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We present elastic and inelastic spin-changing cross sections for cold and ultracold NH(X 3�−)
+ NH(X 3�−) collisions, obtained from full quantum scattering calculations on an accurate ab initio
quintet potential-energy surface. Although we consider only collisions in zero field, we focus on
the cross sections relevant for magnetic trapping experiments. It is shown that evaporative cooling
of both fermionic 14NH and bosonic 15NH is likely to be successful for hyperfine states that allow
s-wave collisions. The calculated cross sections are very sensitive to the details of the interaction
potential, due to the presence of (quasi)bound state resonances. The remaining inaccuracy of the
ab initio potential-energy surface therefore gives rise to an uncertainty in the numerical cross-section
values. However, based on a sampling of the uncertainty range of the ab initio calculations, we
conclude that the exact potential is likely to be such that the elastic-to-inelastic cross-section ratio is
sufficiently large to achieve efficient evaporative cooling. This likelihood is only weakly dependent
on the size of the channel basis set used in the scattering calculations. © 2011 American Institute of
Physics. [doi:10.1063/1.3570596]

I. INTRODUCTION

Cold (T < 1 K) and ultracold (T < 1 mK) molecules
offer a wide variety of applications in condensed-
matter physics,1 high-precision spectroscopy,2–4 physical
chemistry,5–9 and quantum computing.10, 11 In the last few
years, techniques have been developed that either form
(ultra-) cold molecules by pairing up precooled atoms, e.g.,
by photoassociation12 or Feshbach association,13 or by cool-
ing the molecules directly. Examples of the latter approach
include buffer-gas cooling14 and Stark deceleration.15

A promising candidate for direct-cooling experiments is
the NH biradical. NH in its electronic X 3�− ground state
has been cooled from room temperature using a helium buffer
gas and trapped in a magnetic field.8, 16–18 Stark deceleration
and electrostatic trapping experiments have been performed
on metastable NH(a 1�), which, in contrast to the X 3�−

ground state, exhibits a linear Stark effect. The decelerated
NH(a 1�) molecules can be converted to the ground state by
excitation of the A 3� ← a 1� transition followed by spon-
taneous emission.19, 20 The resulting NH(X 3�−) molecules
may subsequently be accumulated in a magnetic trap.

Direct-cooling techniques for NH are currently limited to
temperatures of a few hundred mK. Producing NH molecules
in the ultracold regime requires a second-stage cooling mech-
anism, e.g., sympathetic cooling with an ultracold atomic
gas21–25 or evaporative cooling. The latter process relies on
elastic, thermalizing NH + NH collisions as the magnetic trap
depth is gradually reduced. Inelastic spin-changing collisions
lead to immediate trap loss and are therefore unfavorable.

a)Electronic mail: J.M.Hutson@durham.ac.uk.
b)Electronic mail: Gerritg@theochem.ru.nl.

It is generally accepted that, in order to achieve evaporative
cooling, elastic collisions should be much more efficient than
inelastic ones. More specifically, a Monte Carlo study on
evaporative cooling of cesium atoms indicated that the ratio
between elastic and inelastic collision rates should be greater
than 150.26 Although evaporative cooling of NH might work
with a lower ratio, it will be assumed that 150 is also the min-
imum required value for NH + NH collisions.

For two magnetically trapped NH(X 3�−) molecules, the
collision complex is in the low-field seeking |S = 2, MS = 2〉
quintet spin state, with S denoting the total electronic spin and
MS its projection on the magnetic-field axis. Inelastic tran-
sitions may change either the MS quantum number of the
quintet state or the total spin S to produce singlet or triplet
complexes. The S = 0 and 1 dimer spin states are chemically
reactive27–29 and could be of interest in cold controlled chem-
istry experiments.9

A rigorous calculation of elastic and inelastic cross sec-
tions requires a full quantum coupled-channels method. In the
case of NH–NH, however, the strong anisotropy of the inter-
action potentials and the open-shell nature of the monomers
give rise to a very large number of channels, making the calcu-
lation extremely challenging. In a recent study by Tscherbul
et al.30 on the isoelectronic O2(X 3�−

g )–O2(X 3�−
g ) system,

close-coupling calculations were performed that included up
to 2526 channels, yielding cross sections converged to within
10%. These calculations were carried out in a fully decoupled
channel basis to study collisions in the presence of an exter-
nal magnetic field. It was noted, however, that the true O2–O2

interaction potential is likely to be more anisotropic than the
potential used in their work, thus implying that even more
channels would be needed. Other quantum scattering stud-
ies on O2–O2 include those by Avdeenkov and Bohn31 and
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Pérez-Ríos et al.32 In the work of Avdeenkov and Bohn, field-
free collisions were studied using a total angular momentum
representation, thereby reducing the total number of channels
to 836. The rotational basis-set size used in these calcula-
tions was, however, smaller than that used in Ref. 30. Pérez-
Ríos et al. also employed a total angular momentum basis,
but the O2 monomers were treated as closed-shell molecules.
This allowed them to reduce the number of channels
to 300.

To our knowledge, only one theoretical study has been
reported for the NH–NH system. Kajita33 employed the Born
approximation, distorted-wave Born approximation, and a
classical path method to calculate elastic and inelastic cross
sections at energies ranging from 1 μK to 10 K, and found
that evaporative cooling of NH is likely to be feasible. It must
be noted, however, that only the electric dipole–dipole and
magnetic dipole–dipole interactions were considered in these
calculations.

The aim of the present work is to obtain cold
and ultracold NH + NH collision cross sections from
rigorous quantum scattering calculations on an accurate
ab initio quintet potential-energy surface. We include in-
tramolecular spin–spin, spin–rotation, and intermolecular
magnetic dipole–dipole coupling in the dynamics. In addi-
tion, we seek to address the issue of dealing with very large
basis sets in order to converge the scattering results, a prob-
lem that is general for open-shell systems with relatively deep
potential-energy wells. For this purpose, we have employed a
total angular momentum representation to perform the scat-
tering calculations, assuming zero field. Collisions in a mag-
netic field are discussed in a separate publication.34 It will be
shown that, within the uncertainty limits of the interaction po-
tential, even an unconverged basis set can provide meaningful
results.

