Identifiability of Causal Graphs using Functional Models

Jonas Peters∗
Max Planck Institute for Intelligent Systems, Tübingen, Germany

Joris M. Mooij†
Institute for Computing and Information Sciences, Radboud University Nijmegen, The Netherlands

Dominik Janzing∗
Max Planck Institute for Intelligent Systems, Tübingen, Germany

Bernhard Schölkopf∗
Max Planck Institute for Intelligent Systems, Tübingen, Germany

Abstract

This work addresses the following question: Under what assumptions on the data generating process can one infer the causal graph from the joint distribution? The approach taken by conditional independence-based causal discovery methods is based on two assumptions: the Markov condition and faithfulness. It has been shown that under these assumptions the causal graph can be identified up to Markov equivalence (some arrows remain undirected) using methods like the PC algorithm. In this work we propose an alternative by defining Identifiable Functional Model Classes (IFMOCs). As our main theorem we prove that if the data generating process belongs to an IFMOC, one can identify the complete causal graph. To the best of our knowledge this is the first identifiability result of this kind that is not limited to linear functional relationships. We discuss how the IFMOC assumption and the Markov and faithfulness assumptions relate to each other and explain why we believe that the IFMOC assumption can be tested more easily on given data. We further provide a practical algorithm that recovers the causal graph from finitely many data; experiments on simulated data support the theoretical findings.

1 Introduction

Inferring the causal structure of a set of random variables given a sample from the joint distribution is an important problem in science.

Conditional independence-based methods like the PC algorithm [Spirtes et al., 2001] are based on the following idea: Assume that the joint distribution is Markov with respect to the causal graph, that means each variable is independent of all its non-descendants given its parents. If two variables, for example, are always dependent, no matter what other variables one conditions on, these two variables must be adjacent. Thus, properties of the joint distribution can help to infer parts of the graph structure. If one additionally assumes faithfulness (that means all conditional independences in the joint distribution are entailed by the Markov condition), one can use further reasonings like: If two variables are independent there is no collider-free path between them. Obviously, many more rules like this can be exploited. It is clear, however, that these ideas are not able to distinguish between two graphs that entail exactly the same set of (conditional) independences, i.e. between Markov equivalent graphs. Since many Markov equivalence classes contain more than one graph, conditional independence-based methods leave some arrows undirected and cannot uniquely identify the true causal graph.

Consider the case of two dependent random variables. Conditional independence-based methods cannot recover the graph since there is no (conditional) independence statement: $X \rightarrow Y$ and $Y \rightarrow X$ are Markov equivalent. Recently, Shimizu et al. [2006], Hoyer et al. [2009], Peters et al. [2010] suggest the following procedure to tackle this particularly challenging problem: Whenever the joint distribution $P^{(X,Y)}$ allows an additive noise model (ANM) in one direction, i.e., there is a function f and a noise variable N, such that

$$Y = f(X) + N, \quad N \perp \perp X,$$

but not in the other, one infers the former direction to be the causal one (here: $X \rightarrow Y$). They further show that under mild conditions (essentially some combinations of f, P^X and P^N have to be excluded) the model is identifiable. This means that whenever there

$$N \perp \perp X \text{ means } N \text{ and } X \text{ are statistical independent.}$$

1
is an ANM from X to Y the joint distribution does not allow for an ANM from Y to X. In this work we call these cases “bivariate identifiable”. Another example of a bivariate identifiable model class are post-nonlinear models [Zhang and Hyvärinen, 2009].

Based on bivariate identifiability we define Identifyable Functional Model Classes (IFMOCs), which we use to model distributions of more than two random variables. As a main result of this paper we prove that whenever a data generating process belongs to an IFMOC, one can recover the true causal graph from the joint distribution. To the best of our knowledge this is the first identifiability statement of this kind that allows for nonlinear interactions.

Analogously to the two-variable case described above, practical methods for causal inference using ANMs have been suggested for the multivariate case [Hoyer et al., 2009, Zhang and Hyvärinen, 2009, Mooij et al., 2009, Tillman et al., 2009]: whenever a graph models the data the method infer this structure as the causal graph. Our results fill a theoretical gap that has remained open so far: except for the linear case [Shimizu et al., 2009], for example. Whenever a graph models the data the method infer this structure as the causal graph. The following definitions are well-known and can be found in [Spirtes et al., 2001, Koller and Friedman, 2009], for example.

Definition 1

• X_i is called a parent of X_j if $(i, j) \in \mathcal{E}$ and a child if $(j, i) \in \mathcal{E}$. The set of parents of X_j is denoted $\text{PA}^\mathcal{G}_j$, the set of its children by $\text{CH}^\mathcal{G}_j$.

• Three nodes are called an immorality if one node is a child of the two others, which themselves are not adjacent. If $(i, j) \in \mathcal{E}$ and $(k, j) \in \mathcal{E}$, j is called a collider.

• A path in graph \mathcal{G} is a sequence of (at least two) distinct vertices X_{i_1}, \ldots, X_{i_n}, such that $(i_k, i_{k+1}) \in \mathcal{E}$ or $(i_{k+1}, i_k) \in \mathcal{E}$ for all $k = 1, \ldots, n-1$. If for all k the former holds we speak of a directed path between X_{i_1} and X_{i_n}, and call X_{i_k} a descendant of X_i. We denote all descendents of X_i by $\text{DE}^\mathcal{G}_i$ and all non-descendants of X_i by $\text{ND}^\mathcal{G}_i$.

