
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/91902

Please be advised that this information was generated on 2019-02-24 and may be subject to

change.

http://hdl.handle.net/2066/91902

Hunting deadlocks efficiently in microarchitectural

models of communication fabrics

Freek Verbeek

Radboud University Nijmegen

Institute for Computing and Information Sciences

The Netherlands

Email: f.verbeek@cs.ru.nl

Julien Schmaltz

Open University of the Netherlands

School of Computer Science

The Netherlands

Email: julien.schmaltz@ou.nl

Abstract—Communication fabrics constitute an important
challenge for the design and verification of multi-core architec-
tures. To enable their formal analysis, microarchitectural models
have been proposed as an efficient abstraction capturing the
high-level structure of designs. We propose a novel algorithm
to deadlock verification of microarchitectural designs. The basic
idea of our algorithm is to capture the structure of the wait-for
relations of a microarchitectural model in a labelled waiting-
graph and to express a deadlock as a feasible closed subgraph
of the waiting-graph. We apply our algorithm to academic and
industrial Networks-on-Chip (NoC) designs. With examples we
show that our tool is fast, scalable, and capable of detecting
intricate message-dependent deadlocks. Deadlocks in networks
with thousands of components are detected within a few seconds.

I. INTRODUCTION

In modern architectures, performance is gained by increas-

ing parallelism [1]. Multi-Processor Systems-on-Chips (MP-

SoCs) integrate on a single die several processing, memory,

and I/O devices. As bus performance degrades when the num-

ber of cores increases, complex Networks-on-Chips (NoCs)

constitute an alternative solution for scalable interconnect

infrastructures [2], [3]. Formal verification of NoCs is a

challenge. In particular, deadlock freedom is a crucial property

that also is difficult to automatically verify. A solution is to

analyze abstract microarchitectural models of communication

fabrics. A well-defined set of primitives – named xMAS

for eXecutable MicroArchitectural Specifications – has been

proposed by Intel to precisely describe these models [4].

Chatterjee and Kishinevsky developed techniques to generate

inductive invariants and use these invariants to improve the

performance of hardware model-checking of Verilog descrip-

tions [5]. Recently, Gotmanov et al. proposed a Boolean

encoding of deadlock equations [6]. Using these equations and

automatically generated invariants, the authors were able to

verify Verilog designs for deadlocks. Their techniques scale up

to networks with hundreds of components and tens of queues.

Actual designs typically consist of hundreds or even thousands

of queues. We report results1 on networks with thousands of

components and hundreds of queues. A direct comparison with

Intel’s algorithms is not possible as their tools and benchmarks

1The source code for the algorithm presented in the paper are available at
http://www.cs.ru.nl/∼freekver/fmcad11/

are not publicly available. We exhibit one example that is out-

of-reach for Intel’s techniques but is verified instantaneously

by our algorithm.

Our novel deadlock detection algorithm is based on the

following two key concepts. The wait-for relations of xMAS

models are captured in a labelled waiting-graph. A deadlock is

defined as a feasible closed subgraph of the waiting-graph. Our

algorithm analyses each queue of a network and either stops

if a blocking queue has been found or returns ”no deadlock”

when all queues have been visited. For each queue, a labelled

waiting-graph is built. A deadlock is found when a feasible

logically closed subgraph is found in the waiting-graph of a

queue. Building the waiting-graph and searching for a feasible

logically closed subgraph happen on-the-fly.

The next section briefly introduces the xMAS language and

illustrates the difficulty of finding deadlocks in xMAS models.

Section 3 presents the theoretical foundations of our algorithm

which is detailed in Section 4. Section 5 demonstrates the

applicability and the efficiency of our algorithm on several

and distinct examples extracted from academic and industrial

NoC designs. Both routing and message dependent deadlocks

are detected within seconds in designs with thousands of

components. Finally, Section 6 relates our work to Intel’s

approach and Section 7 concludes.

II. XMAS MODELS

We briefly introduce the xMAS language. Our presentation

is inspired by the original xMAS paper where more details

can be found [4].

An xMAS model is a network of primitives connected via

typed data channels. A channel is connected to an initiator

and a target. A channel is composed of three signals. Channel

signal x .irdy indicates whether the initiator is ready to write

to channel x. Channel signal x .trdy indicates whether the

target is ready to read channel x. Channel signal x .data
contains data that are transferred from the initiator output to

the target input if and only if both signals x .irdy and x .trdy
are set to true. Figure 1 shows the eight primitives of the

xMAS language. A function primitive manipulates data. Its

parameter is a function that produces an outgoing packet from

an incoming packet. Typically, functions are used to convert

message types and represent message dependencies inside the

Fig. 1: Eight primitives of the xMAS language. Italicized letters indicate parameters. Gray letters indicate ports.

