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Human intentional communication is marked by its flexibility and context sensitivity. Hypothesized 
brain mechanisms can provide convincing and complete explanations of the human capacity for 
intentional communication only insofar as they can match the computational power required 
for displaying that capacity. It is thus of importance for cognitive neuroscience to know 
how computationally complex intentional communication actually is. Though the subject of 
considerable debate, the computational complexity of communication remains so far unknown. 
In this paper we defend the position that the computational complexity of communication is not 
a constant, as some views of communication seem to hold, but rather a function of situational 
factors. We present a methodology for studying and characterizing the computational complexity 
of communication under different situational constraints. We illustrate our methodology for a 
model of the problems solved by receivers and senders during a communicative exchange. 
This approach opens the way to a principled identification of putative model parameters that 
control cognitive processes supporting intentional communication.

Keywords: communication, computational complexity, computational modeling, intractability, Bayesian modeling, 
goal inference

things which could all be said to be “OK.” Accordingly, some theo-
reticians have argued that, in principle, human intentional com-
munication forms an intrinsically intractable problem, as there is 
an indefinite number of possible intentions a communicator may 
entertain at any time and it is logically impossible for a recipient of 
a communicative signal to determine which intention motivated 
it (Levinson, 1995, 2006).

Evidently, human communication falls in between these two 
extremes. Trivial as well as intractable views of human com-
munication fail to adequately characterize the complexity of 
communication problems solved by humans in everyday situ-
ations. After all, humans are often capable of communicating 
with each other with little or no error, and even when errors 
occur communicators are often quick to adapt their behaviors 
so as to resolve any ambiguities. This behavioral success suggests 
that humans are somehow able to quickly take contextual fac-
tors into account and use them to estimate the likely meanings 
of communicative behaviors in context. Yet, context-sensitive 
computations are notorious in cognitive computational science 
for the astronomical demands that they make on computation 
time (Pylyshyn, 1987; Haselager, 1997; Fodor, 2000; Lueg, 2004). 
It thus remains a real scientific challenge to explain the success 
of human communication in combination with its speed. We 
propose that a more fruitful research agenda is to characterize 
the conditions that mark boundaries of high and low com-
putational complexity in human communication. This paper 
presents a conceptual framework and analytic methodology for 
fleshing out this research agenda.

The framework we propose builds explicit models of commu-
nicative problems in order to assess the computational (in)trac-
tability of those problems under different situational constraints. 

IntroductIon
This paper introduces a formal methodology for analyzing the 
computational complexity of intentional communicative actions, 
i.e., actions designed to modify the mental state of another agent. 
The need for such a methodology is evident from the obvious 
discrepancies between intuitions on the complexity of human 
communication. Some neuroscientists have argued that inten-
tional communication is easy: we have neural mechanisms that 
can directly extract communicative intentions from detectable 
sensory events through the filter provided by our motor abilities 
(Iacoboni et al., 1999, 2005; Rizzolatti et al., 2001). However, this 
non-inferential view of intentional communication seems at odds 
with a core feature of intention attributions, i.e., their context-
dependency (Figure 1 presents a graphical illustration; see also 
Toni et al., 2008; Uithol et al., 2011). The animal world is bursting 
with examples of communicative phenomena in which a physical 
event conveys information by virtue of an interpretation made 
by a receiver according to the dominant statistical association, 
without any need for the interpreter to postulate a sender. Highly 
conventionalized forms of human communication may appear to 
fall into this category, and thereby within the explanatory power 
of neuronal mechanisms like those afforded by the mirror neuron 
system (Jacob and Jeannerod, 2005). Yet, even highly convention-
alized signals – such as a thumbs up action – may take on differ-
ent meanings (e.g., “move up” or “let him live”) depending on the 
communicative context in which they occur. Moreover, even in 
cases where a thumbs up action does signal the conventional “OK,” 
this apparently unequivocal mapping between sign and signified 
remains highly ambiguous. For instance, it could signal “OK, let’s 
have dinner,” or “OK, it is a deal,” or “OK, you can go ahead with 
what you were planning to do,” or an indefinite number of other 
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Situational constraints that render communication tractable under 
the given models are then candidate explanations of the speed 
of everyday human communications. Crucially, these candidate 
explanations can then be empirically tested, assessing whether the 
same relation between situational constraints and computational 
demands predicted by the model fit with the behavior and cer-
ebral processes observed in participants in the lab while solving 
the same communicative problems. This type of model-driven 
approach offers several benefits for cognitive neuroscience. First, 
it identifies putative model parameters that control the cognitive 
processes supporting intentional communication. Second, it pro-
vides a rigorous ground for empirical tests of those models. Third, 
it offers the possibility to test the neurophysiological plausibility 
and cognitive relevance of the model by comparing the predicted 
dynamics of relevant model parameters with the observed dynam-
ics of communicators’ internal states (i.e., cerebral signals measured 
with neuroimaging methods).

overvIew of the paper
We will illustrate our proposed approach using one particular model 
of intentional communication as a case study. The model is an exten-
sion of the Bayesian inverse planning (BIP) model of goal inference 
proposed by Baker et al. (2007, 2009). In Section “A Probabilistic 
Model of Intentional Communication,” we will describe in detail 
the original BIP model of goal inference and our adaptations of 
this model in the form of a Receiver model and Sender model. 
In Section “Computational Complexity Results,” we will study the 
computational complexity of these Receiver and Sender models, 
observing that both are computationally intractable unless prop-
erly constrained. We then set out to identify constraints that ren-
der the models tractable. In Section “Implications and Predictions 
for Cognitive Neuroscience” we will discuss how the conditions 
of (in)tractability reported in Section “Computational Complexity 
Results” can inform critical empirical tests in cognitive neuroscience. 
In Section “Open Theoretical Questions and Future directions” we 
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Figure 1 | Motor acts (such as raising of the arm and/or extension of the 
index finger) can suggest different communicative intentions depending on 
the context in which they are performed. Context information can pertain to 
information about the concurrent state of the world. For instance, the presence of 
a school board may make it more likely (compared to other contexts) that a person 
standing in front of it (likely a teacher) intends to signal “pay attention” to a 
recipient [see e.g., (A)]. Context information can also pertain to information about 
other concurrently performed motor acts. For instance, a person raising his arm, 
extending his index finger, and moving the index finger to his (closed) lips will 
more likely (compared to other combinations of actions) intend to signal “be 

silent” [see e.g., (B)]. When this combination of motor acts is additionally 
combined with a context in which music is played and furthermore additionally 
acts are made such as closing the eyes, tilting the head and moving the finger 
away from the lips a combination of communicative intentions may be signaled 
[e.g., “be silent, pay attention, and listen” see (C–e)]. Importantly, identical 
actions, performed in different contexts, can signal qualitatively different 
communicative intentions. For instance, the act and posture of the communicator 
in (A) and (F) are identical, but the finger gesture in (F) likely does not signal (just) 
“pay attention” but instead (or also) “let’s consider the first reason …”, especially if 
this action is followed by those depicted in (g) and (H). (Illustrations by Bas Maes)
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to the BIP model it is this goal combination that an observer will infer1. 
In sum, goal inference under the BIP model equals the computation 
of the following input–output mapping, informally stated.

Goal Inference (informal)
Input: A representation of the probabilistic dependencies between 
actions, goals, and states and how these dependencies change over 
time, and a sequence of observed actions and world states.
Output: A combination of goals that best explains the sequence 
of actions and world states against the background of the pro-
babilistic dependencies between actions, goals, and world sta-
tes and how these dependencies change over time.

To be able to analyze the computational complexity of the Goal 
Inference problem we need to define formal counterparts of all 
the notions and constructs introduced in the informal problem 
definition above. Following Baker et al. (2007, 2009), we use BIP-
Bayesian networks to formally model the input representations in 
the Goal Inference problem (for a mathematical definition see 
Preliminaries from Bayesian Modeling in the Appendix). In these 
networks actions, goals, and world are modeled as value assign-
ments to nodes in the network, and probabilistic dependencies are 
indicated by directed arcs connecting such nodes (see Figure 2 for 
an illustration). For each node in the network there is an associated 
prior probability of the node taking on a value (e.g., “true” or “false”). 
In addition, each node has an associated probability distribution, 
coding the conditional probability of the node taking on a value as 
a function of the probability of different possible value assignments 
for the nodes that are connecting to it (called, its “parents”). A set of 
observed actions and world states is modeled by a value assignment 
to a sequence of action and state nodes. A combination of goals is 
modeled as a truth assignment for the goal nodes. A combination of 
goals is said to “best” explain the observations of actions and world 
states if it maximizes the probability defined in Eq. 2.

Having formalized all the relevant notions in the Goal Inference 
problem, we can now state the formal counterpart of the problem 
(for explanation of notation and mathematical concepts, refer to 
Preliminaries from Bayesian Modeling in Appendix).

Goal Inference (formalized)
Input: A BIP-Bayesian network B = (D, G), where D is a dyna-
mic Bayesian network with time slices D

1
…D

T
, where each 

time slice contains an action variable A and a state variable S, 
and G = G

1
…G

k
 denotes a set of instrumental goals. Further, a 

set of observed actions and states a ∪ s.
Output: The most probable joint value assignment g to the goals 
in G, i.e., argmax

g
 Pr(G = g | A = a, S = s), or ∅, if Pr(G = g | A = a, 

S = s) = 0 for all joint value assignments g (here the output ∅ can 
be read as meaning “no plausible goal attribution can be made”).

present a set of open questions and suggestions for future theoretical 
research. We close, in Section “Conclusion,” with a reflection on the 
general relevance of this analytic methodology for cognitive neu-
roscience of communication and other forms of social interaction.

a probabIlIstIc Model of IntentIonal 
coMMunIcatIon
Our model of communication builds on an existing model of how 
humans infer instrumental goals from observing someone’s actions, 
called the BIP model (Baker et al., 2007, 2009; see also Blokpoel et al., 
2010). We extend this model to the domain of communication by 
making it apply to communicative goals as well. We first explain the 
BIP model (see Preliminaries: The BIP Model of Goal Inference), 
and then we explain how it can be adapted to the domain of inten-
tional communication (see A BIP Model of Sender and Receiver).

prelIMInarIes: the bIp Model of Goal Inference
According to the BIP model, observers assume that actors are 
“rational” in the sense that they tend to adopt those actions that best 
achieve their goals. Here “best” may, for instance, be defined in terms 
of (expected or believed) efficiency of a set of actions for achieving a 
given (combination of) goal(s). Say, a person has a single goal of tying 
his shoe laces. Then this person could make the necessary moves of 
the fingers, or he could start the finger movements, pause to scratch 
his chin, and then continue making the finger movements until his 
shoe laces are tied. If “rationality” is defined in terms of efficiency then 
the latter sequence of actions would be considered less rational for 
the goal of “tying one’s laces” than the former sequence of actions. Be 
that as it may, the latter sequence of actions can of course be rational 
for a different goal, e.g., if the actor has two simultaneous goals “to 
tie the shoe laces” and “to get rid of that itch on the chin” (and an 
observer of the latter sequence of action will also likely attribute this 
combination of goals, over a single goal to the actor).