This paper is organized as follows. In Sec. II, we dis-
cuss the scattering Hamiltonian and channel basis-set func-
tions, followed by the details of the cross-section calculations.
Results are presented in Sec. III A. In Secs. III B and III C,
we provide a comprehensive discussion on the accuracy of
our calculated cross sections. Concluding remarks are given
in Sec. IV.

II. THEORY

A. Hamiltonian and channel basis functions

We consider the case of two colliding NH(3�−)
molecules in the absence of an external field and treat the
monomers as rigid rotors. We use a space-fixed coordinate
frame to describe the collision complex. The relevant Jacobi
coordinates are the intermolecular vector R that connects the
centers of mass of molecules A and B, and the polar an-
gles ωi = (θi , φi ) of the two monomers (i = A, B). We will
neglect hyperfine coupling and assume that both monomers
are in their nuclear-spin stretched states |I, MI = I 〉, with
I = IN + IH denoting the maximum total nuclear spin and
MI its laboratory-frame projection. For fermionic 14NH, the
maximum nuclear spin is I = 3/2 and for bosonic 15NH we
have I = 1.

The scattering Hamiltonian for NH–NH can be written as

Ĥ = − ¯2

2μR

∂2

∂ R2
R + L̂2

2μR2
+ VS(R, ωA, ωB)

+ Vmagn.dip(R, ŜA, ŜB) + ĤA + ĤB, (1)

where μ is the reduced mass of the complex, R is the length of
the vector R, L̂2 is the angular momentum operator associated
with rotation of R, VS(R, ωA, ωB) is the potential-energy sur-
face for total spin S, Vmagn.dip(R, ŜA, ŜB) is the intermolecular
magnetic dipole interaction between the two triplet spins, and
ĤA and ĤB are the Hamiltonians of the individual monomers.
The magnetic dipole term is given by

Vmagn.dip(R, ŜA, ŜB) = −
√

6g2
Sμ

2
B

α2

R3

∑
q

(−1)qC2,−q (
)

× [ŜA ⊗ ŜB](2)
q , (2)

where gS ≈ 2.0023 is the electron g-factor, μB is the Bohr
magneton, α is the fine-structure constant, C2,−q is a Racah-
normalized spherical harmonic, 
 = (�,�) describes the
orientation of R in the space-fixed frame, and the factor
in square brackets represents the tensorial product of the
monomer spin operators ŜA and ŜB . The monomer opera-
tors Ĥi each contain rotation, spin–rotation, and intramolecu-
lar spin–spin terms,

Ĥi = B0 N̂ 2
i + γ N̂ i · Ŝi + 2

3

√
6λSS

∑
q

(−1)qC2,−q (ωi )

× [Ŝi ⊗ Ŝi ]
(2)
q , (3)

with N̂i denoting the rotational angular momentum oper-
ator of monomer i . For brevity, we will denote the in-
tramolecular spin–spin operator as V̂ (i)

SS . The numerical values
for the rotational, spin–rotation, and spin–spin constants are
B0 = 16.343 275 cm−1, γ = −0.054 86 cm−1, and λSS

= 0.919 89 cm−1 for 14NH (Ref. 35), and, by scaling with
the isotope mass (see, e.g., p. 239 of Ref. 36), we obtain
B0 = 16.270 340 cm−1, γ = −0.054 60 cm−1, and λSS

= 0.919 89 cm−1 for 15NH.
For the interaction potential VS(R, ωA, ωB), we take the

S = 2 ab initio surface of Ref. 28. This spin state cor-
responds to the case where both molecules are in their
magnetically trapped (spin-stretched) states. Although the po-
tential is based on the Jacobi coordinates for 14NH–14NH, we
use the same surface for the 15NH–15NH isotope. This ap-
proximation is very reasonable since the center of mass of
15NH is shifted by only 0.008 a0 with respect to that of 14NH.
We have verified that, at the equilibrium distance of the com-
plex, this would give a maximum error of 2.2% in the 15NH–
15NH potential, which falls within the uncertainty range of the
ab initio data. Following Ref. 37, we expand the quintet po-
tential in terms of spherical harmonics YL ,M of degree L and
order M ,

V (R, ωA, ωB) =
∑

L A,L B ,L AB

υL A,L B ,L AB (R)

× AL A,L B ,L AB (
,ωA, ωB), (4)
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AL A,L B ,L AB (
,ωA, ωB)=
∑

MA,MB ,MAB

〈L A MA L B MB |L AB MAB〉

× YL A,MA (ωA)YL B ,MB (ωB)Y
∗
L AB ,MAB

(
),

(5)

where 〈L A MA L B MB |L AB MAB〉 is a Clebsch–Gordan coef-
ficient and the superscript * denotes complex conjugation.
The subscript S = 2 has been omitted for brevity. It should
be noted that the angular functions of Eq. (5) differ by a
factor of ζ = (−1)L A−L B (4π )−3/2(2L AB + 1)[(2L A + 1)
(2L B + 1)]1/2 from the functions used in Ref. 28, i.e., the
υL A,L B ,L AB (R) expansion coefficients of Ref. 28 must be
multiplied by ζ to obtain the potential in the form of Eq. (4).