(a)

(b)

Fig. 2: Microarchitectural models

fabric or in the model of the environment. A fork duplicates an

incoming packet to its two outputs. Such a transfer takes place

if and only if the input is ready to send and the two outputs

are both ready to read. As in previous publications [5], [6],

we assume forks with identity functions. A join is the dual

of a fork. The function parameter determines how the two

incoming packets are merged. A transfer takes place if and

only if the two inputs are ready to send and the output is

ready to read. The function parameter must be total, i.e., a

join is always able to produce a packet if both inputs are

ready. A switch uses its function parameter to determine to

which output an incoming packet must be routed. A merge is

an arbiter. It grants its output to one of its inputs. A merge

is fair, i.e., all inputs are served eventually. A queue stores

data. As we assume fair arbiters, we abstract away from their

internal state and a queue is the only state holding element.

Messages are non-deterministically produced and consumed at

sources and sinks. Sources and sinks are fair, i.e., messages

are eventually created or consumed. A source or sink may

process multiple message types. A configuration σ represents

the current occupation of queues, i.e., the current state. The

semantics of an xMAS network is specified using synchronous

equations for each primitive [4]. Configurations are updated

when messages are produced, consumed, or moved to a next

queue. A legal configuration is a configuration where the

buffer sizes of the queues are not exceeded. A configuration is

reachable if it is possible to reach it starting from the empty

network. A channel c has type p if and only if there exists

a reachable configuration such that a packet p is located in

channel c. The set of all types of channel c is noted τ(c).

Deadlocks are difficult to find in xMAS models as the

traditional association between cycles and deadlocks is neither

sufficient nor necessary. Consider the microarchitectural model

in Figure 2b. One source emits both response and request

packets. The type of packets of the other source is left

uninterpreted for now. The first source feeds into queue q0
which then enters a fork. The lower output of the fork is

merged with the other source into queue q2. From q2, request
packets are routed to a sink while response packets are joined

with packets stored in q1. The configuration in Figure 2b

has a request packet in q1 and a response packet in q0. The
join waits for response packets in q2. Response packets wait

for the fork. This fork waits for space in q1 which in turn

waits for the join. This completes a circular wait, but this

circular wait is not necessarily a deadlock. If x = {rsp}, i.e.,
the second source generates response packets, the network is

deadlock-free. If x = {req}, the configuration is a deadlock.

Consider the microarchitectural model in Figure 2a. The queue

waits for the join. The join waits for a request packet. As the

source never produces a request packet, the configuration is a

deadlock without circular waits.

III. THEORETICAL FOUNDATIONS

Let Q be the set of queues in the network and let q.out de-
note the output channel connected to queue q. A configuration

is stuck if and only if the packets in all queues are blocked,

i.e.:

stuck(σ)
def
= ∀q ∈ Q · q.out.irdy =⇒ ¬q.out.trdy.

Definition 1: A configuration σ is a deadlock configuration,

notation dl(σ), if and only if it is a non-empty configuration

such that:

dl(σ)
def
= legal(σ) ∧ reachable(σ) ∧ stuck(σ)

In a deadlock, the output channel of each queue that contains

packets is blocked. None of the packets can proceed.

We formulate a set of blocking equations, notation

Block(c, p), representing whether a packet p can be perma-

nently blocked in channel c (Figure 4). We also define the idle

equations, notation Idle(c, p), representing whether channel c
can be permanently empty for packet p. We define a blocked

queue, notationBlockQ(q), as a queue q containing a blocked
packet.

BlockQ(q) ≡ ∃p ∈ τ(q.out) ·#q.p ≥ 1 ∧Block(q.out, p)

The equations in Figure 4 capture the reason why compo-

nents are permanently blocking or idle. A queue is blocking

if it is full and the component connected to its output channel

is blocking (full(q) denotes “#q = q.size”). A queue is idle

for packet p either if it is empty and its input is connected to

an idle component or if messages with packet p are blocked

src1 q0
frk

q1
join

mrg2 sink
sw

q2mrg1src2

false

rsp /∈ x

q0.rsp = 0

∨

∧

q1 = q1.size

false∨

q2.rsp = 0

q1.req ≥ 1

Fig. 3: Labelled waiting graph for the model in Figure 2b

Definition 2: Let c be a channel, let x (y) be the target (initiator) component of c, and let x.in′ (x.out′) be the other in- (out-)
port of component x (y).