• A path between X_{i_1} and X_{i_n} is blocked by a set S (with neither X_{i_1} nor X_{i_n} in this set) whenever there is a node X_{i_k}, such that one of the following two possibilities hold:

1. $X_{i_k} \in S$ and

 $X_{i_k-1} \rightarrow X_{i_k} \rightarrow X_{i_{k+1}}$ or

 $X_{i_k-1} \leftarrow X_{i_k} \leftarrow X_{i_{k+1}}$ or

 $X_{i_k-1} \leftarrow X_{i_k} \rightarrow X_{i_{k+1}}$

2. $X_{i_{k-1}} \rightarrow X_{i_k} \leftarrow X_{i_{k+1}}$ and neither X_{i_k} nor any of its descendents is in S.

We say that two disjoint subsets of vertices A and B are d-separated by a third (also disjoint) subset S if every path between nodes in A and B is blocked by S.

2 Directed Acyclic Graphs

Let $(X_i)_{i \in \mathcal{V}}$ be a finite family of random variables and $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a directed acyclic graph (DAG), with edges $\mathcal{E} \subseteq \mathcal{V}^2$. In a slight abuse of notation we often speak of both X_i and i being the nodes (or vertices) of \mathcal{G}. The following definitions are well-known and can be found in [Spirtes et al., 2001, Koller and Friedman, 2009], for example.

Definition 1

• X_i is called a parent of X_j if $(i, j) \in \mathcal{E}$ and a child if $(j, i) \in \mathcal{E}$. The set of parents of X_j is denoted $\text{PA}^\mathcal{G}_j$, the set of its children by $\text{CH}^\mathcal{G}_j$.

• Three nodes are called an immorality if one node is a child of the two others, which themselves are not adjacent. If $(i, j) \in \mathcal{E}$ and $(k, j) \in \mathcal{E}$, j is called a collider.

• A path in graph \mathcal{G} is a sequence of (at least two) distinct vertices X_{i_1}, \ldots, X_{i_n}, such that $(i_k, i_{k+1}) \in \mathcal{E}$ or $(i_{k+1}, i_k) \in \mathcal{E}$ for all $k = 1, \ldots, n-1$. If for all k the former holds we speak of a directed path between X_{i_1} and X_{i_n}, and call X_{i_k} a descendant of X_i. We denote all descendents of X_i by $\text{DE}^\mathcal{G}_i$ and all non-descendants of X_i by $\text{ND}^\mathcal{G}_i$.

• A path between X_{i_1} and X_{i_n} is blocked by a set S (with neither X_{i_1} nor X_{i_n} in this set) whenever there is a node X_{i_k}, such that one of the following two possibilities hold:

1. $X_{i_k} \in S$ and

 $X_{i_k-1} \rightarrow X_{i_k} \rightarrow X_{i_{k+1}}$ or

 $X_{i_k-1} \leftarrow X_{i_k} \leftarrow X_{i_{k+1}}$ or

 $X_{i_k-1} \leftarrow X_{i_k} \rightarrow X_{i_{k+1}}$

2. $X_{i_{k-1}} \rightarrow X_{i_k} \leftarrow X_{i_{k+1}}$ and neither X_{i_k} nor any of its descendents is in S.

Let $(X_i)_{i \in \mathcal{V}}$ be a finite family of random variables. This work addresses the following problem:

Problem Given i.i.d. samples from a joint distribution $p(X_i)_{i \in \mathcal{V}}$, infer the true causal DAG \mathcal{G}_c of the process that generated the data.
The joint distribution \(P(X_i)_{i \in V} \) is said to be Markov with respect to the DAG \(G \) if

\[
A, B \text{ d-sep. by } C \Rightarrow A \perp \perp B | C
\]

for all disjoint sets \(A, B, C \).

- \(P(X_i)_{i \in V} \) is said to be faithful to the DAG \(G \) if

\[
A, B \text{ d-sep. by } C \Leftrightarrow A \perp \perp B | C
\]

for all disjoint sets \(A, B, C \).

- We call two graphs Markov equivalent if they satisfy the same set of d-separations, that means the Markov condition entails the same set of (conditional) independence conditions.

Notation: In the remainder of this article we use the following notation: \(p_X(x) \) denotes the pdf (or pmf) of a random variable \(X \), \(p_S(x_S) \) denotes the joint pdf (or pmf) for a set of random variables \(S \) evaluated at the point \(x_S \). We will assume that \(P(X_i)_{i \in V} \) is absolutely continuous with respect to either the Lebesgue measure or the counting measure (i.e., either we have a pdf or a pmf). Then \(Y_{[X=x]} \) is a RV that corresponds to the conditional density \(p_Y | x=x(y) = \frac{p_{X,Y}(x,y)}{p_X(x)} \).

2.2 Identifiability for Conditional Independence-Based Methods

All conditional independence-based (CIB) methods we are aware of make the following

Assumption 1 (Markov and Faithfulness)

Assume \(P(X_i)_{i \in V} \) is Markov and faithful with respect to the true causal DAG \(G_c \).

In Section 2.4 we discuss Assumption 1 in more detail. Given that one observes i.i.d. data sampled from \(P(X_i)_{i \in V} \), Pearl [2009], Spirtes et al. [2001], Meek [1995] show how one can exploit conditional independences in the data for (partially) reconstructing the graph \(G_c \), e.g., by using the PC algorithm. The graph can only be recovered up to Markov equivalence classes.

Theorem 1 (Correctness of CIB Methods)

Under Assumption 1 one can identify the Markov equivalence class of the true causal DAG from the joint distribution.

Note that the first step of the PC algorithm determines the variables that are adjacent. Therefore one has to test whether two variables are dependent given any other subset of variables, which results in conditional independence tests with conditioning sets of up to \(|V| - 2 \) variables. Such tests are difficult to perform in practice [e.g. Bergsma, 2004].