In the absence of an external field, both the total angular
momentum J and its space-fixed projection M are rigorously
conserved. We therefore expand the wave function in a total
angular momentum basis,

�J ,M(R,
, ωA, ωB, σA, σB)

= 1

R

∑
NA,NB ,N ,SA,SB ,S,J,L

χ
J ,M
NA,NB ,N ,SA,SB ,S,J,L (R)

×ψ
J ,M
NA,NB ,N ,SA,SB ,S,J,L (
,ωA, ωB, σA, σB), (6)

where σA and σB refer to the electronic spin coordinates of
molecules A and B, respectively. Here, NA and NB denote
the rotational quantum numbers of the two monomers, N is
the coupled rotational quantum number of the complex, SA

and SB are the monomer spin quantum numbers, which are
coupled into total spin S, J is the angular momentum quan-
tum number arising from the coupling of N and S, and L
denotes the partial-wave angular momentum. The coupled an-
gular momentum basis functions are defined as

ψ
J ,M
NA,NB ,N ,SA,SB ,S,J,L (
,ωA, ωB, σA, σB)

=
∑

MJ ,ML

∑
MN ,MS

∑
MSA ,MSB

∑
MNA ,MNB

YNA,MNA
(ωA)YNB ,MNB

(ωB)

×YL ,ML (
)τSA,MSA
(σA)τSB ,MSB

(σB)

×〈NA MNA NB MNB |N MN 〉〈SA MSA SB MSB |SMS〉
×〈N MN SMS|J MJ 〉〈J MJ L ML |JM〉, (7)

where τSA,MSA
and τSB ,MSB

are spinor wave functions. Here the
quantum numbers MNi , MSi , MN , MS , MJ , and ML denote the
projections of Ni , Si , N , S, J , and L onto the magnetic-field
axis. We will restrict the basis such that NA and NB range
from 0 to Nmax and L from 0 to Lmax. Note that the scattering
calculations in this basis may also be performed for a single
dimer spin state S. As detailed in Sect. III B, we will exploit
this feature to investigate the validity of describing all three
dimer spin states by the S = 2 potential-energy surface.

Since target and projectile are identical, we can sym-
metrize the wave function with respect to the permutation
operator P̂AB . This yields the following normalized basis
functions,

φ
η,J ,M
NA,NB ,N ,SA,SB ,S,J,L

= 1

[2(1 + δNA NB δSA SB )]1/2

[
ψ

J ,M
NA,NB ,N ,SA,SB ,S,J,L

+ η(−1)L+NA+NB−N+SA+SB−Sψ
J ,M
NB ,NA,N ,SB ,SA,S,J,L

]
. (8)

Here, η = +1 corresponds to composite bosons and η = −1
corresponds to composite fermions, assuming that the
molecules are in their nuclear-spin stretched states. To obtain
a linearly independent basis, the index pair (NA, NB) must be
restricted such that NA ≥ NB .37 Finally, the basis functions
of Eq. (8) are also eigenfunctions of the inversion operator,
with eigenvalues ε = (−1)NA+NB+L . Thus, the Hamiltonian
in the symmetry-adapted basis set consists of four blocks,
each block labeled by η and the parity ε. It must be noted,
however, that the wave function of Eq. (8) vanishes for
(η = +1, ε = −1) and (η = −1, ε = +1) if the molecules
are in the magnetically trapped ground state with NA

= NB = N = 0 and S = 2. We therefore only need to
consider the parity case ε = +1 for η = +1 and ε = −1 for
η = −1.

The matrix elements of the Hamiltonian in the symmetry-
adapted basis [Eq. (8)] can be readily obtained from the
matrix elements in the “primitive” basis ψ

J ,M
NA,NB ,N ,SA,SB ,S,J,L .

These are given in the Appendix.

B. S-matrices and cross sections

The close-coupling equations are solved for each J and
each symmetry type (η, ε) using the hybrid log-derivative
method of Alexander and Manolopoulos.38 This algorithm
uses a fixed-step-size log-derivative propagator in the short
range and a variable-step-size Airy propagator in the long
range. The solutions are then matched to asymptotic bound-
ary conditions to obtain the scattering S-matrices. Since we
consider only the field-free case, the results are independent
of the total angular momentum projection M.

Although we assume zero magnetic field in our cal-
culations, we are ultimately interested in the elastic and
inelastic spin-changing cross sections for magnetically
trapped NH. It is therefore necessary to transform the
S-matrices to a channel product eigenbasis of the form
|(N̄A, SA)JA, MJA 〉|(N̄B, SB)JB, MJB 〉|L , ML〉, where Ji and
MJi arise from the angular momentum coupling of N̄i and Si .
Here we have used the notation N̄i instead of Ni , because Ni

is strictly not a good quantum number. This is due to the in-
tramolecular spin–spin coupling, which mixes states with Ni

and Ni ± 2. However, the mixing is quite weak and N̄i corre-
sponds almost exactly to Ni . A symmetry-adapted version of
the channel eigenbasis is given by

φ
η

N̄A,SA,JA,MJA ,N̄B ,SB ,JB ,MJB ,L ,ML

= 1

[2(1 + δN̄A N̄B
δSA SB δJA JB δMJA MJB

)]1/2

× [|(N̄A, SA)JA, MJA 〉|(N̄B, SB)JB, MJB 〉|L , ML〉
+ η(−1)L |(N̄B, SB)JB, MJB 〉|(N̄A, SA)JA, MJA 〉|L , ML〉].

(9)

It should be noted that the total angular momentum J is not a
good quantum number here, but its laboratory-frame projec-
tion M = MJA + MJB + ML is conserved.