Block(c, p) ≡ full(x) ∧BlockQ(x) iff x = queue

≡ Block(x.out, f(p)) iff x = function

≡ false iff x = sink

≡ Block(x.out1, p) ∨Block(x.out2, p) iff x = fork

≡ Block(x.out, p) ∨ ∀p′ ∈ τ(x.in′) · Idle(x.in′, p′) iff x = join

≡ Block(x.out1, p) iff x = switch ∧ b(p)
≡ Block(x.out2, p) iff x = switch ∧ ¬b(p)
≡ Block(x.out, p) iff x = merge

Idle(c, p) ≡

{

y.p = 0 ∧ Idle(y.in, p)∨
∃p′ ∈ τ(y.out) · p 6= p′ ∧ y.p′ ≥ 1 ∧Block(y.out, p′)

iff y = queue

≡ ∀p′ ∈ τ(y.in) · f(p′) = p =⇒ Idle(y.in, p′) iff y = function

≡ p /∈ τ(y) iff y = source

≡ Idle(y.in, p) ∨ ∃p′ ∈ τ(y.out′) ·Block(y.out′, p′) iff y = fork

≡ Idle(y.in1, p) ∨ Idle(y.in2, p) iff y = join

≡ Idle(y.in, p) iff

{

y = switch∧
(b(p) ⇐⇒ c = y.out1)

≡ Idle(y.in1, p) ∧ Idle(y.in2, p) iff y = merge

Fig. 4: Blocking equations

by other packets and cannot leave the queue. Formally, the

latter means that the channel written by the queue never

receives packet p. A function is blocking if its output channel

is blocking after application of the function. A function is idle

for packet p if its input channel is idle for all packets for which
the application results in p. A sink is never blocked. A source

can be idle for a particular message type. A fork is blocked if

one of its outputs is blocked. A fork is idle if its input is idle.

A fork can also be blocked if an output channel is blocking,

since a fork can only produce two packets if all its output

channels are ready to receive. A join is blocked if its output

is blocked or one of its inputs is idle for any packet. A join

is idle if one of its inputs is idle. A switch has one blocking

equation for each possible output. The first (second) output

channel of a switch is idle for p if the condition (i.e., function

s applied to packet p) does not (does) hold for p or its input

is idle. A merge is blocked if its output is blocked. Note that

a merge may also be blocking if the other input channel is

selected. However, since we assume fair merges, this cannot

permanently block the input channel. As our equations capture

the reason why a component is permanently blocking an input

channel, this blocking scenario need not be reflected in the

deadlock equations of the merge. A merge is idle if both its

inputs are idle.

We now prove2 correctness of the deadlock equations, i.e.,

a configuration is stuck if and only if there is a blocked queue.

Lemma 1: There exists a non-empty stuck configuration if

and only if for some queue q the blocking equations are

feasible:

∃q ∈ Q ·BlockQ(q) ⇐⇒ ∃σ · stuck(σ)

Configuration σ in Lemma 1 is a configuration in which all

packets are blocked. The configuration is not necessarily legal

or reachable. Legality equations (noted Legal) are added to

bound the number of packets stored in queues. They have

the following form: {”#q ≤ q.size′′ | q is a queue}. To

rule-out unreachable configurations, a reachability invariant

(noted Inv) is automatically generated. We have made a quick

re-implementation of the invariant generation technique used

in [5]. In all examples presented in this paper, the invariants

generated by our quick re-implementation were enough.

The next Lemma shows that if there is a deadlock then

our algorithm will find it. Note that because we may output

a deadlock that is not reachable, the other direction does not

hold.

Lemma 2: For any set of invariants Inv, if there exists a

deadlock configuration, then there exists a blocked queue q.

∃σ · dl(σ) =⇒ ∃q ∈ Q ·BlockQ(q) ∧ Legal∧ Inv

2All proofs are available in an appendix at the end of this paper.

Given a queue q, the labelled waiting graph is a graph with

as vertices the components of the network. Figure 3 shows this

graph for queue q1 in Figure 2b. The next Section details the

efficient construction of this graph. Function Ewait represents

the edge function, i.e., Ewait(x) returns the set of neighbors

of component x. We let
∧

(x) and
∨

(x) return true if and

only if the edges going out of component x are conjunctive

or disjunctive. An edge (x0, x1) between components x0

and x1 is labelled according to the deadlock equations of

channel x0 .out connecting these components. Starting from

queue q the labels directly correspond to the set of equations

BlockQ(q).
Definition 3: A waiting subgraph S is logically closed,

notation closed(S), iff:

closed(S)
def
=

∀x ∈ S ·

{

∀n ∈ Ewait(x) · n ∈ S iff
∧

(x)
∃n ∈ Ewait(x) · n ∈ S iff

∨

(x)

A subgraph S is feasible if and only if the conjunction of the

constraints on all edges in S, the set of legality constraints,

and the set of invariants, is feasible. For instance, subgraph

{q1, join, mrg2, sink} in Figure 3 is logically closed but not

feasible. The next lemma shows that a deadlock is a feasible

logically closed subgraph.