Summarizing, from our perspective this approach has the following drawbacks: (1) We can identify the true causal DAG only up to Markov equivalence classes. (2) Conditional independence testing, especially with a large conditioning set, is difficult in practice. (3) The faithfulness condition in its general form cannot be tested given the data. (4) If faithfulness is violated we do not have any guarantees that the inferred graph(s) will be close to the original.

2.3 Identifiability using Functional Models

First, we define functional models [e.g. Chapter 1.4 Pearl, 2009]) that are also known as Structural Equation Models:

Definition 2 (F-FMOC)

\[
X_i = f_i(PA_i, N_i) \quad i \in V
\]

with sets of variables \(PA_i \subseteq V \setminus \{X_i\} \) and noise distributions \(P_{N_i} \) are called a functional model if the \((N_i)_{i \in V} \) are jointly independent and the graph that is obtained by drawing arrows from all elements of \(PA_i \) to \(X_i \) (for each \(i \in V \)) is acyclic.

- Given a set of functions \(\mathcal{F} \subset \{ f | f : \mathbb{R}^m \to \mathbb{R} \text{ for any } 2 \leq m \leq \#V \} \)

we call a set of functional models a functional model class with function class \(\mathcal{F} \) (F-FMOC) if each of the functional models satisfies \(f_i \in \mathcal{F} \) for all \(i \in V \) and induces \(P(X_i)_{i \in V} \) that is absolutely continuous with respect to the Lebesgue measure or the counting measure.

Note that each functional model induces a unique joint distribution \(P(X_i)_{i \in V} \). Some recent causal discovery methods distinguish between cause and effect by means of the following observation. For some classes of bivariate functional models it has been shown that the structure of the model is in the “generic case” identifiable from the joint distribution: Consider, for example, only linear and additive functions \(f(x, n) = a \cdot x + n \) and non-Gaussian noise. Then Shimizu et al. [2006] show that if \(Y = f(X, N_Y) \) holds with \(N_Y \perp X \), one cannot find any function \(g \) such that \(X = g(Y, N_X) \) with \(N_X \perp Y \). Thus, we will call the set of all triples \((f, P_X, P_Y) \) of linear functions and non-Gaussian distributions bivariate identifiable. Hoyer et al. [2009], Peters et al. [2010] show a similar result for non-linear additive functions \(f(x, n) = g(x) + n \), and Zhang and Hyvärinen [2009] for post-nonlinear models \(f(x, n) = h(g(x) + n) \) with invertible \(h \). Writing \(\mathcal{F}_h := \{ f \in \mathcal{F} | f : \mathbb{R}^2 \to \mathbb{R} \} \) we can now generalize these ideas and define:
Definition 3 (Bivariate Identifiable Set) Let \(\mathcal{F} \) be a set of functions as above. We call a set \(\mathcal{B} \subseteq \mathcal{F}_1 \times \mathcal{P}_R \times \mathcal{P}_R \) containing combinations of functions \(f \in \mathcal{F}_1 \) and distributions \(P^X, P^{N_Y} \) of input \(X \) and noise \(N_Y \) bivariate identifiable in \(\mathcal{F} \) if

\[
(f, P^X, P^{N_Y}) \in \mathcal{B} \quad \text{and} \quad Y = f(X, N_Y), N_Y \perp \!
\perp X \Rightarrow \exists g \in \mathcal{F}_1 : X = g(Y, N_X), N_X \perp \!
\perp Y \quad \text{holds. Additionally we require}
\]

\[
f(X, N_Y) \not\perp \!
\perp X \quad (1)
\]

for all \((f, P^X, P^{N_Y}) \in \mathcal{B} \) with \(N_Y \perp \!
\perp X \).

The first part of the definition requires that we cannot simultaneously fit both directions (think of \(\mathcal{F} \) being the class of linear ANMs and \(\mathcal{B} \) being all of those models, where input and noise are not jointly Gaussian). The left hand side of (1) corresponds to the effect, the right hand side to the cause. In the bivariate case one can imagine that we do not want them to be independent. Section 2.4 discusses this assumption.

Note further that the function class needs to be restricted for the definition to be non-trivial, because for any joint distribution of \((X, Y)\) we can find a function \(f \) and a noise \(N_Y \perp \!
\perp X \), such that \(Y = f(X, N_Y) \) [Darmois, 1951]. Proving that a set is bivariate identifiable is not trivial. The following lemma presents identifiability results that have been reported in literature. In order to improve readability, we describe the classes and mention only the most important counterexamples. We denote all other exceptions by the sets \(\bar{B}_i \), which mostly contain constant functions and other, “non-generic” cases.

Lemma 1 The following sets have been shown to be bivariate identifiable \((m \in \mathbb{N})\):

(i) linear ANMs: \(\mathcal{F}_1 = \{ f(x, n) = ax + n \} \)

\(\mathcal{B}_1 = \{ (X, N) \text{ not both Gaussian} \} \setminus \bar{B}_1 \)

(ii) discrete ANMs: \(\mathcal{F}_2 = \{ f(x, n) \equiv \phi(x) + n \mod m \} \)

\(\mathcal{B}_2 = \{ (\phi, X) \text{ not affine and uniform} \} \setminus \bar{B}_2 \)

(iii) nonlinear ANMs: \(\mathcal{F}_3 = \{ f(x, n) = \phi(x) + n \} \)

\(\mathcal{B}_3 = \{ (\phi, X, N) \text{ not lin., Gauss, Gauss} \} \setminus \bar{B}_3 \)

(iv) post-nonlin.: \(\mathcal{F}_4 = \{ f(x, n) = \psi(\phi(x) + n), \psi \text{ inv.} \} \)

\(\mathcal{B}_4 = \{ (\psi, \phi, N) \text{ not lin., lin., Gauss} \} \setminus \bar{B}_4 \)

Proof. Shimizu et al. [2006], Peters et al. [2010], Hoyer et al. [2009] and Zhang and Hyvärinen [2009] provide proofs and the precise definitions of the sets \(\bar{B}_i \) for (i)-(iv), respectively.