The basis transformation from Eq. (8) to Eq. (9) can-
not be performed analytically, because Ni , N , and S are only
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approximately good quantum numbers. We have therefore de-
veloped a numerical scheme in which the channel eigenfunc-
tions of Eq. (9) are obtained as the simultaneous eigenvectors
of the operators {L̂2, ĤA + ĤB, Ĵz A + ĴzB , Ĵ 2

z A
+ Ĵ 2

zB
}. Note

that these operators all commute with each other and with
P̂AB . The numerical procedure works as follows. We start by
diagonalizing the first operator, e.g., the matrix representa-
tion of the L̂2 operator, constructed in the basis of Eq. (8).
In each degenerate subspace of L̂2, we set up the matrix
of the next operator and diagonalize it. This process is re-
peated for the remaining operators until all eigenvectors are
unique. We note that the operator Ĵ 2

z A
+ Ĵ 2

zB
is only required

to distinguish between states with coincidental degeneracies
in MJA + MJB , e.g., the states |φη

0,1,1,0,0,1,1,0,0,0〉 with MJA

= MJB = 0 and |φη

0,1,1,1,0,1,1,−1,0,0〉 with MJA = 1, MJB

= −1. Any remaining degeneracies arising from ĤA + ĤB

may be lifted by diagonalizing the operator Ĥ 2
A + Ĥ 2

B , but
such degeneracies occur only for higher energies. In the cold
and ultracold regime, these higher-energy channels are closed
and the eigenvalues of L̂2, ĤA + ĤB , Ĵz A + ĴzB , and Ĵ 2

z A

+ Ĵ 2
zB

are sufficient to identify all relevant quantum num-
bers uniquely. It must be noted that, since Ĵz A and ĴzB

do not separately commute with P̂AB , the matrices of Ĵz A

+ ĴzB and Ĵ 2
z A

+ Ĵ 2
zB

are not trivially constructed in the ba-
sis of Eq. (8). We obtained these matrices by first evalu-
ating the Ĵzi and Ĵ 2

zi
operators in a fully decoupled basis

of the form |NA, MNA , SA, MSA , NB, MNB , SB, MSB , L , ML〉.
Both Ĵzi and Ĵ 2

zi
are diagonal in this basis, with diagonal el-

ements MJi = MNi + MSi and M2
Ji

, respectively. We subse-
quently performed an analytical transformation to the coupled
basis of Eq. (7) using the appropriate Clebsch–Gordan coef-
ficients. Finally, we used a rectangular transformation matrix
for Ĵz A + ĴzB and Ĵ 2

z A
+ Ĵ 2

zB
to account for the symmetry adap-

tation, i.e., to transform the matrices to the basis of Eq. (8).
The evaporative cooling rate for cold magnetically

trapped NH molecules, with quantum numbers N̄A = N̄B

= 0, JA = JB = 1, and MJA = MJB = 1, is determined by the
ratio between elastic and MJ -changing cross sections. The
cross-section expression for indistinguishable molecules at
total energy E is30

σ
η

γAγB→γ ′
Aγ ′

B
(E) = π (1 + δγAγB )

k2
γAγB

×
∑
L ,ML

∑
L ′,M ′

L

∣∣∣T η

γAγB L ML ;γ ′
Aγ ′

B L ′ M ′
L
(E)

∣∣∣2
, (10)

where we have introduced the shorthand notation
γAγB to label the symmetrized monomer states, i.e.,
φ

η

N̄A,SA,JA,MJA ,N̄B ,SB ,JB ,MJB ,L ,ML
≡ |γAγB〉|L ML〉, and kγAγB

is the length of the wave vector for the initial collision
channel |γAγB〉. The T -matrix elements are defined in terms
of the transformed S-matrix elements as T η

γAγB L ML ;γ ′
Aγ ′

B L ′ M ′
L

= δγAγ ′
A
δγBγ ′

B
δL L ′δML M ′

L
− Sη

γAγB L ML ;γ ′
Aγ ′

B L ′ M ′
L
. Finally, we note

that the summations over ML and M ′
L in Eq. (10) may also

be understood as a sum over all possible M values, since
M = MJA + MJB + ML = M ′

JA
+ M ′

JB
+ M ′

L .

C. Computational details

The scattering calculations were performed using a mod-
ified version of the MOLSCAT package39, 40 in which the
coupled basis set of Eq. (6) was implemented. The radial
grid ranged from 4.5 to 500 a0, with the Airy propaga-
tion starting at 15 a0. The step size for the log-derivative
propagator was 0.02 a0. The basis set included all func-
tions up to NA = NB = 5 and L = 6. The expansion of the
quintet potential was truncated at L A = L B = 6. As men-
tioned in Sec. II A, the chemically reactive singlet and
triplet interaction potentials were excluded from the calcula-
tions, and were replaced by the nonreactive S = 2 surface.
Thus, we assumed that all three spin states are described
by the same potential-energy surface. In order to study the
role of the S = 0 and 1 states under this assumption, we
also performed scattering calculations for the quintet state
only.

At each collision energy, the scattering S-matrices were
accumulated for all relevant J values and subsequently trans-
formed to the channel eigenbasis of Eq. (9) for all possi-
ble M values. The basis transformation was carried out in
MATLAB.41 The total elastic and inelastic cross sections
were then obtained using Eq. (10).

III. RESULTS AND DISCUSSION

A. Cross sections

The elastic and MJ -changing cross sections for mag-
netically trapped 14NH and 15NH are shown in Fig. 1.
At low collision energies, the cross sections are domi-
nated by incoming s-waves for bosonic 15NH and by p-
waves for fermionic 14NH. The observed energy dependence
is consistent with Wigner’s threshold law for isoenergetic
processes:42, 43

σ ∝ E L+L ′
, (11)

10−8

10−6 10−4 10−2 10010−8

10−12

10−16

10−20

10−24

E (K)

σ 
(c

m
2 )

 

15NH, elastic
15NH, inelastic
14NH, elastic
14NH, inelastic

FIG. 1. Elastic and inelastic MJ -changing cross sections for 14NH + 14NH
and 15NH + 15NH collisions, assuming that all molecules are in their mag-
netically trappable and nuclear-spin stretched state.