Given the assumption of rationality, (probabilistic) knowledge 
of the world and how actions are affected by it, and a measure of 
relative rationality of action–goal pairs, one can compute the prob-
ability that an agent performs an action given its goals, denoted

Pr(action , action , , action  | goal , 1 2 1… k  (1a)
goal , , goal , context)2 … m

or in shorter format:

Pr( , , ,  | , , , , )1 2 1 2a a a g g g ck m… …   (1b)

An important insight of researchers such as Baker et al. (2007, 
2009) is that observers can use this probabilistic model of planning 
to make inferences about the most likely goals that actors are pursu-
ing. The reason is that the probability in Eq. 1a/b can be inverted 
using Bayes’ rule to compute the probability of a given combina-
tion of goals, given observations of actions that an actor performs:

Pr( , , ,  | , , , , )  

Pr( , , ,  |
1 2 1 2

1 2

g g g a a a c

a a a
m k

k

… … ∝
…   , , , , ) Pr( , , , | )1 2 1 2g g g c g g g cm m…  …  

 (2)

Of all the possible combinations of goals that an observer can (or does) 
entertain, the goal combination that maximizes the probability in Eq. 2 
best explains why the observed actions were performed, and according 

1In other words, in the BIP model, goal inference is conceptualized as a form of 
probabilistic inference to the best explanation, a.k.a. abduction (Charniak and Shi-
mony, 1990). As this model is situated at Marr’s (1982) computational level, the 
theory is in principle consistent with a variety of hypotheses about the architecture 
that implements the postulated computations, ranging for instance from predictive 
coding or forward models (Miall and Wolpert, 1996; Oztop et al., 2005; Kilner et al., 
2007a,b) to neural network models (Paine and Tani, 2004) or random sampling 
models (Vul et al., 2009).
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Sender (informal)
Input: A representation of the probabilistic dependencies 
between actions, goals, and states and how these dependen-
cies change over time, and one or more communicative and 
instrumental goals.
Output: A sequence of actions that will lead to the achieve-
ment of the instrumental goals and will lead a receiver to attri-
bute the correct communicative goals to the sender.

Note that our model allows for the possibility that senders can 
have simultaneous instrumental and communicative goals as seems 
required for ecological validity. After all, in everyday settings com-
municative behaviors are typically interlaced with several sequences 
of instrumental actions – think, for instance, of a car driver signal-
ing to another driver at night that his lights are off, while at the 
same time trying to drive safely and stay on route.

Building on the formalisms used in the Goal Inference model, 
the informal Sender model yields the following formal input–out-
put mapping (see Figure 3 for an illustrative example of a BIP-
network for communicative goals).

Sender (formalized)
Input: A BIP-Bayesian network B = (D, G), where D is a 
dynamic Bayesian network with time slices D

1
…D

T
, such that 

each time slice contains an action variable A and a state varia-
ble S, G

I
 = G

1
…G

k
 denotes a set of instrumental goals, and 

G
C
 = G

k+1
…G

n 
denotes a set of communicative goals, and a set 

of goal assignments g
I 
∪ g

C
 to G

I 
∪ G

C
.

Output: A joint value assignment a to the action variables such 
that a = argmax

a
Pr(A = a|G

I
 = g

I
) and ReceIver(B, a, s) = g

C
, 

or ∅ if no such joint value assignment a is possible. Here s is 
argmax

s
 Pr(S = s | A = a), i.e., the most likely state s to follow 

from the actions.

Here the receiver function ReceIver(.,.,.) is modeled after the Goal 
Inference function studied by Baker et al. (2007, 2009) and Blokpoel 
et al. (2010), but with an important difference: the receiver is pre-
sented with a sequence of actions that was purposely designed by 

The computational complexity of this model has previously 
been analyzed by Blokpoel et al. (2010). Specifically, these authors 
presented a mathematical proof that the problem is computation-
ally intractable (NP-hard) if no constraints are imposed on the 
input representations. They furthermore found that the problem 
is tractably computable under the constraint that the set of candi-
date goals (G) is small and/or the probability of the most probable 
goal assignment (p) is large. Here, we will use the Goal Inference 
problem as an inspiration for similarly explicit characterizations of 
the Sender and receIver problems solved by human communica-
tors. As we will see, some (though not all) of the computational 
complexity results for Goal Inference apply also to the new Sender 
and receIver problems.

a bIp Model of sender and receIver
If indeed – as the BIP-model postulates – observers of actions 
infer goals from actions by means of an inference to the best 
explanation, then senders can use this knowledge to predict how 
a receiver will interpret their actions ahead of time. For instance, 
they could engage an internal simulation of a receiver’s infer-
ences to the best explanation when considering the suitability 
of candidate actions (Noordzij et al., 2009). Such a simulation 
subroutine could be called multiple times during the planning 
of instrumental and communicative behaviors, allowing a sender 
to converge on an action sequence which is both efficient and is 
likely to lead a receiver (if properly simulated) to attribute the 
correct (i.e., intended) communicative goal to the sender. This 
conceptualization of the computational bases of sender signal 
creation can be summarized by the following informal input–
output mapping2.

S1 S2 S3

AT-1A1 A2

ST

G1 G2 GK

...

...

...

Figure 2 | The BiP-Bayesian network with T time slices: St with t = 1, 2, … T, is a state variable at time t; At with t = 1, 2, … T, is an action variable at time t. 
The goal variables, G1, G2, … GK are fixed over the different time slices. Arrows indicate probabilistic dependencies between variables in the network. Note that no 
direct dependencies exist between states and goals, but that any indirect dependencies between states and goals are mediated by action variables.

2We remark that the computational-level Sender and receIver models that we pro-
pose are in one respect a simplification and in another an enrichment of the Shafto 
and Goodman (2008) model (see also Frank et al., 2009). Our models are a simpli-
fication in the sense that they do not assume infinite recursive reasoning by sender 
and receiver about each other, in contrast to the Shafto and Goodman model. Our 
model is an enrichment in the sense that we adopt the Bayesian network structure 
of the Baker et al. (2007, 2009) BIP model to have a more general characterization 
of the assumed dependencies between states, goals, and actions.
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coMputatIonal coMplexIty results
In this section we state all computational complexity results. 
Readers interested in full details on the mathematical proofs 
are referred to the Section “Computational Models and 
Computational Complexity Analyses” in the Appendix. This 
section assumes familiarity with concepts and methods from 
the field of computational complexity analysis (for a primer 
see Preliminaries from Complexity Theory in the Appendix). 
For instance, contrary to the suggestion that computationally 
intractable functions can be approximately computed efficiently 
(e.g., Love, 2000; Chater et al., 2003, 2006), computational com-
plexity theory (cf. Kwisthout et al., 2011) has clearly shown that 
many intractable (e.g., NP-hard) functions cannot be efficiently 
approximated (Arora, 1998; Ausiello et al., 1999), and almost 
all are intractable to approximate if only a constant sized error 
is allowed (Garey and Johnson, 1979; van Rooij et al., 2010)3. 
Accordingly – although the analyses we provide work under 
the assumption that the models exactly predict the outputs of 
human computations – we conjecture that the obtained results 
also apply under the assumption that the models approximately 
predict the outputs of human computations. Here “approximate” 
means that the approximate prediction does not differ from the 
exact prediction by more than some small constant factor. For 
ideas on how approximation can be explicitly taken into account 
in fixed-parameter tractability analyses we refer the reader to 
Hamilton et al. (2007) and Marx (2008).

a sender with the aim of making her communicative goals inter-
pretable by a receiver, while concurrently trying to achieve one or 
more instrumental goals unknown to the receiver. This difference 
between the Goal Inference problem and the ReceIver problem can 
have non-trivial consequences for the computational complexity 
of the ReceIver problem, which is why we need to analyze it anew 
in this paper.

For completeness and clarity, we state the ReceIver problem in 
both informal and formal format below.

Receiver (informal)
Input: A representation of the probabilistic dependencies 
between actions, goals, and states and how these dependen-
cies change over time, and a sequence of observed actions and 
world states.
Output: A combination of communicative goals that best 
explains the sequence of actions and world states against 
the background of the probabilistic dependencies between 
actions, goals, and world states and how these dependencies 
change over time.

Receiver (formalized)
Input: A BIP-Bayesian network B = (D, G) as in the Sender 
problem; a set of observed actions and states a ∪ s.
Output: The most probable joint value assignment g

C
 to the 

communicative goals in G
C
, i.e., argmax

g
 Pr(G

C
 = g

C
 | A = a, 

S = s), or ∅, if Pr(G
C
 = g

C
 | A = a, S = s) = 0 for all joint value 

assignments g
C
.

Having defined both the generic Sender and ReceIver problems, we 
are now in a position to analyze their computational complexity. 
We report on our analyses in the next section.

`be silent`
`pay 

attention`
`listen`

t=1 t=2 t=3t=0

`open 
eyes` and 
`up-right 

head`

`retract 
arm` and 
`raise 1 
finger`

`close 
eyes`

`extend 
arm` and 
`tilt head`

t=-1

Figure 3 | An illustration of how probabilistic knowledge about the scenarios depicted in Figures 1C–e can be encoded in a BiP-Bayesian network as 
probabilistic dependencies between goals, actions, and states.

3We are aware of computer simulation studies in the cognitive science literature that 
seem to suggest that Bayesian models can be efficiently approximated (Vul et al., 
2009; Sanborn et al., 2010). However, the intractability results for approximating 
Bayesian computations available in the computer science literature show that these 
“simulation-based approximability findings” cannot generalize to all types of inputs, 
but only to some that have special properties (cf. “parameters”) that can be exploited 
for tractable (exact or approximate) computation (Kwisthout et al., in 2011).
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We start by considering the fp-(in)tractability of the ReceIver 
problem. We have two main fp-tractability results:

Result 3. The ReceIver problem is fp-tractable for parameter 
set {|G

I
|, |G

C
|}.