In our final definition we generalize the concept of bivariate identifiable to more than two variables:

Definition 4 ((\(\mathcal{B}, \mathcal{F} \))-IFMOC) Let \(\mathcal{B} \) be bivariate identifiable in \(\mathcal{F} \). We call an \(\mathcal{F}\)-FMOC a \((\mathcal{B}, \mathcal{F})\)-Identifiable Functional Model Class, for short \((\mathcal{B}, \mathcal{F})\)-IFMOC, if for all its functional models

\[
X_i = f_i(\mathbf{PA}_i, N_i), \quad i \in \mathbf{V}
\]

for all \(i \in \mathbf{V} \), \(j \in \mathbf{PA}_i \) and for all \(x_{\mathbf{PA}_i \setminus \{j\}} \), we have

\[
f_i(x_{\mathbf{PA}_i \setminus \{j\}}, \cdots, \cdot) \in \mathcal{F}_1.
\]

Additionally, for all sets \(\mathbf{S} \subseteq \mathbf{V} \) with \(\mathbf{PA}_i \setminus \{j\} \subseteq \mathbf{S} \subseteq \mathbf{ND}_i \setminus \{i, j\} \), there exists an \(x_S \) with \(P_S(x_S) > 0 \) and

\[
(f_i(x_{\mathbf{PA}_i \setminus \{j\}}, \cdots, \cdot), P_{X^j \mid X_S = x_S, P^{N_j}_i}) \in \mathcal{B}.
\]

Thus, an \((\mathcal{B}, \mathcal{F})\)-IFMOC consists of many functional models, which are defined in Definiton 2.

Example 1 • In the bivariate case \((|\mathbf{V}| = 2)\), in Definition 4 we have \(\mathbf{S} = \emptyset \) and thus equation (2) is always satisfied. (3) then reads that the triple \((f_2, P^{X_1}_i, P^{N_2}_i)\) is in the bivariate identifiable set \(\mathcal{B} \) if \(\mathbf{PA}_2 = \{X_1\} \).

• For more than two variables one can exploit Lemma 1. For ANMs equation (2) holds: the functions remain additive in the noise if some arguments are fixed. If one further uses linear ANMs \(\mathcal{F} = \mathcal{F}_1 \), for example, and restricts \(\mathcal{B} \) to contain only non-Gaussian noise, also (3) holds and we recover LiNGAM [Shimizu et al., 2006]. Using the other \(\mathcal{F} \neq \mathcal{F}_1 \) from Lemma 1 we obtain analogous results for the nonlinear case.

Now we are able to state our main theoretical result:

Theorem 2 Assume that \(P^{(X_i), i \in \mathbf{V}} \) is induced by a functional model from a \((\mathcal{B}, \mathcal{F})\)-IFMOC with graph \(\mathcal{G} \). Then it cannot be induced by a functional model from the same \((\mathcal{B}, \mathcal{F})\)-IFMOC that corresponds to a different graph \(\mathcal{G}' \neq \mathcal{G} \).

The proof can be found in Section 3. In the context of causal inference we have the following reformulation:

Assumption 2 (IFMOC Assumption) Assume that the data generating mechanism belongs to an \((\mathcal{B}, \mathcal{F})\)-IFMOC with graph \(\mathcal{G} = \mathcal{G}_c \) (i.e., \(\mathbf{PA}^c_{X_i} \) are the direct causes of \(X_i \)).

Corollary 1 Under Assumption 2 we can identify the true causal DAG \(\mathcal{G}_c \) from the joint distribution \(P^{(X_i), i \in \mathbf{V}} \).
We do not claim that each natural process satisfies Assumption 2, only that if it does, we can then recover the true causal relationships from the joint distribution. In our opinion, this approach provides the following advantages: (1) We can identify the true causal graph even within the Markov equivalence class. (2) One can use IFMOCs to identify non-faithful causal models (even those “undetectable” versions of unfaithfulness mentioned in Section 2.4), for which conditional independence-based methods usually fail. (3) In our opinion the IFMOC assumption can be tested (for example, can only be deduced from the causal Markov DAG: some counterfactual statements, for example, can only be deduced from the functional model and not from the causal Markov DAG [e.g. 1.4.4 in Pearl, 2009]. Note that our result already includes discrete models, but only works for non-deterministic data.

2.4 Discussion of the Assumptions

We briefly discuss the differences and similarities between Assumptions 1 and 2.

Markov condition. Assume a functional model for X_1, \ldots, X_n. Then Pearl [2009] shows in Theorem 1.4.1 that the joint distribution is Markov with respect to the corresponding graph. Therefore, this part of the assumptions is common to conditional independence-based approaches and IFMOC based approaches.

Faithfulness. Zhang and Spirtes [2007] analyse the testability of faithfulness. They decompose faithfulness into adjacency-faithfulness (two adjacent variables are dependent conditional on any set of other variables) and orientation-faithfulness (a structure $X \rightarrow Y \leftarrow Z$ renders X and Z dependent given any set that contains Y and a structure $X \rightarrow Y \rightarrow Z$ with arrows other than above renders X and Z dependent given any set of variables that does not contain Y). They prove, for example, that under the assumption of Markov condition and adjacency faithfulness, any violation of orientation-faithfulness is detectable. However, some violations of adjacency faithfulness (e.g. $X \rightarrow Y \rightarrow Z$ and $X \rightarrow Z$ with X and Z independent) cannot be detected because they are faithful to an alternative structure ($X \rightarrow Y \leftarrow Z$).