Lemma 3: For queue q, the deadlock equations are feasible

if and only if the waiting graph of q contains a feasible and

closed subgraph.

∀q ∈ Q · (BlockQ(q) ∧ Legal∧ Inv ⇐⇒
∃S · feasible(S) ∧ closed(S))

Our final theorem is a corollary from Lemmas 2 and 3.

Theorem 1: For any set of invariants Inv, if there is a

deadlock, then there exists a waiting subgraph that is feasible

and closed.

IV. ALGORITHM

The algorithm detects closed subgraphs and determines their

feasibility. It starts a search in some queue q0 with some

packet p. The current subgraph S under consideration is {q0}.
The search expands waiting neighbors, adding them to S, as
long as the subgraph is open and feasible. The search starts

with forward expansion. Each forward edge requires the next

component to be permanently blocked. When encountering a

join, the search proceeds both forwards to determine whether

the output channel can be permanently blocked and backwards

to determine whether the input channel can be permanently

idle. The result is that a tree – spanning over the waiting graph

– with as root q0 is created on-the-fly. In case of a conjunctive

component, unexplored edges are marked as ‘open’, since they

must still be explored. The algorithm proceeds its search until

S is closed. The algorithm keeps track of the set of equations

Ecurr of the path leading from the initial queue q0 to the current
component x.
If a cycle, a sink, or a source is encountered, the algorithm

ends its recursion. If there are no open edges and if the current

subgraph S is feasible, a deadlock has been found and the

algorithm terminates. Otherwise, the algorithm backtracks to

the latest disjunctive point. To prevent an exponential graph

exploration, we implement a memoization technique. After

each recursive call, the equations – named closing equations

– of each path leading to a cycle or source are stored. If

a component is encountered that has already been visited, a

deadlock has been found if the conjunction of Ecurr and the

closing equations is feasible. This ensures that each component

of the waiting graph has to be visited at most once.

Consider the network in Figure 2b. We let the algorithm

start in queue q1 with packet req. It will create the graph

in Figure 3 on-the-fly. The algorithm starts with expanding

the join, adding “#q1.req ≥ 1” to Ecurr. There are two

ways to proceed: forwards to mrg2 or backwards to the

switch. The algorithm proceeds forwards. As this leads to

a sink, no deadlock is found. The algorithm associates the

closing equation “false” to the sink. The algorithm then

proceeds backwards to determine whether the switch can be

permanently idle for packet rsp. Queue q2 is expanded, adding
“#q2.rsp = 0′′ to Ecurr. The algorithm expands mrg1. There
are two ways to proceed: backwards to the fork or backwards

to the source. The algorithm first expands the fork, but keeps

track of the open edge to the source. Again, there are two

ways to proceed: one forwards leading to queue q1 and one

backwards leading to queue q0. The algorithm first proceeds

forwards, adding “#q1 = q1.size” to Ecurr. Queue q1 has

already been explored. Since there is one open edge, the

algorithm starts propagating information upwards to the fork

by associating ”#q1 = q1.size” as a closing equation for the

fork. Consequently, it is removed from Ecurr. It proceeds by
exploring queue q0. Since this is connected to a source that

injects rsp messages, queue q0 cannot be idle for rsp. The
algorithm associates closing equation “false” to the source

and to queue q0. This is propagated upwards. The closing

equations of the fork become: “#q1 = q1.size ∨ false”.
The open edge from the merge to the source is explored.

If we assume that src2 injects rsp-messages, the algorithm

associates closing equation “true” to src2. This is propagated
upwards, and the closing equation associated to the merge

becomes (#q1 = q1.size ∨ false) ∧ true. As there are no

more open edges, the algorithm checks the feasibility of the

conjunction of Ecurr and the closing equation of the merge, i.e.,

feasibility of {#q1.req ≥ 1,#q2.rsp = 0,#q1 = q1.size}.
The solution to these equations corresponds to any deadlock

configuration where q1 is full with a request at its head, no

responses are in q2.
Algorithm 1 shows the pseudo code of our algorithm. This is

one half of the algorithm, as function IDLEDETECT is needed

to determine deadlocks for joins. Function IDLEDETECT is

the exact dual of DEADDETECT. The complete algorithm is

a mutual recursion between these two dual functions. The

algorithm takes four parameters: a component x that is to be

explored, the current packet p, the number of open edges open
and the set of equations Ecurr. For each queue q, the closing

equations are stored in Eclosing[q].