Result 4. The ReceIver problem is fp-tractable for parameter 
set {|G

I
|, 1 − p}.

Note that, by definition, if a problem is fp-tractable for a parameter 
set K then it is also fp-tractable for any superset K′ ⊇ K. Hence, 
Results 3 and 4 imply all other fp-tractability results listed in Table 2 
for the ReceIver problem, including the fp-tractability of the prob-
lem for the combined parameter set {|G

I
|, |G

C
|, 1 − p}.

Result 3 establishes that it is possible to compute the input–out-
put mapping defined by the ReceIver problem in a time which grows 
fast (read: exponential) only in the two parameters |G

I
| and |G

C
|, 

and slow (read: polynomial) in the remainder of the input, regard-
less the size of other input parameters. Result 4 establishes that it is 

IntractabIlIty of GenerIc coMMunIcatIon
Our two main computational intractability results are:

Result 1. The ReceIver problem is NP-hard.
Result 2. The Sender problem is NP-hard.

These results establish that both ReceIver and Sender problems are 
computationally as hard to compute as a whole class of problems that 
are strongly conjectured to be intractable, called the NP-complete 
problems, and possibly even harder. This means that Sender and 
ReceIver problems cannot be computed efficiently (more precisely, 
in polynomial-time) unless all NP-complete problems can be (Garey 
and Johnson, 1979; Aaronson, 2005; Fortnow, 2009). As there is both 
theoretical and empirical evidence that no NP-complete problem 
allows for an efficient solution procedure we conclude that ReceIver 
and Sender problems, as we have defined them, are intractable. We 
note that our Results 1 and 2 are, to the best of our knowledge, 
the first formal proofs that are consistent with intuitive claims of 
intractability in the communication literature (Levinson, 1995, 
2006; Pickering and Garrod, 2004; Barr and Keysar, 2005).

IdentIfyInG condItIons for tractabIlIty
Importantly, our analyses do not stop at the intractability results 
(Results 1 and 2). On the contrary, we view such results as merely 
the fruitful starting point of rigorous analyses of the sources of com-
plexity in human communication. For these further analyses we 
adopt a method for identifying sources of intractability in cognitive 
models developed by van Rooij and Wareham (2008; see also van 
Rooij, 2008; van Rooij et al., 2008). The method builds on concepts 
and techniques from the mathematical theory of parameterized 
complexity (Downey and Fellows, 1999), and works as follows.

First, one identifies a set of potentially relevant problem param-
eters K = {k

1
, k

2
, …, k

m
} of the problem P under study (for us, the 

ReceIver and Sender problems). Then one tests if it is possible to 
solve P in a time that can grow excessively fast (more precisely: expo-
nential or worse) as a function of the elements in the set K = {k

1
, 

k
2
, …, k

m
} yet slowly (polynomial) in the size of the input4. If this 

is the case, then P is said to be fixed-parameter (fp-) tractable for 
parameter set K, and otherwise it is said to be fp-intractable for K. 
Observe that if a parameter set K is found for which P is fp-tractable 
then the problem P can be solved quite efficiently, even for large 
inputs, provided only that the members of K are relatively small. 
In this sense the “unbounded” nature of K can be seen as a reason 
for the intractability of the unconstrained version of P. Therefore, 
we also call K a source of intractability of P.

The ReceIver and Sender models have several evident param-
eters, each of which may be a source of the intractability inherent 
in the general problems postulated by these models. Table 1 gives 
an overview of the parameters that we consider here. Using the 
abovementioned methodology for fp-tractability analysis we have 
been able to derive a set of fp-(in)tractability results, which are 
summarized in Table 2. We will discuss these results and what they 
imply for the tractability of the ReceIver and Sender under different 
situational constraints.

Table 1 | Overview of parameters considered in our tractability analyses.

Parameter Description

|gC| The size of the set of communicative goals

|gi| The size of the set of instrumental goals

|A| The size of the set of action nodes

|S| The size of the set of states

T The number of time slices

1 − p Here p is the probability of the most probable communicative  

 goal attribution

4More formally, this would be a time on the order of f(k
1
, k

2
, …, k

m
)nc, where f is 

an arbitrary computable function, n is a measure of the overall input size, and c is 
a constant.

Table 2 | Overview of complexity results and open questions for receiver 

problem (top) and Sender problem (bottom).

 – |gi| |gC| |gi|, |gC|

receiver

– NP-hard fp-intractable fp-intractable fp-tractable

|A| fp-intractable fp-intractable fp-intractable fp-tractable

1 − p fp-intractable fp-tractablea fp-intractable fp-tractable

|A|, 1 − p fp-intractable  fp-tractable fp-intractablea fp-tractable

Sender

– NP-hard fp-intractable fp-intractable fp-intractable

|A| fp-intractable  fp-intractable  fp-intractable  fp-tractable

1 − p fp-intractable fp-intractable  fp-intractable fp-intractablea

|A|, 1 − p fp-intractable  ? fp-intractablea fp-tractable

The table lists all possible combinations of parameters from Table 1: each 
cell stands for the parameter set consisting of its row and column labels. In 
the special case of the empty parameter set classical (non-parameterized) 
complexity applies, in this case NP-hardness. Note that in our model |A| = |S| = T. 
Hence for all listed results including parameter |A| in the parameter set the other 
two parameters |S| and T may be replaced (or even added) with no change to 
the listed result. Full details on the proofs of theorems and explanations of 
corollaries and conjectures can be found in Section “Computational Models and 
Computational Complexity Analyses” in the Appendix. 
aTechnically, as a consequence of probabilities being constrained to a value 
between 0 and 1, these results are not fp-(in)tractability results in the formal 
sense of the term. Yet, we do have formal proofs that show 1 − p is (or respec-
tively, is not) a source of complexity in the same sense that the formal notion of 
fp-(in)tractability intends to capture.

van Rooij et al. Intentional communication: easy or difficult?

Frontiers in Human Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 52 | 6

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


these parameters (or pairs of them) are small, and thereby make 
the intention attribution task tractable for receivers. We will discuss 
a set of results that are relevant to this question, starting with the 
following:

Result 7. The Sender problem is fp-intractable for parameter 
set {|G

I
|, |G

C
|}.

In other words, the receIver problem being tractable is by itself 
not sufficient for the Sender problem to be tractable (compare 
Result 3 and Result 7). Additional constraints need to be assumed 
to explain the tractability of the sender’s task. Result 8 shows that 
a low upper-bound on the length of the sequence of actions that 
needs to be planned can help make the sender’s task easier.

Result 8. The Sender problem is fp-tractable for parameter set 
{|A|, |G

I
|, |G

C
|}.

Result 8 can be understood as a consequence of the ability of a 
sender to use the same fp-tractable algorithm that the receiver can 
use to tractably infer the sender’s communicative goals to predict the 
receiver’s interpretation of a given action sequence, and then search 
the space of action sequences (which is exponential only in |A|) for 
a sequence that yields the right receiver inference. This algorithmic 
strategy does not yield fp-tractability for the Sender problem for 
the parameter set {|A|, |G

I
|, 1 − p}, because contrary to |G

C
|, which is 

constant for all action sequences the sender may consider, the value 
of 1 − p is different for different candidate action sequences. As a 
result, 1 − p cannot generally be assumed to be small for all possible 
action sequences. Whether or not a different strategy exists that 
can exploit this combination of parameters for solving the Sender 
problem in fixed-parameter tractable time is currently unknown:

Open question. Is the Sender problem is fp-tractable for para-
meter set {|A|, |G

I
|, 1 − p}?

What we do know is that no other combination of parameters exclud-
ing {|A|, |G

I
|, |G

C
|} as a subset suffices to render the Sender problem 

fp-tractable. If future research were to reveal that the Sender problem is 
fp-tractable for parameter set {|A|, |G

I
|, 1 − p}, then this would indicate 

that given that the receIver problem is tractable (e.g., Result 3 and 
4) parameter a bound on |A| suffices for tractability of the Sender 
problem. If, on the other hand, it would turn out that the Sender 
problem is fp-intractable for parameter set {|A|, |G

I
|, 1 − p}, then this 

would underscore the high complexity of the Sender problem, as it is 
impossible for the input to the Sender problem to be large when all 
three parameters |A|, |G

I
|, and |G

C
| are small at the same time.

dIscussIon
We analyzed the complexity of two models of senders and receiv-
ers in a communicative exchange. In Section “Implications and 
Predictions for Cognitive Neuroscience” we will discuss the implica-
tions of our findings for cognitive neuroscience, including a set of 
empirical predictions testable by cognitive neuroscience methods. 
All predictions made in this section must, of course, be understood 
relative to the models that we studied, which inevitably make some 
basic assumptions about properties of the mental representations of 
receivers and senders in the communication task. In Section “Open 
Theoretical Questions and Future directions” we will explicitly dis-
cuss these assumptions and give pointers for possible extensions or 

also  possible to compute the input–output mapping defined by the 
ReceIver problem in a time which grows fast only in the two param-
eters 1 − p and |G

I
|, and slow in the remainder of the input, regardless 

the size of other input parameters (including |G
C
|). Informally, this 

means that the inference task modeled by the ReceIver problem can 
be performed fast, even for large networks of beliefs, if the number of 
possible instrumental goals that the receiver believes the sender may 
have (|G

I
|) is relatively small and at the same time either the number 

of communicative goals is relatively small or the probability of the 
most likely communicative goal attribution (p) is relatively large.

These mathematical results lead to a clear prediction. A receiver 
is able to quickly attribute communicative intentions to a send-
er’s actions if the number of instrumental goals that the receiver 
assumes that the sender is pursuing in parallel to her communica-
tive goals is small and the sender does not have many communica-
tive goals she wishes to convey simultaneously, or otherwise she 
was able to construct a sequence of actions that leads to a signal of 
low ambiguity (captured by small 1 − p).

Importantly and perhaps counter intuitively, low ambiguity of 
the signal is by itself not sufficient for tractability, as we have the 
following intractability result.

Result 5. The ReceIver problem is fp-intractable for parameter 
set {1 − p}.

Similarly, a small number of communicative goals is by itself not 
sufficient for tractability, as we also have the following fp-intrac-
tability result.

Result 6. The ReceIver problem is fp-intractable for parameter 
set {|G

C
|}.