Downloaded 01 Jun 2012 to 131.174.17.23. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



124309-5 Cold and ultracold NH–NH collisions J. Chem. Phys. 134, 124309 (2011)

where L and L ′ denote the partial waves in the incoming and
outgoing channels, respectively. For elastic 15NH + 15NH col-
lisions, we have L = L ′ = 0 and the cross section is constant
as a function of E . For inelastic collisions, the change in MJA

or MJB must be accompanied by a change in the ML quantum
number, which follows from the conservation of M. Since the
parity (−1)NA+NB+L is also rigorously conserved, it is easily
verified [see Eq. (8)] that the dominant inelastic cross sec-
tion for 15NH (L = 0) corresponds to the L ′ = 2 outgoing
channel, and consequently behaves as E2. For fermionic 14NH
+ 14NH collisions, both the elastic and inelastic channels are
dominated by L = L ′ = 1 [see Eq. (8)], yielding the observed
E2 behavior. We also point out that, in the presence of a mag-
netic field, all inelastic transitions would be exothermic and
the corresponding cross section would behave as E L−1/2.42

This leads to a different elastic-to-inelastic collision ratio than
in the field-free case. It is shown in a separate publication that
the ratio for 15NH + 15NH collisions is still very favorable
when the magnetic field is explicitly included.34

We find that 15NH is more suitable for evaporative cool-
ing than 14NH, in agreement with the findings of Kajita.33

More specifically, we see in Fig. 1 that the elastic-to-inelastic
ratio for 15NH + 15NH far exceeds the critical value of 150
for all energies below E ≈ 10−2 K, while for 14NH + 14NH
the ratio is orders of magnitude smaller and is close to unity
at collision energies below 10−4 K. This result is essen-
tially a consequence of the Pauli principle, which forbids
s-wave scattering for 14NH + 14NH. We emphasize that our
calculations were performed under the assumption that both
molecules are in their nuclear-spin stretched states, giving
rise to a symmetric nuclear-spin wave function. This leads to
the restriction that η = +1 (ε = +1) for 15NH and η = −1
(ε = −1) for 14NH. If, however, the two monomers were in
different nuclear-spin states, the corresponding wave function
may also be antisymmetric under exchange and both values
of η would be allowed. In that case, the total cross section is
given by a weighted sum over the cross sections σ+1 and σ−1,

σγAγB→γ ′
Aγ ′

B
(E) = W +σ+1

γAγB→γ ′
Aγ ′

B
(E) + W −σ−1

γAγB→γ ′
Aγ ′

B
(E),

(12)

with W + and W − denoting the relative spin-statistical
weights. The weights are W + = 5/12 and W − = 7/12 for
fermionic 14NH and 3/4 and 1/4 for bosonic 15NH. Fig-
ure 2 shows the results for 14NH–14NH, assuming a mix-
ture of different nuclear-spin states (neglecting the mixing
of MS due to hyperfine coupling). The inclusion of even-L
partial waves (η = +1) strongly enhances the efficiency of
evaporative cooling for 14NH, in particular due to the s-wave
elastic contribution. For 15NH–15NH, the addition of odd-L
partial wave contributions (η = −1) will probably lead to a
slightly lower elastic-to-inelastic ratio. This is because the
odd-L elastic cross section, which vanishes as E2, is almost
negligible compared to the s-wave elastic cross section in
the ultracold limit. The odd-L inelastic contribution, on the
other hand, exhibits the same threshold behavior as the even-
L inelastic cross section, and could easily increase the total
inelastic loss by a factor of ∼2. Hence, we conclude that, in
order to achieve efficient evaporative cooling, bosonic 15NH

Elastic
Inelastic

10−10

10−6 10−4 10−2 10010−8

10−14

10−18

10−22

10−26

E (K)

σ 
(c

m
2 )

FIG. 2. Elastic and inelastic MJ -changing cross sections for magnetically
trapped 14NH, assuming a statistical mixture of nuclear-spin states.

should be prepared in a single nuclear-spin state, while for
14NH the molecules should be in a mixture of hyperfine states.

Aside from symmetry arguments, the difference between
15NH–15NH and 14NH–14NH is relatively small. The rota-
tional and spin–rotation constants differ by only 0.45% and
the reduced masses of the collision complex are 6.6% differ-
ent. Since 15NH is more advantageous for evaporative cool-
ing, we will only consider collisions between 15NH molecules
in the remainder of this work. Again it will be assumed that
the monomers are in identical hyperfine states, so that only
the η = +1 (ε = +1) symmetry case needs to be examined.

State-to-state inelastic cross sections for magnetically
trapped 15NH (MJA = 1, MJB = 1) are shown in Fig. 3. We
find that transitions to the states with |MJA = 1, MJB = 0〉,
|MJA = 1, MJB = −1〉, and |MJA = 0, MJB = 0〉 are domi-
nant in the ultracold regime. It can also be seen that these
cross sections follow an E2 dependence below ∼10−4 K.
The inelastic cross sections for |MJA = 0, MJB = −1〉 and
|MJA = −1, MJB = −1〉 exhibit E4 behavior at low colli-

σ 
in

el
as

tic
 (

cm
2 )

⎯| +1, 0 
| +1, −1 〉 
| 0, 0 〉 
| 0, −1 〉 
| −1, −1 〉 

10−6 10−4 10−2 10010−8

10−12

10−18

10−24

10−30

10−36

E (K)

FIG. 3. State-to-state inelastic cross sections for magnetically trapped 15NH
as a function of collision energy. The final states are labeled by |MJA , MJB 〉.
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sion energies. These results are consistent with the threshold
laws of Krems and Dalgarno for collisional reorientation of
angular momentum in the absence of an external field.43 Al-
though these laws were derived for collisions of paramag-
netic species with structureless targets, they also apply to
15NH + 15NH collisions:

σJ,MJ →J,MJ ±�MJ ∝ E�MJ (13)

if �MJ is even and

σJ,MJ →J,MJ ±�MJ ∝ E�MJ +1 (14)

if �MJ is odd. Here, �MJ is defined as the change in
MJA + MJB . It also follows from Eq. (13) that the elastic cross
section (�MJ = 0) is constant at low energies, in agreement
with Eq. (11).

