The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/91524

Please be advised that this information was generated on 2019-11-14 and may be subject to change.
Search for New Physics in Dijet Mass and Angular Distributions in pp Collisions at $\sqrt{s} = 7$ TeV Measured with the ATLAS Detector

The ATLAS Collaboration

Abstract. A search for new interactions and resonances produced in LHC proton-proton (pp) collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV has been performed with the ATLAS detector. Using a data set with an integrated luminosity of 36 pb$^{-1}$, dijet mass and angular distributions have been measured up to dijet masses of ~ 3.5 TeV and found to be in good agreement with Standard Model predictions. This analysis sets limits at 95% C.L. on various models for new physics: an excited quark is excluded with mass between 0.60 and 2.64 TeV, an axigluon hypothesis is excluded for axigluon masses between 0.60 and 2.10 TeV and Randall-Meade quantum black holes are excluded in models with six extra space-time dimensions for quantum gravity scales between 0.75 and 3.67 TeV. Production cross section limits as a function of dijet mass are set using a simplified Gaussian signal model to facilitate comparisons with other hypotheses. Analysis of the dijet angular distribution using a novel technique simultaneously employing the dijet mass excludes quark contact interactions with a compositeness scale Λ below 9.5 TeV.

PACS numbers: 12.60.Rc, 13.85.-t, 13.85.Rm, 14.80.-j, 14.70.Kv
1. Introduction

The search for new phenomena in particle interactions is perhaps most exciting when new vistas are opened up by significant increases in experimental sensitivity, either by collecting larger samples of data or entering kinematic regimes never before explored. Searches are particularly compelling when one can do both, as has recently become the case in the first studies of pp collisions at a centre-of-mass (CM) energy of 7 TeV produced at the CERN Large Hadron Collider (LHC). We report on a search for massive objects and new interactions using a sample of 36 pb$^{-1}$ of integrated luminosity observed by the ATLAS detector.

This analysis focuses on those final states where two very energetic jets of particles are produced with large transverse momentum (p_T) transfer. These $2 \rightarrow 2$ scattering processes are well described within the Standard Model (SM) by perturbative quantum chromodynamics (QCD), the quantum field theory of strong interactions. However, there could be additional contributions from the production of a new massive particle that then decays into a dijet final state, or the rate could be enhanced through a new force that only manifests itself at very large CM energies.

One can perform sensitive searches for new phenomena by studying both the dijet invariant mass, m_{jj}, and the angular distributions of energetic jets relative to the beam axis, usually described by the polar scattering angle in the two-parton CM frame, θ^*. QCD calculations predict that high-p_T dijet production is dominated by t-channel gluon exchange, leading to rapidly falling m_{jj} distributions and angular distributions that are peaked at $|\cos \theta^*|$ close to 1. By contrast, models of new processes characteristically predict angular distributions that would be more isotropic than those of QCD. Discrepancies from the predicted QCD behaviour would be evidence for new physics. This analysis focuses on a study of dijet mass and angular distributions, which have been shown by previous studies [1–9] to be sensitive to new processes. These dijet variables are well suited for searches employing early LHC data. The dijet mass analyses can be performed using data-driven background estimates, while the angular analyses can be designed to have reduced sensitivity to the systematic uncertainties associated with the jet energy scale (JES) and integrated luminosity.

Following on the first ATLAS studies of massive dijet events with 0.3 pb$^{-1}$ [5] and 3.1 pb$^{-1}$ [6], the full 2010 data set has increased statistical power by more than an order of magnitude, and we have made several improvements to the analysis. A variety of models of new physics have been tested and the angular distributions have been analyzed using a new technique that finely bins the data in dijet mass to maximise the sensitivity of the search to both resonant and non-resonant phenomena. We set limits on a number of models and provide cross section limits using a simplified Gaussian signal model to facilitate tests of other hypotheses that we have not considered.

Section 2 describes the kinematic variables we used in this search. Section 3 describes the detector and the data sample, as well as the common event selection criteria used for the studies reported here. Section 4 describes the theoretical models.
employed, including the procedures used to account for detector effects. Section 5 describes the search for resonance and threshold phenomena using the dijet invariant mass. Section 6 describes the studies employing the angular distributions as a function of the invariant mass of the dijet system. Section 7 summarises our results.

2. Kinematics and Angular Distributions

This analysis is focused on those pp collisions that produce two high energy jets recoiling back-to-back in the partonic CM frame to conserve momentum relative to the beamline. The dijet invariant mass, m_{jj}, is defined as the mass of the two highest p_T jets in the event. The scattering angle θ^* distribution for $2 \rightarrow 2$ parton scattering is predicted by QCD in the parton CM frame, which is in practice moving along the beamline due to the different momentum fraction (Bjorken x) of one incoming parton relative to the other. The rapidity of each jet is therefore a natural variable for the study of these systems, $y \equiv \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$, where E is the jet energy and p_z is the z-component of the jet’s momentum. The variable y transforms under a Lorentz boost along the z-direction as $y \rightarrow y - y_B = y - \tanh^{-1}(\beta_B)$, where β_B is the velocity of the boosted frame, and y_B is its rapidity boost.

We use the m_{jj} spectrum as a primary tool in searching for new particles that would be observed as resonances. The m_{jj} spectrum is also sensitive to other phenomena, such as threshold enhancements or the onset of new interactions at multi-TeV mass scales in our current data sample. We bin the data in m_{jj} choosing bin-widths that are consistent with the detector resolution as a function of mass so that binning effects do not limit our search sensitivity.