However, if senders were to focus solely on communicating (and for-
getting for the moment about any other instrumental goals they may 
also want to achieve), then |G

I
| = 0, and hence low ambiguity (or small 

number of communicative goals) would by itself suffice to make the 
inference task easy for the receiver. The reason that low ambiguity (or 
small number of communicative goals) is not enough for tractability 
for |G

I
| > 0 is that, in order to compute the probability of the most 

probable communicative goal assignment, the receiver needs to do 
this computation against the background of all possible instrumental 
goals a sender may have, as having one or more of those can affect 
the probability of the target communicative goals. The number of 
possibilities that the receiver needs to be taken into account grows, 
in this case, exponential in |G

I
|, and therefore the computation is too 

resource demanding to be done efficiently for large |G
I
|.

Having seen that neither large p nor small |G
C
| are by itself sufficient 

for tractability of the ReceIver problem, but that combining either 
with small |G

I
| does yield tractability, one may ask if there are other 

combinations of constraints that are sufficient for tractability of the 
ReceIver problem. As can be seen from the overview of fp-(in)tracta-
bility results in Table 2, no combination of parameters excluding {|G

I
|, 

|G
C
|} or {|G

I
|, 1 − p} as subsets yields fp-tractability for the ReceIver 

problem. This means that these two sets seem to fully characterize 
what makes the ReceIver problem difficult or easy (at least, relative to 
the total set of parameters that we consider here and listed in Table 1).

As the parameter |G
I
|, |G

C
| and 1 − p all seem to be, to some 

extent, under the control of the sender, Results 3 and 4 raise the 
question of how computationally complex it is for senders to ensure 
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results are testable in the context of novel experimentally controlled 
empirical approaches to communication, in particular those rapidly 
evolving in the new exciting domain of experimental semiotics 
(Galantucci and Garrod, 2011). This domain is focused on studying 
interactions that occur in the absence of pre-established communi-
cative conventions, thereby allowing researchers an unprecedented 
level of experimental control over the communicative means and 
goals of the communicators. Accordingly, communicative interac-
tions are studied in the context of non-verbal tasks. This approach 
allows one to disambiguate the ability to solve genuine commu-
nicative problems de novo, from the implementation of empirical 
generalizations from past experience. This approach also excludes 
that communicators simply exploit a pre-existing communicative 
system powerful enough to mutually negotiate new communica-
tive behaviors, an obvious non-sequitur for understanding how 
human communicative abilities come into place. The communica-
tive games designed according to these principles appear amenable 
to manipulation of the crucial parameters that have emerged from 
the present analysis of computational complexity, namely the num-
ber of instrumental goals that a sender needs to accomplish during 
a communicative exchange, or the number of actions afforded by 
a sender. Furthermore, bringing these present results to the level 
of empirical research will be beneficial for highlighting some of 
the simplifications inherent in developing a computational-level 
account of human communicative abilities. For instance, translat-
ing the present results into empirical studies will require non-trivial 
operationalization of abstractions like “actions” and “goals.”

The fp-tractability results are possibility proofs in the sense that 
there exist fp-algorithms that can perform the sender and receiver 
tasks quickly if certain situational parameters are constrained to 
take small values. Specifically, we proved the existence of an fp-
tractable algorithm for the Sender problem which exploits small 
values for parameters |A| (the number of to be planned sender 
actions), |G

I
| (the number of sender instrumental goals), and |G

C
| 

(the number of sender communicative goals). Furthermore, we 
proved the existence of an fp-tractable algorithm for the receIver 
problem that can exploit the same set of parameters, or even a 
smaller set which does not include |A|. In addition, we proved the 
existence of an fp-tractable algorithm for the receIver problem that 
can exploit the parameters |G

I
| and 1 − p (where p is the probability 

of the most likely communicative goal attribution). Whether or 
not human brains actually use and implement such fp-tractable 
algorithms is an empirical question. Note that posing this question 
is only made possible by the type of complexity analysis described 
in this paper. We believe this is a relevant question, as it stems 
from a principled analysis rather than occasional observations. 
The cognitive neuroscience literature is replete with examples of 
cerebral responses being attributed to “task difficulty” on the basis 
of introspections. Here, we show how task difficulty could be for-
mally parameterized. This approach opens the way for using cogni-
tive neuroscience methods to test whether and how human brains 
exploit similar fp-tractable computations to efficiently solve com-
municative problems. The prediction to be tested is that resource 
demands during human communication should be extremely sen-
sitive to the parameters identified as critical for tractability of the 
model. Recall that an fp-tractable algorithm for parameters {k

1
, k

2
, 

…, k
m
} runs fast if and only if all the parameters k

1
, k

2
, …, and k

m
 

adaptations of the models. As such new model variants need not 
inherit all the (in)tractability results from our Sender and ReceIver 
models they naturally yield a set of open questions for future theo-
retical research.

IMplIcatIons and predIctIons for coGnItIve neuroscIence
We presented two new models of the tasks engaging senders and 
receivers during a communicative exchange: see the ReceIver  and 
Sender models in Section “A BIP model of Sender and Receiver.” As 
these models are situated at Marr’s (1982) computational level, they 
are not bound to particular assumptions about a specific algorithm 
that human brains would use to perform the postulated computa-
tions, nor about how these algorithms are exactly implemented in 
neural mechanisms. They merely state the hypothesized input–out-
put mappings assumed to underlie the receiver and sender tasks in 
communication respectively. This high level of abstraction has the 
benefit of generalizability, i.e., the sources of intractability identified 
in the models are inherent in the problems that they describe, and 
not specific to particular algorithms for solving those problems 
or implementations thereof. As a consequence, our intractability 
results are proofs of impossibility: no algorithmic implementation of 
any type, in any neural mechanism, can ever compute the problems 
quickly if the input domain is unconstrained.

It could be argued that, since human communication is evi-
dently tractable for real humans in the real world, the present results 
are useless. However, the mismatch between model and reality is 
informative for improving formal models of human communica-
tion, and for rejecting claims that intentional communication is 
computationally trivial to explain (Rizzolatti and Craighero, 2004; 
Iacoboni et al., 2005). The results can help to avoid trying to account 
for situations that are in fact impossibilities as far as efficient human 
communication is concerned. In other words, the generic ReceIver 
and Sender models considered here are too powerful, i.e., they 
describe situations that preclude tractable computation. Many 
models in cognitive neuroscience which are powerful enough to 
cover a wide variety of domains, such as models of reinforcement 
learning (Gershman and Niv, 2010) or decision-making (Dayan, 
2008), appear to have this property. This can be understood by 
the inherent computational complexity introduced by the (uncon-
strained) domain generality of computations, an issue that has long 
been known in artificial intelligence and cognitive science (Fodor, 
1983, 2000; Pylyshyn, 1987; Haselager, 1997).

A major advantage of the current approach lies in its ability 
to indentify, from first principles, which situational constraints 
render the generic ReceIver  and Sender models tractable. Our fp-
tractability results show that there exist algorithms for efficiently 
computing the problems if the situations that arise are constrained 
in specific ways. For instance, we found that if receiver assumes that 
senders do not pursue many instrumental goals concurrently to 
their communicative goals, and if they ensure that the most prob-
able communicative goal assignment has high probability, then the 
receiver task is tractable. Similarly, we found that if senders do not 
pursue many instrumental and communicative goals, and use short 
action sequences for communication, then the sender task is tracta-
ble. Conditional on the validity of our assumptions, these findings 
are novel and important insofar that they describe those situations 
in which human communication could proceed efficiently. These 
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 present results enable communication researchers to move away 
from trivial “toy domains,” using the fp-tractable algorithms identi-
fied here to expand the domains in which to compute predicted 
input–output mappings (for details on the algorithms see the 
Appendix). In cases where it is difficult or impossible to get an 
explicit model of the entire communicative setting, our proposed 
methodology of testing sources of tractability in the computational-
level models of interest can be used instead.

open theoretIcal QuestIons and future dIrectIons
For our case study, we opted for analyzing the ReceIver and Sender 
models as defined in Section “A BIP model of Sender and Receiver.” 
By doing so, we made several commitments that may have affected 
our complexity results. We will briefly highlight those commitments 
known to affect the results, and those which we believe are unlikely 
to have had an effect. We will distinguish between model-specific 
commitments (such as the nature of the connectivity of the input 
networks and assumptions about the amount and type of informa-
tion available to senders and receiver) and our choice of formalism 
(i.e., a probabilistic formalism).

The models that we defined make the strong commitment that 
there is no direct (probabilistic) dependency between states and 
goals, as all such dependencies are assumed to be mediated by 
actions (see Figures 2 and 3). This assumption seems problematic 
if one considers that states of the world may make certain goals 
of an actor more likely (e.g., if a cup is present and within reach, 
then a grasping action toward that cup is more likely to have as 
goal “grasp the cup,” as compared to a situation where the cup is 
not present, or out of reach). Although this commitment strictly 
speaking reduces the validity of the model, we know it has no effect 
on our complexity results (they would apply equally well to a model 
that allows for direct state-goal dependencies). The reason is that 
the model makes an additional assumption, namely the assumption 
that all relevant states and actions are observable by the receiver. 
This brings us to the point of validity of this assumption.

Although complete observability may hold true in some situa-
tions (and in those situations the models may thus apply without 
problem), it is likely that in many real-world situations not all rel-
evant actions and states are observable. Think, for instance, of the 
possibility that part of a visual scene is occluded by nearby objects 
or even an eye blink. Then some actions and state changes may be 
observed directly, while others need to be inferred by an observer. 
Humans are often able to do this, and models of receivers should 
be able to explain how they can do so. Because our fp-tractability 
results reported in Section “Computational Complexity Results” 
heavily depend on the assumption of complete observability, we 
must admit that our analyses have not yet shed light on how com-
munication can proceed efficiently under conditions of partial 
observability. Future research on the computational complexity 
of model variants that include the assumption of partial observ-
ability are thus called for.

Another important property of our models is that they assume 
that the sender and receiver know everything that is relevant to the 
context of the communicative exchange, including which action 
and goal variables are relevant, and their probabilistic interdepend-
encies. Clearly, this assumption sweeps a considerable amount of 
computational complexity under the rug; after all, computing the 

are constrained to sufficiently small values in the current input (i.e., 
situation). If, in the lab, one were to create communication tasks in 
which the critical parameters can be systematically manipulated, 
then two critical predictions follow from the hypothesis that the 
senders use, say, the fp-tractable algorithm underlying Result 8, and 
receivers use the fp-tractable algorithm underlying Result 3 or 4:

(1) As long as |A|, |GI
|, |G

C
|, and 1 − p remain small the task of 

communication should proceed efficiently.
(2) As soon as two parameters in the set {|G

I
|, |G

C
|, 1 − p} take 

on large values, the task of communication would start to 
consume an excessive amount of computational resources 
(for sender and/or receiver, depending in which the relevant 
parameters are large), which may be reflected in a decrease 
of speed, increase of communicative errors, and/or increased 
brain activities in certain brain areas underlying the relevant 
computations.