Algorithm 1 DEADDETECT(x, p, open, Ecurr)

1: if x == queue then

2: Ecurr ∧= “#x = x.size′′

3: if Eclosing[x] == ∅ then

4: Eclosing[x] = “false′′

5: for all p′ ∈ τ(x.out) do
6: Ecurr ∧= “#x.p′ ≥ 1′′

7: DEADDETECT(x.out, p′, open, Ecurr)
8: Ecurr ��∧= “#x.p′ ≥ 1′′

9: Eclosing[x] ∨= Eclosing[x.out]
10: end for

11: else if open == 0 then

12: * Determine feasibility of equations *\
13: * Report deadlock if feasible *\
14: end if

15: Ecurr ��∧= “#x = x.size′′

16: else if x == function then

17: DEADDETECT(x.out, f(p), open, Ecurr)
18: Eclosing[x] = Eclosing[x.out]
19: else if x == sink then

20: Eclosing[x] = “false′′

21: else if x == fork then

22: DEADDETECT(x.out1, p, open, Ecurr)
23: DEADDETECT(x.out2, p, open, Ecurr)
24: Eclosing[x] = Eclosing[x.out1] ∨ Eclosing[x.out2]
25: else if x == join then

26: DEADDETECT(x.out, p, open, Ecurr)
27: for all p′ ∈ τ(x.in′) do
28: IDLEDETECT(x.in′, p′, open, Ecurr)
29: end for

30: Eclosing[x] = Eclosing[x.out] ∨ Eclosing[x.in′]
31: else if x == switch then

32: if cond(p) then
33: DEADDETECT(x.out1, p, open, Ecurr)
34: Eclosing[x] = Eclosing[x.out1]
35: else

36: DEADDETECT(x.out2, p, open, Ecurr)
37: Eclosing[x] = Eclosing[x.out2]
38: end if

39: else if x == merge then

40: DEADDETECT(x.out, p, open, Ecurr)
41: Eclosing[x] = Eclosing[x.out]
42: end if

We detail the case where x is a queue. Other cases are

processed similarly. In the case of a queue, x must be full in

order to be blocking. Equation ”#x = x.size” is conjunctively
added to the current set of equations (line 2). For each new

packet p′, the algorithm adds equation ”#x.p′ ≥ 1” and

recursively determines whether the next component can be

permanently blocking (lines 5–7). After the recursive call,

equation ”#x.p′ ≥ 1” is retracted (line 8). After all recursive

calls, equation ”#x = x.size” is retracted (line 15).

The number of open edges can increase only in

IDLEDETECT. Open edges occur with functions, switches,

and merges. Only if the number of open edges is equal to

zero and if some cycle has occurred, the sets of equations

are fed to a linear programming solver. We use lp solve,

an off-the-shelve linear programming solver [7]. We have

equations stored in efficient data structures in such a way

that, e.g., (#q1 = q1.size ∨ false) ∧ true is stored simply

as #q1 = q1.size. Adding equations to this data structure is

only possible if the resulting set of equations is still internally

feasible, i.e., feasible without further invariants. This prevents

unnecessary exploration of infeasible paths.

Correctness of the algorithm means that function

DEADDETECT returns true if and only if there is a

feasible closed subgraph.

Lemma 4:

∃x, p · DEADDETECT(x, p, 0, ∅) ⇐⇒
∃S · feasible(S) ∧ closed(S))

Remarks:

Counterexamples: If our algorithm finds a feasible and closed

subgraph, it has given the set of constraints corresponding

to this subgraph to a linear programming solver. This solver

not only returns a boolean value indicating that the set of

constraints is feasible, but also a solution. This solution assign

integers to queues and headers. It is a detailed representation

of a counterexample, i.e., a deadlock configuration.

Running time: Each separate run of the algorithm visits

each component at most once. As per component deadlock

equations are memoized there is no need to re-explore a visited

component. The algorithm is executed once for each queue.

The number of recursive calls is therefore O(Q · C) with Q
the number of queues and C the number of components.

Before running the algorithm, the typing information needs

to be computed, i.e., we need to compute τ(c) for all channels
c. To obtain this information we perform exhaustive simula-

tions. For each source and for each possible packet p injected

at the source, we simulate the injection in an empty network

until it is consumed. During this simulation p is added to τ(c)
for each visited channel c. During this simulation, queues may

need to be visited more than once.

Consider the network in Figure 6. The network is deadlock-

free. To establish this, it must be established that always

eventually a packet “5” arrives at queue q1. During the

simulation of packet “0” in source src0, queue q0 is visited

6 times. This establishes that τ(c) = {0, 1, . . . , 5}. Using this

information, our algorithm needs to visit queue q0 just once

to establish deadlock freedom of the network.