IFMOC assumption. The assumptions made by our approach can be violated in different ways. (1) The true data generating process belongs to an FMOIC (e.g., linear interactions and additive noise), but not to an IFMOC (e.g., the interactions are linear and all variables are Gaussian distributed). In this case the joint distribution allows several representations that lead to different causal graphs. Thus, the method could output: “More than one graph possible, no answer proposed.”. However, if we are willing to assume faithfulness, we can recover the Markov equivalence class by choosing the DAGs with the minimal number of edges and thus obtain asymptotically the same results as the PC algorithm. (2) The true process does not belong to an FMOIC. Here, the method would not be able to fit the data. Therefore the method should output: “Bad model fit. Try a different model class.” (3) The true process does not belong to an FMOIC, but belongs to an IFMOC with a different graph than the true causal graph (e.g., $X \rightarrow Y$ is the ground truth and the joint distribution does not allow an ANM from X to Y, but only from Y to X). This is the only situation, in which our method fails and gives a wrong answer. We would like to argue, however, that this case is unlikely in the following sense: Janzing and Steudel [2010] use the concept of Kolmogorov complexity to show that it can only happen if the cause distribution $p(cause)$ and the conditional distribution of the effect given the cause $p(effect\,|\,cause)$ are matched in a precise way, whereas one rather expects input and mechanism to be most often “independent” [Lemeire and Dirksen, 2006, Janzing and Schölkopf, 2010]. Janzing and Steudel [2010] only consider the bivariate case, but we expect a similar statement to hold in general.

Faithfulness vs. IFMOC assumption. There is a connection between equation (1) and faithfulness. In the context of an IFMOC, (1) basically reads as Lemma 4 (see below). If the latter is violated, this is also a violation of faithfulness (in this sense, faithfulness is stronger). We even show in Proposition 2 that Lemma 4 implies causal minimality, a weak form of faithfulness [Spirtes et al., 2001]. Causal minimality states that a joint distribution is not Markov with respect to a strict subgraph of the true causal graph G^\ast. Further, if $g(x,n) = n$ lies in F_{ij2}, (1) is satisfied: If $Y = f(X, N_Y) \perp X$ were true, $X = g(Y, N_X)$ with $N_X = X$ would be a valid backward model.

3 Proof

We proceed with the proof of Theorem 2. The lemmata are proved in the appendix.

Lemma 2 Let Y, Z, N, S be random variables with continuous joint density $p_{Y,Z,N,S}(y,z,n,s)$ with respect to some product measure (all random variables here can be multivariate). Let $f : Y \times Z \times N \rightarrow X$ be a measurable function. If $N \perp (Y, Z, S)$ then for all $z \in Z, s \in S$ with $p_{Z,S}(z, s) > 0$:

$$f(Y, Z, N) |_{Z=z, S=s} = f(Y |_{Z=z, S=s}, z, N)$$

2Proposition 1 in the appendix proves this statement.
Lemma 3 Consider a functional model with corresponding DAG \mathcal{G} and a random variable X. If $S \subseteq ND_X^Z$ then $N_X \perp S$.

Lemma 4 Consider an instance of an IFMOC with DAG \mathcal{G}, a variable B and one of its parents A. For all sets S with $PA_B^G \setminus \{A\} \subseteq S \subseteq ND_B^G$ we have $B \not\perp A \mid S$.

Proof of Theorem 2. We assume that there are two instances of an IFMOC that both induce $\mathbb{P}^{(X_i),i \in V}$, one with graph \mathcal{G}, the other with graph \mathcal{G}'. We will show that $\mathcal{G} = \mathcal{G}'$. Since DAGs do not contain any cycles, we always find nodes that have no descendants (start a directed path at some node: after at most $\#V - 1$ steps you reach a node without a child). Eliminating such a node from the graph leads to a DAG, again; we can discard further nodes without children in the new graph. We repeat this process for all nodes that have no children in both \mathcal{G} and \mathcal{G}' and have the same parents in both graphs. If we end up with no nodes left, the two graphs are identical and we are done. Otherwise, we end up with two smaller graphs that we again call \mathcal{G} and \mathcal{G}' and a node X that has no children in \mathcal{G} and either $PA_X^G \neq PA_X^G$ or $CH_X^G \neq \emptyset$. We will show that this leads to a contradiction. Importantly, because of the Markov property of \mathcal{G}, all other nodes are independent of X given PA_X^G:

$$ X \perp V \setminus (PA_X^G \cup \{X\}) \mid PA_X^G $$

(4)

To make the arguments easier to understand, we introduce the following notation (see also Figure 1): We partition \mathcal{G}-parents of X into Y, Z and W. Here, Z are also \mathcal{G}'-parents of X, Y are \mathcal{G}'-children of X and W are not adjacent to X in \mathcal{G}'. We denote with D the \mathcal{G}'-parents of X that are not adjacent to X in \mathcal{G} and by E the \mathcal{G}'-children of X that are not adjacent to X in \mathcal{G}. Thus: $PA_X^G = Y \cup Z \cup W$, $CH_X^G = \emptyset$, $PA_X^{G'} = Z \cup D$, $CH_X^{G'} = Y \cup E$.

Consider $T := W \cup Y$. We distinguish two cases:

1. If $D = \emptyset$ and there is $E \in E$ then $E \perp X \mid S$ holds for $S := Z \cup PA_X^{G'} \setminus \{X\}$, which also contradicts Lemma 4 (note that $Z \subseteq ND_E^{G'}$ to avoid cycles).

2. If $D = \emptyset$ and there is $E \in E$ then $E \perp X \mid S$ holds for $S := Z \cup PA_X^{G'} \setminus \{X\}$, which also contradicts Lemma 4 (note that $Z \subseteq ND_E^{G'}$ to avoid cycles).