B. Contributions from singlet and triplet states

Throughout this paper, we have assumed that all three
spin states of the NH–NH complex are described by a sin-
gle nonreactive potential-energy surface, namely, the S = 2
surface. The S = 2 state corresponds to the case where both
monomers are magnetically trapped, and is therefore the most
relevant spin state in our present study. It is, however, not
a priori clear how the S = 0 and 1 states can influence the
trap loss probability, and how well they can be described by
the quintet surface.

We must first point out that, even at infinite separation, S
is strictly not a good quantum number due to the intramolecu-
lar spin–spin coupling. However, the coupling between differ-
ent spin states is relatively weak and we may therefore treat S
as nearly exact. Specifically, for a collision complex of two ro-
tational ground state molecules in their nuclear-spin stretched
states, the initial state with MJA = MJB = 1 corresponds al-
most exclusively (99.98%) to the quintet state.

In order to investigate the contributions from the S = 0
and 1 states, we have performed scattering calculations with
all singlet and triplet functions removed from the basis set.
The results are shown in Fig. 4 as a function of energy. The
cross sections for the full basis set, i.e., with all three spin
states included, are also plotted for comparison. It can be seen
that exclusion of the S = 0 and 1 states has a rather small
effect on the cross section, suggesting that most of the trap
loss takes place within the quintet state. Thus, the singlet and
triplet states play a minor role in the collision dynamics when
described by the nonreactive S = 2 potential.

If the S = 0 and 1 states would be described by their true,
reactive surfaces, it can be expected that any transition to the
singlet or triplet state leads to chemical reaction and conse-
quent trap loss. In that case, however, the potentials are no
longer degenerate at short range and the probability for hop-
ping from the quintet surface to another state is most proba-
bly decreased due to the energy gap law. That is, inclusion of
the reactive S = 0 and 1 surfaces will probably not lead to a
larger inelastic cross section for nuclear-spin-stretched states,
and our assumption of including only the nonreactive S = 2
surface is very reasonable. In this respect, we may also view
the MJ -changing cross sections presented in Fig. 4 as approx-
imate upper bounds. Nevertheless, it must be noted that the

 

Elastic, S=2 only
Inelastic, S=2 only
Elastic, all S
Inelastic, all S
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FIG. 4. Elastic and inelastic MJ -changing cross sections for magnetically
trapped 15NH obtained from scattering calculations with only the quintet state
included in the basis. The cross sections calculated with all three spin states
included (all S) are shown for comparison.

relatively deep wells in the reactive potentials will give rise
to a large number of bound states, which in turn may cause
strong resonances in the cross sections. In order to verify these
assumptions, we plan to perform reactive quantum scattering
calculations for NH + NH with all three interaction potentials
included.

C. Sensitivity to potential and basis-set size

In this section we address two interrelated topics, namely,
the sensitivity to the potential and the dependence on the an-
gular basis-set size. It is well established that low-energy scat-
tering depends strongly on the presence of bound and quasi-
bound states near the dissociation threshold. Such states can
give rise to scattering resonances that may enhance the colli-
sion cross section by several orders of magnitude. The ener-
gies of these (quasi)bound states are highly sensitive to the de-
tails of the potential-energy surface, and hence they are very
difficult to predict from first principles. Even a state-of-the-art
ab initio potential cannot reliably predict whether a particu-
lar near-dissociation state lies above or below the threshold.
This is particularly true for systems with multiple degrees of
freedom and deep potential wells, for which the density of
states is relatively high. Thus, in order to assess the accuracy
of the cross sections, we must carefully take into account the
effect of uncertainties in the potential. In a related manner,
we also consider the effect of using different channel basis-
set sizes in the scattering calculations. The size of the angular
basis set can influence the energies of the (quasi)bound states,
which in turn can lead to a different resonance structure. It
will be demonstrated, however, that the use of a reduced basis
set leads only to a shift in the resonance positions, and does
not significantly alter the general resonance pattern.

We first consider the sensitivity of the calculated cross
sections to the potential-energy surface. Our potential has
been obtained from state-of-the-art ab initio calculations, and
we estimate that it differs from the exact potential by at most
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FIG. 5. Elastic and inelastic MJ -changing cross sections for magnetically
trapped 15NH as a function of the scaling parameter λ, calculated at collision
energies of 10−6, 10−4, and 10−3 K. The elastic cross sections for 10−4 K
are the same as for 10−6 K.

a few percent. For practical reasons, we have studied the po-
tential dependence indirectly by performing scattering calcu-
lations as a function of the reduced mass μ. Since scaling
the reduced mass by a factor of λ (μscaled = λμ) is almost
equivalent to scaling the entire interaction potential by λ,24

this provides a stringent test for the sensitivity to the poten-
tial. The true potential does not necessarily differ from our
ab initio surface by only a constant factor, but scaling by
λ (0.9 ≤ λ ≤ 1.1) amply samples the range of possibilities
within which the exact potential is expected to lie.

Figure 5 shows the cross sections as a function of λ at col-
lision energies of 10−6, 10−4, and 10−3 K. It can be seen that
both the elastic and inelastic cross sections change by several
orders of magnitude as a function of λ, but they vary about a
certain background value. For instance, the elastic cross sec-
tions fluctuate around ∼10−12 cm2 for all three collision en-
ergies. The background values for the inelastic cross sections
increase with E2 in the ultracold regime, consistent with the
results of Fig. 1 and the threshold laws discussed in Sec. III A.
The deviations from the background values are due to scatter-
ing resonances, which arise from NH–NH states that change
from bound to quasibound at the |MJA = 1, MJB = 1〉 thresh-
old. Such resonance features are to be expected as a function
of λ, since a scaling of the potential, or in fact any modifica-
tion of the potential-energy surface, will cause a shift in the
bound-state energies. For 10−6, 10−4, and 10−3 K, the reso-
nances are located around the same values of λ, and hence the
λ-dependent resonance structure would not be averaged out
in a thermal (Maxwell–Boltzmann) distribution at tempera-
tures below 1 mK. That is, thermally averaged rate constants
are likely to show a similar sensitivity to the potential as the
calculated cross sections.

