdom
15

76 Royal Holloway, University of London, Department of Physics, Egham Hill, Egham, Surrey TW20 0EX, United Kingdom
77 University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, United Kingdom
78 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC, Université Paris Diderot, CNRS/IN2P3, 4 place Jussieu, FR - 75252 Paris Cedex 05, France
79 Fysiska institutionen, Lunds universitet, Box 118, SE - 221 00 Lund, Sweden
80 Universidad Autonoma de Madrid, Facultad de Ciencias, Departamento de Fisica Teorica, ES - 28049 Madrid, Spain
81 Universität Mainz, Institut für Physik, Staudinger Weg 7, DE - 55099 Mainz, Germany
82 University of Manchester, School of Physics and Astronomy, Manchester M13 9PL, United Kingdom
83 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
84 University of Massachusetts, Department of Physics, 710 North Pleasant Street, Amherst, MA 01003, United States of America
85 McGill University, High Energy Physics Group, 3600 University Street, Montreal, Quebec H3A 2T8, Canada
86 University of Melbourne, School of Physics, AU - Parkville, Victoria 3010, Australia
87 The University of Michigan, Department of Physics, 2477 Randall Laboratory, 500 East University, Ann Arbor, MI 48109-1120, United States of America
88 Michigan State University, Department of Physics and Astronomy, High Energy Physics Group, East Lansing, MI 48824-2320, United States of America
89 INFN Sezione di Milano(a); Università di Milano, Dipartimento di Fisica(b), via Celoria 16, IT - 20133 Milano, Italy
90 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Independence Avenue 68, Minsk 220072, Republic of Belarus
91 National Scientific & Educational Centre for Particle & High Energy Physics, NC PHEP BSU, M. Bogdanovich St. 153, Minsk 220040, Republic of Belarus
92 Massachusetts Institute of Technology, Department of Physics, Room 24-516, Cambridge, MA 02139, United States of America
93 University of Montreal, Group of Particle Physics, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada
94 P.N. Lebedev Institute of Physics, Academy of Sciences, Leninsky pr. 53, RU - 117 924 Moscow, Russia
95 Institute for Theoretical and Experimental Physics (ITEP), B. Cheremushkinskaya ul. 25, RU 117 218 Moscow, Russia
96 Moscow Engineering & Physics Institute (MEPhI), Kashirskoe Shosse 31, RU - 115409 Moscow, Russia
97 Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics (MSU SINP), 1(2), Leninskie gory, GSP-1, Moscow 119991 Russian Federation, Russia
98 Ludwig-Maximilians-Universität München, Fakultät für Physik, Am Coulombwall 1, DE - 85748 Garching, Germany
99 Max-Planck-Institut für Physik, (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany
100 Nagasaki Institute of Applied Science, 536 Ama-machi, JP Nagasaki 851-0193, Japan
101 Nagoya University, Graduate School of Science, Furo-Cho, Chikusa-ku, Nagoya, 464-8602, Japan
102 INFN Sezione di Napoli(a); Università di Napoli, Dipartimento di Scienze Fisiche(b), Complesso Universitario di Monte Sant’Angelo, via Cinthia, IT - 80126 Napoli, Italy
103 University of New Mexico, Department of Physics and Astronomy, MSC07 4220, Albuquerque, NM 87131 USA, United States of America
104 Radboud University Nijmegen/NIKHEF, Department of Experimental High Energy Physics, Heyendaalseweg 135, NL-6525 AJ, Nijmegen, Netherlands
105 Nikhef National Institute for Subatomic Physics, and University of Amsterdam, Science Park 105, 1098 XG Amsterdam, Netherlands
106 Department of Physics, Northern Illinois University, LaTourette Hall Normal Road, DeKalb, IL 60115, United States of America
107 Budker Institute of Nuclear Physics (BINP), RU - Novosibirsk 630 090, Russia
108 New York University, Department of Physics, 4 Washington Place, New York NY 10003, USA, United States of America
109 Ohio State University, 191 West Woodruff Ave, Columbus, OH 43210-1117, United States of America
110 Okayama University, Faculty of Science, Tsushimanaka 3-1-1, Okayama 700-8530, Japan
b Also at Faculdade de Ciencias, Universidade de Lisboa, Lisboa, Portugal

c Also at CPPM, Marseille, France.

d Also at TRIUMF, Vancouver, Canada

e Also at FPACS, AGH-UST, Cracow, Poland

f Also at Department of Physics, University of Coimbra, Coimbra, Portugal

g Also at Università di Napoli Parthenope, Napoli, Italy

h Also at Institute of Particle Physics (IPP), Canada

i Also at Louisiana Tech University, Ruston, USA

j Also at Universidade de Lisboa, Lisboa, Portugal

k At California State University, Fresno, USA

l Also at Faculdade de Ciencias, Universidade de Lisboa and at Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal

m Also at California Institute of Technology, Pasadena, USA

n Also at University of Montreal, Montreal, Canada

o Also at Baku Institute of Physics, Baku, Azerbaijan

p Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany

q Also at Manhattan College, New York, USA

r Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China

s Also at Taiwan Tier-1, ASGC, Academia Sinica, Taipei, Taiwan

 t Also at School of Physics, Shandong University, Jinan, China

u Also at Rutherford Appleton Laboratory, Didcot, UK

v Also at Departamento de Física, Universidade de Minho, Braga, Portugal

w Also at Department of Physics and Astronomy, University of South Carolina, Columbia, USA

x Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

y Also at Institute of Physics, Jagiellonian University, Cracow, Poland

z Also at Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal

aa Also at Department of Physics, Oxford University, Oxford, UK

ab Also at CEA, Gif sur Yvette, France

ac Also at LPNHE, Paris, France

ad Also at Nanjing University, Nanjing Jiangsu, China

* Deceased