Fig. 6: xMAS model

0.001

0.01

0.1

1

10

100

0 500 1000 1500 2000 2500 3000 3500

Number of xMas components

T
im

e(
s)

SP-CC

+

+

+

+

+
+
+
+ +

2D-MS-LR

×

×
×

× × × ×

×
SP-VC

∗

∗

∗

∗
∗

∗
2D-MS

�

�

� � �
�

2D-MS-EO

�

�

� � � �
2D-XY

◦ ◦

◦

◦
◦

◦
SP

• • • •

• •

•

Fig. 5: Experimental results

Fig. 7: xMAS model of an HERMES node

V. EXPERIMENTAL RESULTS

We consider two Network-on-Chip (NoCs): The HERMES

NoC [8] from the University of Rio Grande in Brazil and the

Spidergon NoC from STMicroelectronics [9]. All experiments

have been performed on a Ubuntu machine with a 2.93 GHz

Intel Core 2 Duo processor and 2 GB memory. Figure 5

gives an overview of experimental results on the benchmarks

described hereafter.

HERMES is a two-dimensional mesh using XY rout-

ing [10]. Figure 7 shows an xMAS specification of a pro-

cessing node with coordinates (X,Y). This node is a ”slave”.

It introduces message dependencies as responses are gener-

ated upon reception of requests. A master node would only

inject requests in its local queue and consume responses. We

experimented with different layouts of masters and slaves: no

master and no slave (curve 2D-XY), all nodes are both master

and slave (curve 2D-MS), masters on the left part of the mesh

and slaves on the right part (curve 2D-MS-LR), or masters on

even columns and slaves on odd columns (curve 2D-MS-EO).

Two layouts only are deadlock-free (2D-XY and 2D-MS-LR).

The results show good performance for detecting deadlocks

and proving their absence.

Spidergon is a ring where each processing node can send

messages clockwise, counter clockwise, or across. Shortest

path routing is used. At each node, the routing decision is

based on the relative address relAd = (d− s) mod N . Here

d is the destination, s is the current node, and N is the total

number of nodes. Because of the ring, this architecture has a

deadlock (curve SP). In this case, performance is linear in the

(a) Ring node with shortest path routing

(b) Credit control unit

Fig. 8: Spidergon with flow control

size of the ring.

To resolve this deadlock, virtual channels [11] are inserted

to the right upper quarter of the ring only (curve SP-VC).

The routing function is modified such that virtual channels

are only used for each destination inside the quarter, other

messages still use the regular channels. This case is slightly

more difficult because there is no deadlock. If virtual channels

are wrongly designed, deadlock detection is as in curve SP.

Another approach is to add a credit control unit (CCU,

Figure 8) limiting the number of packets in the ring to N ·k−1,
where N is the size of the ring and k the size of the queues.

When injecting messages in local queues, these messages are

duplicated and sent to the CCU. When messages are sunk, they

are also duplicated and sent to the CCU to free space. This

unit may look unrealistic but its main purpose is to illustrate a

difficult case for our algorithm. Indeed, the merges force our

algorithm to branch on all the inputs of these merges. As it

can be seen in curve SP-CC, this case is much harder. Still,

networks with tens of agents and hundreds of components can

be proven deadlock-free within a few minutes. If the counter

Fig. 9: Example from Intel

is wrongly sized, e.g., cc queue.size = Nk, a deadlock is

found as in curve SP.

Figure 9 shows a network abstracted from a real design

from Intel [12]. The sources in the network emit red and

blue tokens respectively. These tokens are duplicated into

two queues. Red tokens are sunk, blue tokens are joined and

then sunk. The network is deadlock-free, as queues q0 and

q1 are fed with tokens in the same order. Given invariants

automatically generated by [5], the approach of [6] cannot

handle this example while our algorithm returns ”no deadlock”

instantaneously.

VI. RELATED WORK

We define a deadlock configuration while Gotmanov et

al. [6] define a dead channel, i.e., a channel that is never

idle but always blocked in some execution. Assuming fair

merges and that a dead channel coincides with a blocked

queue, the two definitions are logically equivalent. We can

prove that there exists a dead channel if and only if there

exists a deadlock configuration. Our approach covers a similar

property as [6]. An important difference is that we directly

tackle xMAS models and not their Verilog implementation.

The two techniques are complementary. Our tool can be used

to quickly remove all deadlocks in xMAS models before

proving the Verilog deadlock-free.

VII. CONCLUSION

We have shown that based on the notions of a labelled

waiting graph and a logically closed subgraph it is possible

to efficiently detect deadlocks in microarchitectural models

of communication fabrics. We demonstrated the applicability

and efficiency of our solution on several deadlock avoidance

mechanisms used in academic and industrial NoCs designs.

Deadlocks are found within seconds in networks with thou-

sands of components. We exhibited an example that can be

proven deadlock-free using our technique but could not be

handled by Intel’s recent related solution. Our technique uses

less and simpler invariants showing that using the labelled

waiting graph we capture more information about the structure

of xMAS models.