Let us now consider the elastic-to-inelastic cross-section
ratios as a function of λ. These are shown in Fig. 6 for
E = 10−6, 10−4, and 10−3 K. For clarity, we have also in-
dicated the critical ratio of 150 that is required for efficient
evaporative cooling. As can be seen, the calculated ratios ex-
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FIG. 6. Elastic-to-inelastic cross-section ratios for magnetically trapped
15NH as a function of the scaling parameter λ, calculated at collision en-
ergies of 10−6, 10−4, and 10−3 K. The horizontal black line indicates the
critical value of 150 that is required for efficient evaporative cooling.

ceed 150 for almost all values of λ and all energies consid-
ered, except when λ is close to resonance. This demonstrates
that evaporative cooling of NH is feasible at energies below
1 mK for most of the λ-values considered. Although we can-
not predict which value of λ corresponds most closely to the
exact potential, we do expect that the sampled range of λ is
indicative of the range within which the exact potential lies,
and hence we conclude that the probability for successful
evaporative cooling is relatively large. That is, the true poten-
tial is very likely to be such that the elastic-to-inelastic ratio
exceeds 150.

The λ-scaling approach is also used to investigate the
influence of the angular basis-set size on the scattering re-
sults. First we point out that the strong anisotropy of the po-
tential and the large reduced mass of NH–NH require rela-
tively high values of the basis-set parameters Nmax and Lmax.
In addition, the triplet spins on the monomers increase the
channel basis-set size by a factor of 9, making it highly chal-
lenging to achieve full basis-set convergence. Figure 7 shows
the cross sections as a function of λ for different values of
Nmax and Lmax at a collision energy of 10−6 K. The maxi-
mum number of channels in these calculations ranged from
937 for Nmax = 4 and Lmax = 6 (J = 4) up to 2382 for
Nmax = 6 and Lmax = 6 (J = 5). It can be seen that the cross
sections all vary by several orders of magnitude as a function
of λ, and for a given value of λ the four basis sets can yield
very different numerical results. However, the different cross
sections vary about the same background values and the reso-
nant features have similar widths for all four basis sets. Thus,
a change in Nmax or Lmax may cause a shift in the positions of
the resonances, but the overall pattern is virtually unaffected.
The estimated probability for successful evaporative cooling,
i.e., the probability that the exact potential is such that the
elastic-to-inelastic cross-section ratio exceeds 150, is there-
fore similar for all four basis sets. This can also be understood
by considering that a change in the basis set only shifts the
bound-state energy levels, similar to the effect of scaling the
potential.
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FIG. 7. Elastic and inelastic MJ -changing cross sections for magnetically
trapped 15NH as a function of λ, calculated for different basis sets at a col-
lision energy of 10−6 K. Solid lines correspond to elastic cross sections and
dashed lines correspond to inelastic cross sections. Different colors represent
different basis sets.

The results of Fig. 7 demonstrate that the cross sections
are almost, but not fully, converged with respect to Nmax and
Lmax. Using a larger basis set is infeasible at present, given
the available computer power. A larger basis set would also
require additional terms in the expansion of the potential
anisotropy [Eq. (4)], which would require much larger mem-
ory. Moreover, taking into account the uncertainty in the po-
tential, even a fully converged basis set would not give really
reliable numerical values due to the presence of (quasi)bound
state resonances. Since the exact form of the potential, and
thus the precise locations of the resonances, are still unknown,
the calculated cross sections are subject to an inherent de-
gree of uncertainty that cannot be reduced by the use of a
fully converged basis set. In this sense, full basis-set con-
vergence will not necessarily yield a more accurate predic-
tion of the true cross sections. On the other hand, the proba-
bility for successful evaporative cooling can be reliably pre-
dicted using an incompletely converged basis set, and hence
we conclude that, even if full basis-set convergence could be
achieved, this would not significantly alter our main quali-
tative results. We emphasize, however, that it is crucial to
test the sensitivity to the potential in order to assess the ac-
curacy of the calculated cross sections. As a final point, we
note that the uncertainty limits of the potential could, in prin-
ciple, be greatly reduced by measuring the cross sections
experimentally.

IV. CONCLUSIONS

We have carried out elastic and inelastic quantum scat-
tering calculations on a state-of-the-art ab initio potential to
study field-free NH + NH collisions at low and ultralow tem-
peratures. The results indicate that, when the molecules are
prepared in their nuclear-spin stretched states, bosonic 15NH
is more suitable for evaporative cooling than fermionic 14NH.
This is a direct consequence of the Pauli principle, which for-
bids s-wave scattering for two identical fermions. The 14NH

isotope might also be successfully cooled, however, when the
monomers are in a mixture of different nuclear-spin states.

We have assumed that all three spin states of the
NH–NH complex are described by the nonreactive quintet
surface. This approximation is shown to be reasonable, al-
though a full reactive scattering calculation would be required
to investigate the precise role of the chemically active singlet
and triplet states.