(i) $T = \emptyset$. Then T contains a “G'-youngest” node with the property that there is no directed G'-path from this node to any other node in T. This node may not be unique.

1. Suppose that some $W \in W'$ is such a youngest node. Consider the DAG \mathcal{G}' that equals \mathcal{G}' with additional edges $Y \rightarrow W$ and $W' \rightarrow W$ for all $Y \in Y$ and $W' \in W \setminus \{W\}$. In \mathcal{G}', X and W are not adjacent. Thus we find a set \tilde{S} such that $\tilde{S} d$-separates X and W in \mathcal{G}'; indeed, one can take $\tilde{S} := (CH_X^{G'} \cup PA_X^{G'} (CH_X^{G'})) \setminus (U \cup DE^{G'} (U))$ with $U = CH_X^{G'} \cap CH_Y^{G'}$. Then also $\tilde{S} = \tilde{S} \cup \{Y, Z, W \setminus \{W\}\}$, \tilde{S}-separates X and W in \mathcal{G}'.

Indeed: All $Y \in Y$ are already in \tilde{S} in order to block $X \rightarrow Y \rightarrow W$. Suppose there is a \mathcal{G}'-path that is blocked by \tilde{S} and unblocked if we add Z and W' nodes to \tilde{S}. How can we unblock a path by including more nodes? The path $(X \cdots V_1 \cdots U_1 \cdots W$ in Figure 2) must contain a collider V_1 that is an ancestor of a Z with $V_1, \ldots, V_m, Z \notin \tilde{S}$ and corresponding nodes U_i for a W' node. Choose V_1 and U_1 on the given path so close to each other such that there is no such a collider in between. If there is no V_1, choose U_1 close to X, if there is no U_1, choose V_1 close to W. Now the path $X \leftarrow Z \cdots V_1 \cdots U_1 \cdots W' \rightarrow W$ is unblocked given \tilde{S}, which is a contradiction to \tilde{S} d-separates X and W.

But then \tilde{S} d-separates X and W in \mathcal{G}', too and we have $X \perp W \mid \tilde{S}$ which contradicts Lemma 4 (applied to \mathcal{G}').

2. Therefore, the \mathcal{G}'-youngest node in T must be some $Y \in Y$. We define $S := PA_X^{G'} \setminus \{Y\} \cup PA_Y^{G'} \setminus \{X\}$. Clearly, $S \subseteq ND_X^{G'}$ since X does not have
any descendants in G. Further, $S \subseteq N_D^{G'}$ because Y is the youngest under all $W \in W$ and $Y \in Y \setminus \{Y\}$ by construction and any directed path from Y to $Z \in Z$ would introduce a cycle in G'. Ergo, $\{Y\} \cup S \subseteq N_D^{G'}$ and $\{X\} \cup S \subseteq N_D^{G'}$. Lemma 3 gives us $N_X \perp (Y,S)$ and $N_Y \perp (X,S)$ and we can thus apply Lemma 2. From G we find

$$X_{|X_S = x_S} = f_X(x_{PA_{x_S} \setminus \{Y\}}, Y_{|X_S = x_S}, N_X),$$

$$N_X \perp Y_{|X_S = x_S}$$

and from G' we have

$$Y_{|X_S = x_S} = g_Y(x_{PA_{x_S} \setminus \{X\}}, X_{|X_S = x_S}, N_Y),$$

$$N_Y \perp X_{|X_S = x_S}$$

This leads to a contradiction since according to Definition 4 we can choose x_S such that $(f_X(x_{PA_{x_S} \setminus \{Y\}}, \cdot, \cdot, Y_{|X_S = x_S}, \cdot, N_X), \text{ and } g_Y(x_{PA_{x_S} \setminus \{X\}}, \cdot, \cdot, X_{|X_S = x_S}, \cdot, N_Y)) \in B$, and $g_Y(x_{PA_{x_S} \setminus \{X\}}, \cdot, \cdot, X_{|X_S = x_S}, \cdot, N_Y) \in \mathcal{F}$.

\[\square \]

4 Algorithm

Given a data set the main idea of the method is as follows: for each graph structure it fits the corresponding functional model from the \mathcal{F}-FMOCan and outputs all graphs, for which the residuals are independent. If the algorithm has either no or multiple outputs, Theorem 2 proves that Assumption 2 must be violated. Algorithm 1 shows how to avoid checking all possible DAGs: it finds the sink node, disregards it and continues with the smaller graph. The algorithm is based on [Mooij et al., 2009] but outputs all graphs that are consistent with the data by using depth-first search: whenever there is more than one way to proceed in building the DAG, instead of choosing the one that leads to the highest p-value of the independence test (see Algorithm 1, line 8 in Mooij et al. [2009]) we keep track of all possibilities. Note that $\sigma_1, \ldots, \sigma_d$ give the causal order; they also depend on $currentcase$ (omitted to improve readability). To increase robustness, we test for joint independence of the residuals at the end (not shown). The algorithm runs with any independence test and any regression method, our choices are described below. Code can be found on the homepage of the first author or of the MPI causality group.

5 Experiments

For regression we either use linear regression ($\text{IFMOC}_{\text{lin}}$) or Gaussian Processes as in [Hoyer et al., 2009] (IFMOC_{GP}). To check whether the residuals are independent of the regressors we use HSIC [Gretton et al., 2008]. For the PC algorithm we used an implementation by Tillman et al. [2009] and as a test either partial correlation (PC_{corr}) or “conditional HSIC” (PC_{HSIC}) proposed by Fukumizu et al. [2008] with 500 bootstrap samples to generate the null distribution. Ignoring problems of multiple testing we always set the significance level of statistical tests to 5%.