If these predictions were to be confirmed, then this result would 
provide evidence for both cerebral use of fp-tractable computa-
tions, and for the ReceIver and Sender models as defined above. 
A natural next question would then be how these algorithms are 
neurally implemented. If, on the other hand, the predictions were 
to be disconfirmed, then two interpretations are open. Either, the 
ReceIver and Sender models are not valid, and this would moti-
vate new modeling directions; or ReceIver and Sender models are 
valid, but humans use different fp-tractable algorithms for comput-
ing them, exploiting parameters other than the ones that we have 
studied here. This latter option is not excluded, as there may be 
parameters of the problems outside the set described in Table 1. 
Constraining these additional parameters may render computation 
of these problems tractable as well. Both research directions appear 
highly informative.

We end this section by remarking that complexity results, such 
as we have derived here, also expand the ways in which computa-
tional-level models can be tested for input–output equivalence with 
human communicators. This form of testing involves presenting 
a participant with a situation that can be described as a particular 
input in the model’s input domain, computing the output that 
according to the model corresponds to that input, and testing if 
the responses of the participant match the predicted outputs. This 
test is quite common in cognitive science, and was also the method 
used by Baker et al. (2007, 2009) to test their computational-level 
model of (instrumental) goal inference. However, this methodol-
ogy is often used within particular “toy-scenarios,” where the tested 
situations need to be exceedingly simple, such that inputs can be 
explicitly modeled and output computation is tractable for the 
researcher (see e.g., Oztop et al., 2005; Cuijpers et al., 2006; Erlhagen 
et al., 2006; Baker et al., 2007; Yoshida et al., 2008). Without a clear 
estimate of the complexity of the problem at hand, the results found 
within the boundaries of those toy-scenarios might easily fail to 
scale up to more complex and realistic domains. For instance, those 
computational models of goal inference that seem to work (i.e., 
that make plausible goal inferences without running into tractabil-
ity issues) severely restrict the possible contexts and the number 
of possible actions and goals, keeping their application domain 
far removed from realistically complex situations. In contrast, the 
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the same basic structural information is encoded in the represen-
tations of those alternative formal languages. If models identical 
or similar to those analyzed in this paper get expressed in the dif-
ferent formalisms, chances are that all such formal model variants 
can be transformed into each other via mathematical reductions 
not unlike the one we used to prove that the Sender and Receiver 
models are of the same computational complexity as the known 
intractable logic problem called Satisfiability (see Computational 
Models and Computational Complexity Analyses). One would not 
want complexity predictions to depend on the formal language 
chosen to express a model, in the same way that one would not 
want a verbal theory to lead to different predictions if it is expressed 
in English or in Dutch.

conclusIon
Recent accounts of human communication have focused on the 
motoric abilities of individual agents (Iacoboni et al., 2005), as if the 
meaning conveyed by a pointing finger were an intrinsic property 
of that action. Others have correctly highlighted the fact that, when 
unconstrained, human communication is intractable (Levinson, 
1995, 2006). Here we have tried to move our knowledge forward, 
showing that those positions are case limits of a continuum as a 
function of the constraints applicable to the inferences involved in 
human communication. We believe the approach exemplified in 
this paper has the potential to formally define sources of computa-
tional complexity, opening the way to tackle some hard problems in 
intentional communication. Acquiring this knowledge appears fun-
damental to generate a neurobiologically grounded formal account 
of the computational mechanisms supporting our communicative 
abilities, which is a necessary step to understand the biological and 
cognitive bases of human sociality.
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set of relevant information itself may well be computationally 
very resource demanding. Be that as it may, our analyses apply in 
those cases where humans do have complete knowledge of every-
thing relevant to the communication task, and this is a condition 
that can certainly be met in laboratory settings used to investigate 
sources of complexity in communication as suggested in Section 
“Implications and Predictions for Cognitive Neuroscience.” Also, 
our analyses show that even if there are not an indefinite number 
of intentions that senders and receivers may entertain (see our 
Introduction), communication under simpler models can still be 
intractable. In contrast, even in the case where sender and receiver 
have complete common ground on the set of possible sender goals, 
the planning biases of the sender (i.e., the probabilistic depend-
encies between sender’s goals and actions, and world, as well as 
how those dependencies change over time) and all events that are 
relevant to the interpretation of the sender’s actions, still the task 
of communication is computationally intractable. Future research 
may address the additional computational complexities introduced 
by establishing this common ground in the first place. This could be 
done by building an explicit model of that process and submitting 
it to the same sort of complexity analyses as we have performed 
here for the Sender and ReceIver models.

Last, we reflect on our choice of formalism: we opted for 
Bayesian networks as a formal representation of communicators’ 
situational knowledge and we used the mathematical notion of 
posterior probability to define the intuitive notion of “inference to 
the best explanation.” This choice of probabilistic formalism aligns 
our models with the current trend in cognitive neuroscience, which 
assumes that the brain implements its cognitive functions by means 
of probabilistic computations (Wolpert and Ghahramani, 2000; Ma 
et al., 2006), including the cognitive function of inferring people’s 
goals and intentions from their actions (Cuijpers et al., 2006; Baker 
et al., 2007, 2009; Kilner et al., 2007a,b). Importantly, our complex-
ity results should not be seen as bound to this formalism. It is well 
known that knowledge structures can be represented using other 
formalisms, such as (non-classical) logics or as constraint networks 
(van Ditmarsch et al., 2007; Russell and Norvig, 2009). In those 
cases, “Inference to the best explanation” could be defined in terms 
of logical abduction (e.g., Bylander et al., 1991; Eiter and Gottlob, 
1995; Nordh and Zanuttini, 2005, 2008) or constraint satisfaction 
(e.g., Thagard and Verbeurgt, 1998; Thagard, 2000). The present 
results would apply to those alternative formalisms, provided that 
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Most probable explanation
Input: A probabilistic network B = (N, Γ), where N = (V, 
A) and V is partitioned into a set of evidence nodes E with a 
joint value assignment e and an explanation set M, such that 
E ∪ M = V.
Output: What is the most probable joint value assignment m 
to the nodes in M given evidence e?

Partial maximum a-posteriori probability
Input: A probabilistic network B = (G,Γ), where V is partitio-
ned into a set of evidence nodes E with a joint value assignment 
e, a set of intermediate nodes I ≠ ∅ and an explanation set M, 
such that E ∪ I ∪ M = V.
Output: What is the most probable joint value assignment m 
to the nodes in M given evidence e?

While Bayesian networks denote static knowledge, they can 
be made dynamic by incorporating a discrete notion of time. 
In dynamic Bayesian networks (Grahamani, 1998), sequences of 
variables are used that are indexed by a time stamp; variables with 
the same time stamp t form a time slice. In addition to the static 
dependencies between variables in the same time slice, dynamic 
 dependencies may then be modeled by arcs between variables in 
different time slices. For example, if nothing happens, wet grass will 
dry up eventually; a power failure will probably be solved some-
where in the future; if it’s raining now, chances are high that it 
will be raining as well in the near future. Dynamic dependencies 
can be between similar or different variables in each time slice; for 
example the temperature in time slice t + 1 will depend on both 
the temperature and the state of the thermostat in slice t, and vice 
versa. In Figure A2 the example network is enhanced with dynamic 
dependencies.

A BIP-Bayesian network (BIPBN) is a dynamic Bayesian net-
work with specific connectivity, that models goal inference in the 
form of inverse planning (Baker et al., 2007, 2009). In a BIPBN 
D each slice consists of a state variable S

t
 ∈ S and action variable 

appendIx
In this Appendix we explain general concepts, notation and ter-
minology that are used in the main text. In particular, we intro-
duce the mathematical notions of dynamic Bayesian Networks 
and a special case of such networks, called Bayesian Inverse 
Planning (BIP-)Bayesian Networks (Baker et al., 2007, 2009; 
Blokpoel et al., 2010). Further, we explain the conceptual bases 
of computational complexity analysis, including definitions and 
proof techniques. Last, we present formal proofs for all results 
in the main text.

prelIMInarIes froM bayesIan ModelInG
Bayesian or probabilistic networks are tools for modeling uncer-
tain knowledge (Jensen and Nielsen, 2007). A Bayesian network B 
is a graphical structure that models a set of stochastic variables, 
the (in-)dependencies among these variables, and a joint prob-
ability distribution over these variables. B includes a directed 
acyclic graph N, modeling the variables and (in-)dependencies 
in the network, and a set of parameter probabilities Γ in the form 
of conditional probability tables (CPTs), capturing the strengths 
of the relationships between the variables. A CPT is associated 
with each variable in the network and contains the probability 
distribution of that variable X for each joint value assignment 
to its parents Y

1
…Y

n
, denoted by Pr(X|Y

1
,…,Y

n
). The network 

models a joint probability distribution Pr(V) over its variables V, 
where the arcs denote dependencies between variables and lack 
of arcs between variables denote independencies in the probabil-
ity distribution. Figure A1 illustrates an example network that 
models the dependencies between the variables WetGrass (G), 
SprinklerOn (S), Rain (R) and PowerFailure (P). The grass can 
be wet both due to rain and to the sprinkler being on. Whether 
the sprinkler is on depends on whether there is a power failure. 
To model abduction there are two types of Bayesian inference we 
use in our proofs. For completeness we introduce their formal 
input-output mappings here.

P

S

G

R

Figure A1 | A Bayesian network denoting static knowledge. This BN 
contains four variables: P, S, R, and G. These variables are dependent on each 
other as denoted by the arcs: S depends on P, G depends on S and R.

Pt

St

Gt

Rt

Pt+1

St+1

Gt+1

Rt+1

Figure A2 | Bayesian network denoting dynamic knowledge. This BN 
contains four variables: P, S, R, and G. These variables exist multiple times, 
once each time slice. As in Figure 1 their dependencies are denoted by arcs, 
but in addition there are also dependencies between various variables in 
different time slices: Pt + 1 depends on Pt, etcetera. However, St + 1 is 
independent of St in this example.
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is maximal. Given this assumption, a prior probability distribu-
tion on the goals, and Baye’s rule, we can infer the probability of 
the agent’s goals, given an observation of its actions, since Pr (G | 
A) ∝ Pr(A | G) Pr (G) according to Bayes rule.