ACKNOWLEDGMENTS

This research is supported by NWO/EW project Formal

Validation of Deadlock Avoidance Mechanisms (FVDAM)

under grant no. 612.064.811. This research received a gift from

Intel Corporation.

REFERENCES

[1] W. Dally, “The end of denial architecture,” Keynote at Design Automa-
tion Conference (DAC’09), 2009.

[2] W. J. Dally and B. Towles, “Route packets, not wires: on-chip intercon-
nection networks,” in Proceedings of the Design Automation Conference,
Las Vegas, NV, 2001, pp. 684–689.

[3] L. Benini and G. D. Micheli, “Networks on Chips: A New SoC
Paradigm,” Computer, vol. 35, no. 1, pp. 70–78, 2002.

[4] S. Chatterjee, M. Kishinevsky, and U. Ogras, “Quick formal modeling
of communication fabrics to enable verification,” in Proc. of High Level

Design Validation and Test Workshop (HLDVT’10), 2010, pp. 42–49.
[5] S. Chatterjee and M. Kishinevsky, “Automatic generation of inductive

invariants from high-level microarchitectural models of communication
fabrics,” in Proc. of Computer Aided Verification (CAV’10), 2010, pp.
321–338.

[6] A. Gotmanov, S. Chatterjee, and M. Kishinevsky, “Verifying deadlock-
freedom of communication fabrics,” 2011, to appear in Proceedings of
VMCAI ’11.

[7] M. Berkelaar, K. Eiklan, and P. Notebaert, lp solve (version
5.5.2.0), available under GNU LGPL. [Online]. Available:
http://lpsolve.sourceforge.net/5.5/

[8] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, “Hermes: an
infrastructure for low area overhead packet-switching networks on chip,”
Integration, the VLSI Journal, vol. 38, no. 1, pp. 69 – 93, 2004.

[9] F. K. A. Karim and S. Dey, “An interconnect architecture for networking
systems on chips,” IEEE Micro, pp. 36–45, 2002.

[10] L. Ni and P. Mckinley, “A survey of wormhole routing techniques in
direct networks,” IEEE Computer, vol. 26, pp. 62–76, Februari 1993.

[11] M. Coppola, M. D. Grammatikakis, R. Locatelli, G. Maruccia, and
L. Pieralisi, Design of Cost-Efficient Interconnect Processing Units:

Spidergon STNoC, 1st ed. CRC Press, Inc., 2008.
[12] S. Chatterjee and M. Kishinevsky, personal communication.

APPENDIX

PROOFS OF LEMMAS

Lemmas in Section 3

Lemma 1: There exists a non-empty stuck configuration if

and only if for some queue q the blocking equations are

feasible:

∃q ∈ Q ·BlockQ(q) ⇐⇒ ∃σ · stuck(σ)

Proof:

(⇐=) Assume queue q is non-empty and blocked in configura-

tion σ. We prove that σ satisfies the set of blocking equations

by structural induction on the definition of Block. Thus σ is

a solution of these equations, implying they are feasible.

The base case is trivial. For the inductive case, we proceed

by case distinction and only detail the case where x is a queue.

The other cases are similar. Channel x.in is permanently

blocked by assumption. This happens only when x is full.

Thus σ satisfies the equation #x = x.size. Furthermore,

the packet at the head of x must be permanently blocked.

Let p′ denote the header of this packet. Channel x.out must

be permanently blocked for packet p′, since otherwise the

packet at the head of x eventually is removed from the queue

and channel x.in becomes alive, contradicting the assumption

that x.in is permanently blocked. By induction hypothesis,

if channel x.out is permanently blocked for p′, σ satisfies

Block(x.out, p′).
(=⇒) Assume that for some queue q the equations are feasible.
This means there exists a solution, which is an assignment

of integers to queues and packets. This solution is thus

a configuration. We prove that in this configuration, each

channel c involved in the set of equations is permanently

blocked by its target component x. The proof is again by

induction on Block and then by case distinction. We provide

details on the case of the join. By the induction hypothesis

we know that either the output is permanently blocking join

x, or the other input channel is permanently idle. In both cases,

channel c is permanently blocked by the join. This concludes

the proof that the target of the channel is permanently blocked.

Lemma 2: For any set of invariants Inv, if there exists a

deadlock configuration, then there exists a blocked queue q.

∃σ · dl(σ) =⇒ ∃q ∈ Q ·BlockQ(q) ∧ Legal∧ Inv

Proof: From Lemma 1, we know that a configuration

that is stuck implies a blocked queue. By definition, a legal

configuration implies the legality constraints. A reachable

configuration implies the reachability invariant.