500 times data from the following model:

$$X_1 \rightarrow X_3 \rightarrow X_5$$

$$X_2 \rightarrow X_4 \rightarrow X_5$$

$X_1 = \beta_1 N_1$

$X_2 = \alpha_{12} X_1 + \beta_2 N_2$

$X_3 = \alpha_{13} X_1 + \beta_3 N_3$

$X_4 = \alpha_{24} X_2 + \alpha_{34} X_3 + \beta_4 N_4$

Data Set 1: How often do we miss faithfulness?

For sample sizes between 100 and 500,000 we simulate 500 times data from the following model:
with $N_i \sim \mathcal{N}(0,1)$. We regard the left DAG as ground truth and sample the coefficients α uniformly between -5 and 5 and β uniformly between 0 and 0.5. We expect the distribution to be non-faithful only on a subset of measure 0. Indeed, given the sampled coefficients we computed all (partial) correlations and verified that all distributions were faithful to the true causal graph. For finite sample size, however, we expect some cases, where the false hypothesis of zero partial correlation is not rejected. These type 2 errors lead to wrong conclusions about the underlying graph and Figure 3 shows how often they occur in the experiments. The number decreases slowly with the sample size, but even for a sample size of 500,000 they happen in more than 10% of the cases. Note that they would be even more frequent if one lowers the significance threshold of the test. In our experiments, other distributions for α and β lead to almost identical results (not shown).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{Data Set 1. The graph shows the proportion of cases (out of 500), where at least one (partial) correlation was falsely regarded as zero. These errors lead to wrong causal conclusions.}
\end{figure}

Data Set 2: Both methods should work when both assumptions are met.
We simulate 100 data sets (sample size 400) from two different structures:

- **linear1 and nonlinear1**: $X_1 \rightarrow X_3$, $X_2 \rightarrow X_4$, $X_1 = N_1$, $X_2 = N_2$, $X_3 = f_3(X_1) + N_3$, $X_4 = f_4(X_1, X_2, X_3) + N_4$
- **linear2 and nonlinear2**: $X_1 \rightarrow X_3$, $X_2 \rightarrow X_4$, $X_1 = N_1$, $X_2 = f_2(X_1) + N_2$, $X_3 = f_3(X_1, X_2) + N_3$, $X_4 = f_4(X_2, X_3) + N_4$

with $N_i \sim \mathcal{U}([-0.5,0.5])$. We regard the drawn graphs as the true causal DAGs.

In linear1 we choose $f_i(x) = a_i^2 x$ and in nonlinear1

\begin{align*}
 f_3(x_1) &= a_3 \exp(-2x_1^2) - 1 \\
 f_4(x_1, x_2, x_3) &= a_{41} (x_1 + 1)^2 + a_{42} x_2 + a_{43} x_3 .
\end{align*}

For linear2 we have $f_i(x) = b_i^2 x$ and for nonlinear2

\begin{align*}
 f_2(x_1) &= b_2 x_1, \\
 f_4(x_2, x_3) &= b_{42} (x_2 + 1)^2 + b_{43} x_3 \\
 f_3(x_1, x_2) &= b_{31} \exp(-2x_1^2) + b_{32} x_2,
\end{align*}

with $a_i, b_i \sim \mathcal{U}([-2, -1] \cup [1, 2])$. Table 1 shows the results. PC\textsubscript{corr} fails for the nonlinear data sets, whereas IMFOC\textsubscript{lin} is undecided. The second setting is more difficult because X_1 and X_4 are only independent given X_2 and X_3 and not a single variable. Especially in this case, the proposed method seems to be more robust. Recall that for PC “correct” means having identified the Markov equivalence class containing the true graph (e.g., with an undirected arrow $X_1 \perp \perp X_3$), whereas the IFMOC approach identifies the single correct DAG.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
 & lin1 & nonlinear1 & lin2 & nonlinear2 \\
\hline
PC\textsubscript{corr} & 90/10/0 & 6/94/0 & 47/53/0 & 0/100/0 \\
PC\textsubscript{HSIC} & 60/40/0 & 96/4/0 & 3/97/0 & 4/96/0 \\
IMFOC\textsubscript{lin} & 82/0/18 & 0/0/100 & 86/0/14 & 0/0/100 \\
IMFOC\textsubscript{GP} & 79/2/19 & 86/11/13 & 76/1/23 & 96/0/6 \\
\hline
\end{tabular}
\caption{Data Set 2. correct/wrong/undecided (out of 100). The proposed method clearly makes the least mistakes and is not always forced to take a decision.}
\end{table}

Data Set 3: If the distribution is not faithful, PC fails, IFMOC approach does not.
We simulate 100 data sets (sample size 400) from

\begin{align*}
 &X_1 \rightarrow X_3, \\
 &X_2 \rightarrow X_4 \text{, and } \\
 &X_1 = N_1, \\
 &X_2 = 1.5X_1 + N_2, \\
 &X_3 = 3X_1 - 2X_2 + N_3, \\
 &X_4 = 1.8X_3 + N_4
\end{align*}

with $N_i \sim \mathcal{U}([0,0.5])$. The distribution is not faithful to the true graph (left) since $X_1 \perp \perp X_3$ is not entailed by the Markov condition. This is an instance of non-faithfulness that cannot be detected from the data, see Section 2.4. Out of these 100 data sets, both PC algorithms always return a wrong DAG that is not Markov equivalent to the true graph. IMFOC\textsubscript{lin} returns the correct DAG in 89 cases and no wrong graph.