Some proofs require the degradation of dependencies, i.e., when 
the dependencies are per definition required in the instance but 
should not have an effect on the Bayesian inference. The following 
lemma states how to achieve this:

Lemma 1. Let X be a variable and let P denote the parents of X, i.e. 
the set of variables on which X depends. To degrade the dependencies 
between X and O ⊆ P we set the conditional probabilities as follows, 
where P′ = P\O:

∀ ∈o O O o P PΩ( [Pr( | ) Pr( | )]) ,X X= =

prelIMInarIes froM coMplexIty theory
In computational complexity analyses one studies the amount 
of computational resources required to compute (or solve) a 
problem P:I → R, mapping inputs in the range I to the domain 
of outputs R. Our focus here is on the resource time. We express 
the time complexity of a problem as a function of the size of the 
input, using the Big-Oh notation O(.). A function f(x) is said to be 
O(g(x)), if there are constants c > 0 and a red number x

0
 such that 

f(x) ≤ cg(x) for all x ≥ x
0
. Note how the function O(.) describes an 

asymptotic upper-bound, as it ignores constants and low-order 
function terms. For this reason O(.) it is also called the order of 
magnitude.

We are interested in the time complexity of models in terms 
of the size of the input. The input i of a problem has size n = |i| 
which is the number of symbols used in a typical encoding (usu-
ally in binary). A problem P is said to be solvable in time O(g(n)) 
if there exists at least one algorithm that solves P in time O(g(n)). 
The time complexity of a problem P is measured by the fastest 
algorithm that solves P. We will say that a problem P is computa-
tionally intractable (for all but small inputs) if the time required 
to compute it grows excessively fast as a function of input size. 
To make precise what we mean by “excessively fast”, we adopt 
a definition that is widely used in both computer science and 
cognitive science:

Definition 1. Classical (in)tractability. A problem P is said to be trac-
table if it can be computed in polynomial-time, i.e., time O(|i|α), where 
α is a constant. If an problem requires super-polynomial time, e.g., 
exponential-time O(α|i|), where α is a constant, then P is intractable.

To see why this definition has merit, compare the speed with 
which polynomial functions (say, 2n, n2, or n3) and an exponential 
functions (say, 2n) grow as a function of input size (n). Table A3 shows 
how for small n, the numbers n2 and 2n do not differ much, and 2n 
is even smaller than n3, but as n grows, 2n rockets up so fast that is is 
no longer plausible that a resource limited mind can perform that 
number of computations in a reasonable time. As reference points, 
consider that the number of neurons in a human brain is estimated 
to be 1012, and 1027 is about the number of seconds that have past 
since the birth of the universe. It seems highly unlikely that a human 
mind could perform this number of operations in only a couple of 
minutes (which is a generous upper bound on the time scale of most 
cognitive processes of interest). Even if a human mind could perform 

A
t
 ∈ A. Additionally there is a set of goal variables G that contains 

an arbitrary number of variables that encode the goal(s). In this 
framework, at a particular time t, the action A

t
 depends on the 

current state S
t
 and on (at least one) goal variable in G. State vari-

ables S
t + 1

 depend on the previous state S
t
 and action variable A

t
. 

See Figure A3 for a graphical illustration.
A BIPBN is based on the assumption that agents choose actions 

that maximize the probability that their goals are achieved. In 
particular, a BIPBN assumes that agents solve a Markov Decision 
Problem (Bellman, 1957) to achieve their goals, i.e., they pick 
exactly these set of actions A

1
,…,A

t
 for which Pr(A

1
,…,A

t
 | G

1
,…,G

K
) 

S1 S2 S3

AT-1A1 A2

ST

G1 G2 GK

...

...

...

Figure A3 | [Same as Figure 2 in main text] The BiP-Bayesian network 
with T time slices: St where t ∈ [1, T], is a state variable at time t; At 
where t ∈ [1,T − 1], is an action variable at time t. The goal variables, G1, G2, 
…, GK are fixed over the different time slices. Arrows indicate probabilistic 
dependencies between variables in the network. Note that no direct 
dependencies exist between states and goals, but that any indirect 
dependencies between states and goals are mediated by action variables.

Table A1 | Complexity results for receiver.

receiver — |gi| |gC| |gi|, |gC|

– NP-hard fp-intractable fp-intractable fp-tractable

 Theorem A   Theorem C

|A| fp-intractable fp-intractable fp-intractable fp-tractable

  Corollary A  

1 − p fp-intractable fp-tractable fp-intractable fp-tractable

  Corollary B  

|A|, 1 − p fp-intractable fp-tractable fp-intractable fp-tractable

   Theorem D 

Cells without theorem or corollary are implied by Lemma 2.

Table A2 | Complexity results for Sender.

Sender — |gi| |gC| |gi|, |gC|

– NP-hard fp-intractable fp-intractable fp-tractable

 Theorem B   

|A| fp-intractable fp-intractable fp-intractable fp-tractable

  Corollary C  Theorem E

1 − p fp-intractable fp-intractable fp-intractable fp-intractable

    Theorem F

|A|, 1 − p fp-intractable ? fp-intractable fp-tractable

Cells without theorem or corollary are implied by Lemma 2.
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is motivated by the observation that many NP-hard problems can 
be computed by algorithms whose running time is polynomial in 
the overall input size |i| and non-polynomial only in one or more 
small aspects of the input. These aspects are called parameters. As 
the main part of the input contributes to the overall complexity 
in a “good” way, and only the parameters contribute to the overall 
complexity in a “bad” way, the problem is well-solved even for 
large inputs provided only that the parameters remain small. This 
intuitive characterization is captured by the formal notion of fixed-
parameter tractability (see also Downey and Fellows, 1999).

Definition 2. Fixed-parameter (in)tractability. A problem P is said to 
be fixed-parameter (fp-)tractable for parameter set K = k

1
, k

2
,…, k

m
 if 

there exists at least one algorithm that computes P for any input of 
size n in time f  (k

1
, k

2
,…, k

m
) nα where f(.) is an arbitrary computable 

function and α is a constant. If no such algorithm exists then P is said 
to be fixed-parameter (fp-)intractable for parameter set K.

Proving fixed-parameter tractability is conceptually straightfor-
ward: It suffices to produce just one algorithm that computes the 
problem in fixed-parameter tractable time (see, e.g., Sloper and Telle, 
2008, for a review of generic techniques for building such algorithms).

W[1]-hard problems are problems, including a set of param-
eters, that cannot2 be solved in fixed parameter time even when all 
parameters in their set are small, and hence are fixed-parameter 
intractable according to above definition. A problem K

1
-P

1
 can be 

proven W[1]-hard, by taking a known W[1]-hard problem K
2
-P

2
 

and parameterized reducing it to the problem K
1
-P

1
. A param-

eterized reduction from K
2
-P

2
 to K

1
-P

1
 involves the construction 

of a transformation from K
2
-P

2
 to K

1
-P

1
 such that any solution 

for the latter also implies a solution for the former. Further, the 
transformation must be performable by an algorithm that runs 
in fixed parameter tractable time, and all parameters in K

2
 must 

be a function of a parameter in K
1
. Given such reduction we can 

conclude that K
1
-P

1
 is solvable in fixed parameter tractable time 

only if K
2
-P

2
 is as well. However, because K

2
-P

2
 is not solvable in 

fixed parameter tractable time neither can K
1
-P

1
 be.

The proofs in the Sections “Computational Models and 
Computational Complexity Analyses” and “Parameterized 
Computational Complexity Analyses” use the following W[1]-hard 
parameterized problem.

k-Clique
Input: A undirected graph G = (V,E) where V is ordered and 
k ∈  > 0.
Parameters: k, the size of the desired clique.
Output: Does there exist a subset V′ ⊆ V such that |V′| = k and 
∀

u,v ∈ V′[(u,v) ∈ E]?

Finally, the following Lemma is used to propagate fp-(in)tractability 
results derived for one parameter set K to another K′.

Lemma 2. Let P be a problem that is fp-intractable for the param-
eter set K = {k

1
…k

n
}, then P is also fp-intractable for any subset 

K′ ⊆ K. Conversely, let P be a problem that is fp-tractable for the 
parameter set K = {k

1
…k

n
}, then P is also fp-tractable for any 

super-set K′ ⊇ K.

as many parallel computations per second as there are neurons in 
the brain, it would take days for it to complete 1018 operations and as 
much as centuries for it to complete 1027 operations. In other words, 
knowing that an optimization problem is of superpolynomial time-
complexity is good reason to consider that optimization problem 
computationally intractable for all but small input sizes.

NP-hard problems are problems that cannot1 be solved in poly-
nomial time, and hence are computationally intractable according 
to above definition. A problem P

1
 can be proven NP-hard, by taking 

a known NP-hard problem P
2
 and polynomial reducing it to the 

problem P
1
. A polynomial time reduction from P

2
 to P

1
 involves 

the construction of a transformation from P
2
 to P

1
 such that any 

solution for the latter also implies a solution for the former. Further, 
the transformation must be performable by an algorithm that runs 
in polynomial time. Given such reduction we can conclude that P

1
 

is solvable in polynomial time only if P
2
 is as well. However, because 

P
2
 is not solvable in polynomial time neither can P

1
 be.

The reductions in the proofs in Sections “Computational Models 
and Computational Complexity Analyses” and “Parameterized 
Computational Complexity Analyses” use the following NP-hard 
computational problems.

Clique

Input: An undirected graph G = (V,E) where V is ordered and 
k ∈  > 0.
Output: Does there exist a subset V′ ⊆ V such that |V′| = k and 
∀

u,v ∈ V′[(u,v) ∈ E]?

3-Satisfiability (3SAT)
Input: A tuple (U,C), where C is a set of clauses on Boolean 
variables in U. Each clause is a disjunction of at most three 
variables.
Output: Does there exist a truth assignment to the variables in 
U that satisfies the conjunction of all clauses in C?

Our analyses not only consider (classical) tractability as in 
Definition 1, but also fixed-parameter tractability. The latter type of 
complexity assessment is done using the tools and proof techniques 
from parameterized complexity theory. This mathematical theory 

2This is true, assuming that FPT ≠ W[1] (Downey and Fellows, 1999).

1This is true, assuming that the class of problems solvable in polynomial time (P) 
is not equal to the class of problems whose solutions can be verified in polynomial 
time (NP). This “P ≠ NP” conjecture is believed by most living mathematicians, 
both on theoretical and empirical grounds (for more details see Garey and Johnson, 
1979; Aaronson, 2005; Fortnow, 2009).