The collision cross sections are sensitive to the details
of the interaction potential because of the presence of quasi-
bound states that cause scattering resonances. Since the ex-
act interaction potential is unknown, this gives rise to a de-
gree of uncertainty in the numerical cross sections. However,
a sampling of the range of possibilities indicates that the exact
potential is very likely to be such that the elastic-to-inelastic
cross-section ratio is favorable for evaporative cooling. This
result is only weakly dependent on the size of the channel ba-
sis set. In particular, the effect of using a reduced basis set
is very similar to a scaling of the potential within its uncer-
tainty. We conclude that even without full basis-set conver-
gence, which is extremely difficult to achieve for systems such
as NH–NH, we can provide valuable insight into the feasibil-
ity of evaporative cooling. This also offers hope for the the-
oretical treatment of other challenging open-shell molecule
+ molecule systems.
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APPENDIX: MATRIX ELEMENTS

In this Appendix, we present the matrix elements
of the scattering Hamiltonian in the “primitive” basis
ψ

J ,M
NA,NB ,N ,SA,SB ,S,J,L . The matrix elements in the symmetry-

adapted basis can be obtained using Eq. (8). For the angular
functions of the potential we have

〈ψJ ,M
NA,NB ,N ,SA,SB ,S,J,L |AL A,L B ,L AB |ψJ ,M

N ′
A,N ′

B ,N ′,SA,SB ,S′,J ′,L ′ 〉

= δSS′

(
1

4π

)3/2

(−1)NA+NB+N+S+L AB+J [L AB]

×
√

[L A][L B][NA][N ′
A][NB][N ′

B][N ][N ′][L][L ′][J ][J ′]

×
(

NA L A N ′
A

0 0 0

)(
NB L B N ′

B
0 0 0

)(
L L AB L ′

0 0 0

)

×
{

J J ′ L AB

L ′ L J

} {
N ′ N L AB

J J ′ S

}⎧⎨
⎩

NA N ′
A L A

NB N ′
B L B

N N ′ L AB

⎫⎬
⎭ , (A1)

with the factors in large round brackets denoting Wigner 3 j
symbols, the factors in curly brackets denoting 6 j and 9 j
symbols, and [Q] = (2Q + 1). The intermolecular magnetic
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dipole term is given by

〈ψJ ,M
NA,NB ,N ,SA,SB ,S,J,L |Vmagn.dip|ψJ ,M

N ′
A,N ′

B ,N ′,SA,SB ,S′,J ′,L ′ 〉

= −δNA N ′
A
δNB N ′

B
δN N ′

√
30g2

Sμ
2
B

α2

R3
(−1)N+S′+J+J ′+J

×
√

SA(SA + 1)SB(SB + 1)[SA][SB][S][S′][J ][J ′][L][L ′]

×
(

L 2 L ′

0 0 0

) {
J J ′ 2
L ′ L J

} {
J ′ J 2
S S′ N

} ⎧⎨
⎩

SA SA 1
SB SB 1
S S′ 2

⎫⎬
⎭ . (A2)

The rotation operators for the two monomers (i = A, B) are
completely diagonal in the angular basis,

〈ψJ ,M
NA,NB ,N ,SA,SB ,S,J,L |B0 N̂ 2

i |ψJ ,M
N ′

A,N ′
B ,N ′,SA,SB ,S′,J ′,L ′ 〉

= δNA N ′
A
δNB N ′

B
δN N ′δSS′δJ J ′δL L ′ B0 Ni (Ni + 1). (A3)

For the spin–rotation coupling terms we find

〈ψJ ,M
NA,NB ,N ,SA,SB ,S,J,L |γ N̂ A · ŜA|ψJ ,M

N ′
A,N ′

B ,N ′,SA,SB ,S′,J ′,L ′ 〉
= δNA N ′

A
δNB N ′

B
δJ J ′δL L ′γ (−1)NA+NB+SA+SB+S+S′+J

×
√

NA(NA + 1)SA(SA + 1)[NA][SA][N ][N ′][S][S′]

×
{

NA NA 1
N N ′ NB

}{
SA SA 1
S S′ SB

} {
N N ′ 1
S′ S J

}
, (A4)

〈ψJ ,M
NA,NB ,N ,SA,SB ,S,J,L |γ N̂ B · ŜB |ψJ ,M

N ′
A,N ′

B ,N ′,SA,SB ,S′,J ′,L ′ 〉
= δNA N ′

A
δNB N ′

B
δJ J ′δL L ′γ (−1)NA+NB+N+N ′+SA+SB+J

×
√

NB(NB + 1)SB(SB + 1)[NB][SB][N ][N ′][S][S′]

×
{

N ′ N 1
NB NB NA

}{
S′ S 1
SB SB SA

}{
N N ′ 1
S′ S J

}
, (A5)

and, finally, for the intramolecular spin–spin operators V̂ (i)
SS we

have

〈ψJ ,M
NA,NB ,N ,SA,SB ,S,J,L |V̂ (A)

SS |ψJ ,M
N ′

A,N ′
B ,N ′,SA,SB ,S′,J ′,L ′ 〉

= δNB N ′
B
δJ J ′δL L ′

2

3

√
30λSS(−1)NB+SA+SB+S+S′+J SA(SA + 1)

×(2SA + 1)
√

[NA][N ′
A][N ][N ′][S][S′]

(
NA 2 N ′

A
0 0 0

)

×
{

N ′
A NA 2

N N ′ NB

} {
SA SA 1
1 2 SA

} {
SA SA 2
S S′ SB

}{
N N ′ 2
S′ S J

}
,

(A6)

〈ψJ ,M
NA,NB ,N ,SA,SB ,S,J,L |V̂ (B)

SS |ψJ ,M
N ′

A,N ′
B ,N ′,SA,SB ,S′,J ′,L ′ 〉

= δNA N ′
A
δJ J ′δL L ′

2

3

√
30λSS(−1)NA+NB+N ′

B+N+N ′+SA+SB+J

×SB(SB + 1)(2SB + 1)
√

[NB][N ′
B][N ][N ′][S][S′]

×
(

NB 2 N ′
B

0 0 0

) {
N ′ N 2
NB N ′

B NA

} {
SB SB 1
1 2 SB

}

×
{

S′ S 2
SB SB SA

}{
N N ′ 2
S′ S J

}
. (A7)
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