Data Set 4: If the data are induced by an FMOC, but not an IFMOC, both methods can return the Markov equivalence class.
We simulate 100 data sets (sample size 400) from
We simulate 100 data sets (sample size is 400) from PC gives wrong results, IFMOC is undecided. Data Set 5: If the assumptions are violated, 94 cases and remains undecided 6 times. lin class in 47 cases (the rest is incorrect); IFMOC data sets PC Markov equivalence class (Section 2.4). Out of 100 minimal number of edges, which correspond to the true faithfulness, one can output all graphs with the minimal. We further built on an existing algorithm to assume a weak form of faithfulness, namely causal independence. In principle, we expect IFMOC to successfully uses partial correlation to test for conditional independence. In our experiments we found that the proposed method outperforms the PC algorithm even for some models that meet all assumptions; this can only occur for finitely many samples and should be investigated further. (3) It would be interesting to analyze situations, where parts of the graph satisfy the assumptions and others do not. Preliminary experiments show that some parts of the graph remain identifiable. (4) It is important to test the proposed principle for causal inference on real data sets, for which the ground truth is known, and compare it to other methods like PC.

Acknowledgements

DJ has been supported by the DFG (SPP 1395).

References

Proof of Lemma 2

Appendix

Proposition 1 Assume G_c is the true graph and assume \mathbb{P} is faithful and Markov with respect to G_c. If \mathbb{P} is induced by a functional model from an IFMOC with G' as corresponding DAG we have $\#\text{edges in } G_c \leq \#\text{edges in } G'$.

Proof. \mathbb{P} must be Markov with respect to G' and must thus satisfy $I_{G'}$ (which we denote for all (conditional) independence equations that are induced by the graph structure of G'). \mathbb{P} must also satisfy I_{G_c}, and since \mathbb{P} is faithful wrt G_c, we have $I_{G'} \subseteq I_{G_c}$. Thus: missing edges in G' \subseteq missing edges in G_c and therefore: $\#\text{edges in } G_c \leq \#\text{edges in } G'$.

Proof of Lemma 2 First, note that the joint of Y, Z, N, S satisfies:

$$p_{Y, Z, N, S}(y, z, n, s) = p_{Z, S}(z, s)p_{Y|Z=z, S=s}(y)p_X(n)$$

because $N \perp (Y, Z, S)$. Consider the random variable $X := f(Y, Z, N)$. We have, for all $z \in Z, s \in S$ with $p_{Z, S}(z, s) > 0$ and for all $x \in X$:

$$p_{X|Z=z, S=s}(x) = \frac{p_{X, Z, S}(x, z, s)}{p_{Z, S}(z, s)} = \int p_{Y, Z, N, S}(y, z, n, s)\delta(x - f(y, z, n)) \, dy \, dn$$

= $p_f(Y_{Z=z, S=s}, N)(x)$

Ergo, $X|Z=z, S=s = f(Y|Z=z, S=s, N)$ for all z, s with $p_{Z, S}(z, s) > 0$. □

Proof of Lemma 3 Write $S = \{S_1, \ldots, S_k\}$. Then

$$S = (f_{S_i}(\mathcal{PA}^G_{S_i}, N_{S_i}), \ldots, f_{S_k}(\mathcal{PA}^G_{S_k}, N_{S_k}))$$

Again, one can substitute the parents of S_i by the corresponding functional equations and proceed recursively. After finitely many steps one obtains $S = f(N_{T_1}, \ldots, N_{T_l})$, where $\{T_1, \ldots, T_l\}$ is the set of all ancestors of nodes in S, which does not contain X. Since all noise variables are jointly independent we have $N_X \perp S$. □

Proof of Lemma 4 According to Definition 4 we can choose x_S, such that $p(x_S) > 0$ and

$$\left(f_B(x_{\mathcal{PA}_B \setminus \{A\}}, A|X_S=x_S, N_B) \right) \in A.$$

Because of $S \subseteq \mathcal{ND}^G_B$ and Lemma 3 we can apply Lemma 2, which gives $f_B(x_{\mathcal{PA}_B \setminus \{A\}}, A|X_S=x_S, N_B) = B|X_S=x_S$.

But then (1) reads

$$A|X_S=x_S \not\perp f_B(x_{\mathcal{PA}_B \setminus \{A\}}, A|X_S=x_S, N_B) = B|X_S=x_S$$

□

Proposition 2 If the joint distribution has a strictly positive density with respect to some product measure, Lemma 4 is equivalent to causal minimality.

Proof. Suppose Lemma 4 does not hold. Then

$$\exists S : \mathcal{PA}^G_B \setminus \{A\} \subseteq S \subseteq \mathcal{ND}^G_B$$

and $B \perp A|S$.

$$\Rightarrow \exists \tilde{S} : B \perp A|\mathcal{PA}^G_B \setminus \{A\} \cup \tilde{S}$$

and $B \perp \tilde{S}|\mathcal{PA}^G_B$.

(*) $\Rightarrow \exists \tilde{S} : B \perp (A, \tilde{S})|\mathcal{PA}^G_B \setminus \{A\}$

$$\Rightarrow B \perp A|\mathcal{PA}^G_B \setminus \{A\}$$

$$\Rightarrow P(X_V) = P(B|\mathcal{PA}^G_B \setminus \{A\}) \prod_{X \neq B} P(X|\mathcal{PA}^G_X)$$

$$\Rightarrow P(X_V)$$ is Markov wrt G without $A \rightarrow B$

Causal minimality is violated.

$$\Rightarrow \exists A, B : A \perp B \not\rightarrow \mathcal{PA}^G_B \setminus \{A\}$$

$$\Rightarrow \text{Lemma 4 is violated.}$$

(*) is the “intersection” property of conditional independence [e.g. 1.1.5 in Pearl, 2009] and requires positivity of the densities. □