Table A3 | illustration of how polynomial growth rates (n, 2n, n2, n3) 

compare with an exponential growth rate (2n).

n 2n n2 n3 2n

2 4 4 8 4

5 10 25 125 32

10 20 100 1000 1024

20 40 400 8000 1048576

50 100 2500 125000 >1015

100 200 10000 1000000 >1030

200 400 40000 8000000 >1060
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Theorem A. receIver is NP-hard.
Proof. Given an instance 〈G = (V,E)〉 of clIque, construct an instance 
〈B,a,s〉 of receIver as follows (see Figure A5 for an  example):

1. Assume an arbitrary order on the vertices in V such that 
V = V

1
 < V

2
 < … < V

|V|
.

2. Assume the basic structure of B as in the definition of 
receIver and create 1 + (k − 1) + (k(k − 1)/2) Boolean 

state variables S
0
,…,S

(k − 1) + k(k − 1)/2
, (k − 1) + (k(k − 1)/2) 

Boolean action variables A
1
,…, A

(k − 1) + k(k − 1)/2
, and k 

log
2
|V| Boolean goal variables G = …  G G

k log V1
2

, ,
| |

 such that 

G
I
 = ∅ and GC = …  G G

k log V1
2

, ,
| |

. Divide G into k blocks of 

log
2
|V| Boolean goal variables, i.e., B = B

1
,…,B

k
 where 

Bi = …− ×  + × G G
i log V i log V(( ) | | ) | |

, ,
1 12 2

 for 1 ≤ i ≤ k. Now define 

ν:B → V such that v(B
i
) returns V

j
, where j is the number 

between 1 and |V| encoded in binary in the (Boolean) values 
of the log

2
|V| goal-variables in B

i
.

3. Set S
0
 = true and for 1 ≤ i ≤ (k − 1) + (k(k − 1)/2), let S

i
 depend on 

S
i
 − 1 and A

i
 − 1 and have the following conditional probability:

Pr
if and

otherwise
S true S A

S true A true
i i i

i i=( ) =
= =

− −
− −| ,1 1

1 11

0
These state variables effectively function as conjunctions 
which ensure that there is some assignment g to G such that 
Pr(g) > 0 iff. all action variables are set to true.

4. All dependencies between S
i
 and A

i
 are degraded as defined in 

Lemma 1.
5. For 1 ≤ i < k let A

i
 depend on B

i
, B

i + 1
, and S

i
 and have the fol-

lowing conditional probability:

Pr
if and

otherwis
A true S

v v S true
i i

i=( ) =
< =

+
+| , ,

( ) ( )
B B

B B
i 1

i i 1
i

1

0 ee





These action variables ensure that a joint value assignment g 
to G has Pr(g) > 0 iff. the values encoded in the Boolean blocks 
are distinct.

coMputatIonal Models and coMputatIonal coMplexIty 
analyses

Sender
Input: A Bayesian network B = (N,Γ), where S, A, G

I
, G

C
 ∈ N 

and Γ is an arbitrary conditional probability distribution over 
N, a value assignment g

I
 for G

I
, and a value assignment g

C
 

for G
C
 encoding the communicator’s goals. The probabilistic 

dependencies in N are illustrated in Figure 4.
Output: A value assignment a to A, such that a = argmax

a
 Pr 

(A = a | G
I
 = g

I
) and receIver (B, a,s) = g

C
, or ∅ if no sequence 

of actions a is possible. Here s = argmax
s
Pr (S = s | A = a), i.e., 

the most likely states s to follow from the actions.

Receiver
Input: A Bayesian network B = (N, Γ), similar as in the Sender 
network, a value assignment a for A and a value assignment s 
for S encoding the observed actions and states.
Output: The most probable value assignment g

C
 to the com-

municative goals G
C
, i.e., argmax

g
 Pr (G

C
 = g

C
 | =a, S = s), or ∅ 

if Pr (G
C
 = g

C
 | A = a, S = s) = 0 for all possible values for G

C
.

S0 S1

A1

S2

A2

S3 S4

A3 A4

GC1 GC2 GC3 GC4 GC5 GC6 GC7 GC8 GC9

S5

A5

B1 B2 B3

Figure A5 | An example of a Clique instance with k = 3 and |V| = 6 reduced to a receiver instance. Here Boolean goal variables in the blocks encode vertices 
from the Clique instance, actions encode “Clique-rules” and states conjoin the rules. Degraded dependencies – i.e., those that have their conditional probabilities set 
such that they do not influence the Bayesian inference – are depicted by dotted arrows.

S1 S2 S3

AT-1A1 A2

ST

GI1 GIj GCk

...

...

... GC1 ...

Figure A4 | The Bayesian network showing the dependencies between 
the variables in the Sender and receiver models. Arrows denote 
dependencies, and all actions (A ∈A) are arbitrarily dependent on one or more 
(instrumental or communicative) goal variables ( G GI I

′ ∈  and/or G G
C C
′ ∈ ).
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sets all variables in A and S to true. If the output of Sender is not 
∅, then there exists a joint value assignment a and s such that 
receIver (B,a,s) ≠ ∅ for g

C
. By definition of the reduction g

C
 then 

corresponds to a clique in G. This reduces Clique to Sender and 
thus Sender is NP-hard. 

paraMeterIzed coMputatIonal coMplexIty analyses
Theorem C. receIver is fp-tractable for parameter set {|G

I
|, |G

C
|}.

Proof. To calculate the output for for any instance of receIver 
one can try out all possible joint value assignments to G

I
 ∪ G

C
 

in a time that is only exponential in |G
I
| and |G

C
| (viz. time 

O v( ),| |G GI C∪  where v is the maximum number of possible val-
ues per goal variable). As the values of A and S are given, the 
conditional probability for each goal value assignment can be 
computed in a time polynomial in the total number of variables, 
because all variables are observed. The computational complexity 
of receIver is exponential only in the number of instrumental 
G

I
 and communicative goals G

C
, thus receIver is fp-tractable for 

the parameter set {|G
I
|, |G

C
|}. 

Corollary A. receIver is fp-intractable for parameter set {|A|, 
|G

I
|}.

Proof. To prove that receIver is fp-intractable for parameter set 
{|A|,|G

I
|}, it suffices to provide a parameterized reduction from 

a W[1]-hard problem, namely k-Clique, to {|A|,|G
I
|}-receIver. 

The reduction is exactly the same as the reduction in the proof of 
Theorem A. That reduction runs in polynomial time and thus also 
in fixed-parameter tractable time. Furthermore, |A| is a function 
of the size k of the requested clique and |G

I
| = 0. As k-Clique is 

W[1]-hard, {|A|,|G
I
|}-receIver is also W[1]-hard and thus receIver 

is fp-intractable for parameter set {|A|,|G
I
|}. 

Theorem D. receIver is fp-intractable for parameter set {|A|,|G
C
|, 

1 − p}.
Proof. In this proof we show that receIver remains NP-hard even if 
we allow the probability of the most probable explanation to be as 
high as 1 − ε for arbitrarily small values of ε. In this proof |A| is a 
function of of the size k of the requested clique and |G

C
| = 1. This 

proves receIver is fp-intractable for the parameter set {|A|,|G
C
|, 

1 − p}, where 1 − p is the probability of the most probable explana-
tion for a and s a communicator considers.

Consider a variant of the reduction in the proof of Theorem 

A. In addition to G G
k log V1

2
, ,

| |
…    we create an extra Boolean goal 

variable G
X
. In this variant GI = …  G G

k log V1
2

, ,
| |

 and G
C
 = {G

X
}. As 

before, G
I
 is divided into k blocks of log

2
|V| Boolean goal variables 

B
1
,…, B

k
. The conditional probabilities of the action variables are 

as follows, where α = (1/|A|)ε:

•	 For	1	≤ i < k let A
i
 depend on B

i
, B

i + 1
 and S

i
 and have the fol-

lowing conditional probability:

Pr( | , , , )

( ) ( ),

A true S G

v v S true G tr

i i X

i X

=

=

< = =
B B

B B
i i+1

i i+11 if and uue

v v S true G false

v v S
i X

i

0 if and

if

( ) ( ),

( ) ( ),

B B

B B
i i+1

i i+1

< = =
=α ≥ ttrue G true

v v S true G false
X

i X

and

if and

otherwi

=
= =α ≥

0
( ) ( ),B Bi i+1

sse














6. For k ≤i ≤ (k(k − 1)/2), let A
i
 depend on a distinct pair of goal-

variable blocks (B
p
, B

q
) and S

i
 and have the following conditio-

nal probability:

Pr
if and

otherwis
A B B

B B
i p q

p q=( )=
∈ =

true S
v v E S true

i
i| , ,

( ( ), ( ))1

0 ee





These action variables ensure that a joint value assignment g 
to G has Pr(g) > 0 iff. all pair of values encoded in the Boolean 
blocks is an edge in E from the clique instance.

7. Make the prior probability distribution for each goal variable 
uniform.

8. Set a and s such that all action and state variables are assigned 
true.

As the number of conditional probability tables that are 
constructed by the reduction is proportional to the total num-

ber of variables (which is | | | | | | ( ( ) )( )S A G+ + = + − + −1 1 1
2k k k  

+ − + +  −(( ) ) | | )( )k k Vk k1 1
2 2log  and each table involves at most 

1 + 2 log
2
|V| Boolean variables (resulting in a maximum of 

2 2 2 2 83 3 1 3 3 32 2 2    += ≤ = =log log log| | | | | |( ) ( ) ( | |) | |V V V V V  entries per 

table), the instance of receIver can be constructed in time polyno-
mial in the size of the given instance of Clique. Moreover, note that 
in this instance of receIver|A| = (k − 1) + [k(k − 1)/2] and |G

I
| = 0.

To prove that the construction above is a valid reduction, we 
must show that the answer to the given instance of Clique is “Yes” 
iff. there exists a solution to the constructed receIver instance 
unequal to ∅. We will show this we prove both directions of this 
implication separately:

•	 If	 the	 answer	 to	 the	 given	 instance	 of	 Clique is “Yes”, there 
exists a subset V′ ⊆ V such that |V′| = k and ∀

u, v ∈ V′[(u, v) ∈ E]. 
Let g be the assignment to G corresponding to the vertices 
in V′ under the assumed order on V. As the vertices in V′ 
are distinct, action variables A

1
,…, A

k − 1
 will all be true with 

probability 1 relative to g. Moreover, as V′ is a k-clique and 
there is thus an edge between each pair of distinct vertices in 
V′, action variables A

1
,…, A

(k − 1) + k(k − 1)/2
 will also be true with 

probability 1 relative to g. Given the structure of B, this implies 
that Pr(g) > 0, which means that the answer to the constructed 
instance of Receiver is not empty.