Lemma 3: For queue q, the deadlock equations

are feasible if and only if the waiting graph

of q contains a feasible and closed subgraph.
∀q ∈ Q · (BlockQ(q) ∧ Legal∧ Inv ⇐⇒

∃S · feasible(S) ∧ closed(S))

Proof:

(=⇒) By assumption, the set of blocking equations is feasible

for queue q and packet p. Consider the set of equations E
obtained by replacing each disjunction in Block(q.out, p)
by one feasible operand of the disjunction. Let S be the

waiting graph corresponding to E . S is a subgraph from the

waiting graph of q. Since Block(q.out, p) is feasible, S is

feasible as well. Finally, by construction S contains all its

conjunctive neighbors and exactly one disjunctive neighbor for

each disjunctive component. Thus S is a feasible and closed

waiting subgraph.

(⇐=) Assume a feasible and closed subgraph S in the waiting

graph of queue q. Let E be the set of equations corresponding

to S. The set of equations E is a subset of Block(q.out, p) for
some p. We prove that the feasibility of E implies feasibility of

Block(q.out, p). Adding disjunctive operands to a disjunction

somewhere in E can make it infeasible only if the number of

operands is equal to zero. This is not possible since – as S
is closed – E contains at least one disjunctive neighbor for

each component. Adding conjunctive operands can make a

conjunction infeasible, but since S is closed it already contains

all its conjunctive neighbors. The feasibility of E implies the

feasibility of the deadlock equations of q.

Lemmas in Section 4

Lemma 4:

∃x, p · DEADDETECT(x, p, 0, ∅) ⇐⇒
∃S · feasible(S) ∧ closed(S))

Proof: The algorithm reports a deadlock only at line 13.

It keeps at all time track of the number of open edges in

parameter open. As line 13 is only reached when the current

subgraph is closed, i.e., open == 0, and when the linear

program solver has determined feasibility, partial correctness

is trivial to prove. What remains to be proven is termination.

As the algorithm keeps track of visited components, each

component is visited at most twice (once in DEADDETECT

and once in IDLEDETECT). Thus the algorithm terminates.

Relation to Intel’s approach

We have the following assumptions: 1) The network is

livelock free, 2) the network is starvation free, and 3) a blocked

channel implies a blocked packet in some queue.

We first prove a Lemma on draining a configuration. Let σ
be a configuration. Draining σ is defined as:

• Canceling all further injections at the sources;

• Having the sinks consume all packets deterministically;

• Let the network execute until no packet in the network

can be moved, i.e., until ¬c.trdy for all channels c.

Lemma 5: Let σ be a legal and reachable configuration.

Draining σ yields a unique legal and reachable configuration,

denoted with drain(σ).

legal(σ) ∧ reachable(σ) =⇒

legal(drain(σ)) ∧ reachable(drain(σ))

Proof: Any configuration obtained from an execution

starting in a legal and reachable configuration is legal and

reachable. Non-determinism occurs at sources and sinks only.

Since sources do not inject any further packets, and since sinks

are deterministic while draining, no non-determinism occurs.

Draining is a deterministic process and thus it suffices to show

termination to show that it yields a unique configuration. By

Assumption 1 no packet can move around infinitely in the

network. Eventually, all packets will either be permanently

blocked or arrive at a sink. Thus draining terminates.

Lemma 6: There exists a dead channel if and only if there

exists a deadlock configuration:

∃c · dead(c) ⇐⇒ ∃σ · dl(σ)

Proof:

(=⇒) Let c be a dead channel in some execution S. We know

that S |= ♦(c.irdy ∧ �¬c.trdy). From the semantics of ♦,

we can split S in to execution S1 and S2 such that S =
S1S2, S1 is a finite execution, and S2 |= c.irdy ∧ �¬c.trdy.
Let σ′ be the configuration obtained after execution of S1.

Let σ = drain(σ′). In other words, replace execution S2 by

draining. By Lemma 5, σ is legal and reachable. By definition

of draining, σ is stuck: either there are no more packets in

the network in which case the network is stuck trivially, or

all packets are blocked. What remains to be proven is that

σ is non-empty. In execution S2, channel c is permanently

blocked. Execution S2 is replaced by draining. This preserves

the permanent blocking of channel c. Channel c can either be

permanently blocked by a starvation scenario or because of a

local deadlock. By Assumption 2, only the second can occur.

This local deadlock is not resolved by draining, as the packets

participating in this local deadlock are permanently blocked.

Therefore, there is at least one channel that is blocked in σ.
By Assumption 3 there is at least one queue blocked, meaning

that σ is non-empty. As σ is non-empty, legal, reachable, and

stuck, σ is a deadlock configuration.

(⇐=) As there exists a deadlock configuration, there exists a

non-empty queue q which is permanently blocked. Channel

q.out is dead: as queue q is non-empty, the initiator of q.out
is not idle. As the packet in queue q cannot move, the target

of q.out is permanently blocked.