•	 If	 the	answer	to	the	constructed	instance	of	Receiver is not 
empty, then there is an assignment g to G such that Pr(g) > 0. 
Given the dependencies in and the conditional probabilities 
in B, this can only happen if all action variables have value 
true with probability 1. Hence, the values of the goal variables 
in g are not only distinct (by the conditional probabilities in 
(5) above), but the values encoded in the Boolean blocks also 
correspond to a set of vertices such that every distinct pair of 
these vertices is connected by an edge in G (by the conditional 
probabilities in (6) above), which means that the answer to the 
given instance of Clique is “Yes.” 

Theorem B. Sender is NP-hard.
Proof. Observe that in the receIver instance constructed in the 
proof of Theorem A, Pr (G

C
 = g

C
 | A = a, s) for any joint value 

assignment to a to A and s to S other than the assignment that 
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high and when |G
I
|, the number of instrumental goal variables, 

is bounded, i.e., Receiver is fixed parameter tractable for {|G
I
|, 

1 − p}. 

Observation 1. If Receiver is intractable, then Sender is also 
intractable.

Corollary C. Sender is fp-intractable for parameter set {|A|, |G
I
|}.

Proof. Follows from Corollary A and Observation 1. 

Theorem E. Sender is fp-tractable for parameter set {|A|, |G
I
|, |G

C
|}.

Proof. To calculate the output of Sender we can try out all pos-
sible joint value assignments a to A. For all a we have to calculate 
the Receiver(B,a,s) output gC

′ . The correct output is that a for 
which Pr (A =a | G

I
 =g

I
) is maximal. This takes time O(v |A|), where 

v is the maximum number of possible values per goal variable, 
because Receiver is fp-tractable for parameter set {|G

I
|, |G

C
|} 

(Theorem C). The computational complexity of Sender is only 
exponential in the number of actions |A| when |G

I
| and |G

C
| are 

small, thus Sender is fp-tractable for the parameter set {|A|, |G
I
|, 

|G
C
|}. 

Corollary D. Sender is fp-intractable for parameter set {|A|, |G
C
|, 

1 − p}.
Proof. Follows from Theorem D and Observation 1. 

Theorem F. Sender is fp-intractable for parameter set {|G
I
|, |G

C
|, 

1 − p}.
Proof. The proof of this theorem uses a variant of the proof con-
struction by Kwisthout (2009), using a reduction from 3SAT to 
prove NP-hardness of Parameter Tuning restricted to polytrees3; 
which on its turn was inspired by a similar construction by Park 
and Darwiche (2004), who proved NP-hardness of Partial Map 
restricted to polytrees. The proof uses a network construction as 
in Figure A6, in which all A

i
 model the variables of the 3SAT for-

mula, all S
1
…S

n
 model the clauses and S

0
 acts as a clause selector. 

The conditional probabilities are constructed such that Bayesian 
inference on the network solves 3SAT.

Let m = |C| denote the number of clauses of a 3SAT for-
mula and let n = |U| denote the number of variables. The con-
ditional probabilities of the variables S

1
…S

n
 are such that Pr 

(S
n + 1

 = true) = m/n if and only if there is a joint value assignment 
to the variables A

1
…A

n
 that corresponds to a satisfying truth 

assignment to the 3SAT formula, or Pr (S
n + 1

 = true) ≤ (m − 1)/n 

These action variables ensure that a joint value assignment g 
to G has Pr(g) > 0 iff. the values encoded in the Boolean blocks 
are distinct.

•	 For	k ≤i ≤ [k(k − 1)/2], let A
i
 depend on a distinct pair of goal-

variable blocks (B
p
, B

q
) and S

i
 and have the following conditio-

nal probability:

Pr( | , , , )

( ( ), ( )) ,

A B B

B B

i p q

p q

=

=

= =

true S G

v v E S true G tr

i X

i X1 if and∈ uue

v v E S true G false

v v E
i X0 if and

if

( ( ), ( )) ,

( ( ), ( ))

B B

B B
p q

p q

∈
α ∉

= =
,,

( ( ), ( )) ,

S true G true

v v E S true G false
i X

i X

= =
= =

and

if and

o

α ∉
0

B Bp q

ttherwise














These action variables ensure that a joint value assignment g 
to G has Pr(g) > 0 iff. all pair of values encoded in the Boolean 
blocks is an edge in E from the clique instance.

If G has a k-clique and all action and state variables are observed 
to be true, then Pr (G

X
 = true) = 1 − |A|α = 1 − |A|(1/|A|ε) = 1 − ε. 

If G does not have a k-clique, then Pr (G
X
 = false) =1. Hence, even 

if the probability of the most probable value of G
X
 is at least 1 − ε, 

it is still NP-hard to decide on the most probable value. 

Corollary B. Receiver is fp-tractable for the parameter set {|G
I
|, 

1 − p}.
Proof. The Receiver problem is in fact a special case of the more gen-
eral Partial MAP problem, where the input is an arbitrary Bayesian 
network B, in which the set of variables is partitioned into a set of 
observed variables (called the evidence set E), a set of variables for 
which the most probable explanation is sought (called the explana-
tion set M), and a set of variables that are neither in the evidence 
nor explanation set (called the intermediate set I). In the Bayesian 
network in Receiver, the action and state variables A and S are 
observed and form the evidence set E, the explanation set M consists 
of the communicative goal variables G

C
, and the instrumental goal 

variables form the intermediate set I. Partial Map is NP-hard in 
general and remains so under severe constraints on the structure 
of the network; however, Partial MAP is tractable when both the 
probability of the most probable explanation is high, and the number 
of variables in the intermediate set is low (Park and Darwiche, 2004).

Because of the inheritance from the Partial MAP problem, 
the Receiver problem is tractable when both the probability p of 
the most probable joint value assignment to the goal variables is 

C0 C1

X1

C2

X2

Cn

Xn...

... Cs

Figure A6 | The construction used to prove NP-hardness of Partial MAP, restricted to polytrees, by Park and Darwiche (2004).

3A polytree is a directed acyclic graph for which there are no undirected cycles when 
the arc direction is dropped.
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Recall that Pr (S
n
 = true) = m/n if the 3SAT formula is satisfiable, 

and at most (m −1)/n otherwise. Hence, Pr (S
n + 1

 = true) > 1 − ε if 
the 3SAT formula is satisfiable, and Pr (S

n + 1
 = true) < 1 − ε if it is 

not satisfiable. As we fixed α = ε2 and given that m ≤ n by definition, 
we have in particular that:

1 2 1 11 1− < = < − < = <+ +ε ε
UNSAT SATPr Pr( ) ( )S true S truen n

Where Pr
SAT

(S
n + 1

 = true) and Pr
UNSAT

(S
n + 1

 = true) denote the prob-
ability that S

n + 1
 = true given that the 3SAT formula is respectively 

satisfiable or not. Observe that the posterior probability of G
I
 

is independent of the value assignment of the action variables  
A

1
…A

n
. Given this independence, if A

C
 = true then Pr 

(G
C
 = true) > 1 − ε independent of Pr (S

n + 1
 = true). Also if A

C
 = false 

and Pr (S
n + 1

 = true) > 1 − ε then Pr (G
C
 = false) > 1 − ε; and if 

A
C
 = false and Pr (S

n + 1
 = true) < 1 − ε then Pr (G

C
 = false) < 1 − ε. 

Observe that in each of these cases the most probable value assign-
ment to G

C
 has a probability which is larger than 1 − ε, however, the 

most probable assignment to G
C
 flips from true to false depending 

on the satisfiability of the 3SAT instance.
Thus, if there exists a value assignment a to A = {A

1
, …, A

n
} ∪ A

C
 

such that g = {G
I
 = true, G

C
 = false} is the most probable explanation 

to {G
I
,G

C
}, then the 3SAT instance is satisfiable (viz. those variables 

in U corresponding to the A
1
…A

n
 are true iff. A

i
 = true and false 

otherwise). Likewise, if the 3SAT instance is satisfiable then there 
is a value assignment to A, with A

C
 = false, such that g = {G

I
 = true, 

G
C
 = false} is the most probable explanation to {G

I
, G

C
}.

This proves Sender fp-intractable for the parameter set {|G
I
|, |G

C
|, 

1 − p}, where 1 − p is the minimum probability of all most probable 
explanations for all possible a and s a communicator considers. 
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otherwise. We add binary variables S
n + 1

, G
I
, G

C
 and A

C
, dummy 

variables A
d1

 and S
d1

 with the following probability distributions 
(see Figure A7):

•	 Pr S true S true
m

n
n n+ = =( ) = − + − − ×1 1 1

1 2
| (

/
)ε α

Pr S true S false
m

n
n n+ = =( ) = − + − ×1 1

1 2
|

/ε α

where α is a sufficiently small number to guarantee that all 
probabilities are in [0,1]. It plays no further role in the proof, 
so we fix α = ε2.

•	 Pr	(G
I
 = true) = 1 and Pr (A

i
|G

I
) is uniformly distributed;

•	 Pr	(G
C
 = true) = Pr (G

C
 = false) = 1/2;

•	 Pr	 (A
C
 = true | S

n + 1
 = true, G

C
 = false) = 1, Pr (A

C
 = true | 

S
n + 1

 = false, G
C
 = false) = ε, and Pr (A

C
 = true | S

n + 1
 = true, 

G
C
 = false) = Pr (A

C
 = true | S

n + 1
 = false, G

C
 = true) = 1/2ε;

•	 Dependencies	between	G
I
, S

n
, S

n + 1
, and A

d1
 are degraded;

•	 Dependencies	between	S
n + 1

, A
C
, and S

d1
 are degraded;

•	 All	dependencies	between	S
i
 and A

i
 are degraded as defined in 

Lemma 1.

Using this reduction from 3SAT instances to Sender we will 
prove that any joint value assignment a to A that maximizes the 
probability of an arbitrary joint value assignment g to G

I
 ∪ G

C
 (i.e. 

a solution to Sender) also is a solution for the 3SAT instance, even 
if the probability of that joint value assignment is at least 1 − ε.

The following now holds:

Pr( ) Pr( | ) Pr( )

Pr(

S true S true S true S true

S tr
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Figure A7 | The variant construction used to prove Sender NP-hard. Degraded dependencies and dummy variables are depicted by dotted lines.
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