We employ the dijet angular variable χ derived from the rapidities of the two highest p_T jets, y_1 and y_2. For a given scattering angle θ^*, the corresponding rapidity in the parton CM frame (in the massless particle limit) is $y^* = \frac{1}{2} \ln \left(\frac{1 + |\cos \theta^*|}{1 - |\cos \theta^*|} \right)$. We determine y^* and y_B from the rapidities of the two jets using $y^* = \frac{1}{2}(y_1 - y_2)$ and $y_B = \frac{1}{2}(y_1 + y_2)$. The variable y^* is used to determine the partonic CM angle θ^* and to define $\chi \equiv \exp(|y_1 - y_2|) = \exp(2|y^*|)$. As noted in previous studies, the utility of the χ variable arises because the χ distributions associated with final states produced via QCD interactions are relatively flat compared with the distributions associated with new particles or interactions that typically peak at low values of χ.

In a previous dijet angular distributions analysis [6], a single measure of isotropy based on y^* intervals was introduced. This measure, F_{χ}, is the fraction of dijets produced centrally versus the total number of observed dijets for a specified dijet mass range. We

‡ The ATLAS coordinate system is a right-handed Cartesian system with the x-axis pointing to the centre of the LHC ring, the z-axis following the counter-clockwise beam direction, and the y-axis directed upwards. The polar angle θ is referred to the z-axis, and ϕ is the azimuthal angle about the z-axis. Pseudorapidity is defined as $\eta \equiv -\ln \tan (\theta/2)$ and is a good approximation to rapidity as the particle mass approaches zero.
extend this to a measure that is finely binned in dijet mass intervals:

\[
F_\chi \left(\frac{[m_{jj}^{\text{min}} + m_{jj}^{\text{max}}]}{2} \right) \equiv \frac{N_{\text{events}}(|y^*| < 0.6, m_{jj}^{\text{min}}, m_{jj}^{\text{max}})}{N_{\text{events}}(|y^*| < 1.7, m_{jj}^{\text{min}}, m_{jj}^{\text{max}})},
\]

where \(N_{\text{events}} \) is the number of candidate events within the \(y^* \) interval and in the specified \(m_{jj} \) range. The interval \(|y^*| < 0.6\) defines the central region where we expect to be most sensitive to new physics and corresponds to the angular region \(\chi < 3.32 \), while \(|y^*| < 1.7\) extends the angular range to \(\chi < 30.0 \), where QCD processes dominate. This new observable, \(F_\chi (m_{jj}) \), is defined using the same fine \(m_{jj} \) binning used for analysis of the \(m_{jj} \) spectrum. We also employ the variable \(F_\chi \) to denote the ratio in Eq. 1 for dijet masses above 2 TeV. Our studies have shown that the \(F_\chi (m_{jj}) \) distribution is sensitive to mass-dependent changes in the rate of centrally produced dijets.

Jets are reconstructed using the infrared-safe anti-\(k_t \) jet clustering algorithm \[10,11\] with the distance parameter \(R = 0.6 \). The inputs to this algorithm are clusters of calorimeter cells defined by energy depositions significantly above the measured noise. Jet four-momenta are constructed by the vectorial addition of cell clusters, treating each cluster as an \((E, \vec{p})\) four-vector with zero mass. The jet four-momenta are then corrected as a function of \(\eta \) and \(p_T \) for various effects, the largest of which are the hadronic shower response and detector material distributions. This is done using a calibration scheme based on Monte Carlo (MC) studies including full detector simulation, and validated with extensive test-beam studies \[12\] and collision data \[13–15\].

The measured distributions include corrections for the jet energy scale but are not unfolded to account for resolution effects. These distributions are compared to theoretical predictions processed through a full detector simulation software.

3. The ATLAS Detector and Event Selection

3.1. The Detector and Trigger Requirements

The ATLAS detector \[16\] is instrumented over almost the entire solid angle around the \(pp \) collision point with layers of tracking detectors, calorimeters, and muon chambers. Jet measurements are made using a finely segmented calorimeter system designed to efficiently detect the high energy jets that are the focus of our study.

The electromagnetic (EM) calorimeter consists of an accordion-shaped lead absorber over the region \(|\eta| < 3.2\), using liquid argon (LAr) as the active medium to measure the energy and geometry of the showers arising from jets. The measurement of hadronic energy flow in the range \(|\eta| < 1.7\) is complemented by a sampling calorimeter made of steel and scintillating tiles. In the end-cap region \(1.5 < |\eta| < 3.2\), hadronic calorimeters consisting of steel absorber and a LAr active medium match the outer \(|\eta|\) limits of the EM calorimeters. To complete the \(\eta \) coverage to \(|\eta| < 4.9\), the LAr forward calorimeters provide both EM and hadronic energy measurements. The calorimeter \((\eta, \phi)\) granularities are \(\sim 0.1 \times 0.1 \) for the hadronic calorimeters up to \(|\eta| < 2.5 \) and
then 0.2×0.2 up to $|\eta| < 4.9$. The EM calorimeters feature a finer readout granularity varying by layer, with cells as small as 0.025×0.025 extending over $|\eta| < 2.5$.

The inner tracking detector (ID) covers the range $|\eta| < 2.5$, and consists of a silicon pixel detector, a silicon microstrip detector (SCT) and, for $|\eta| < 2.0$, a transition radiation tracker (TRT). The ID is surrounded by a thin superconducting solenoid providing a 2T magnetic field.

ATLAS has a three-level trigger system, with the first level trigger (L1) being custom-built hardware and the two higher level triggers (HLT) being realised in software. The triggers employed for this study selected events that had at least one large transverse energy deposition, with the transverse energy threshold varying over the period of the data-taking as the instantaneous luminosity of the LHC pp collisions rose.

The primary first-level jet trigger used in the resonance analysis had an efficiency $> 99\%$ for events with dijet masses $m_{jj} > 500 \text{ GeV}$. This is illustrated in Fig. 1 where we show the measured trigger efficiency as a function of m_{jj}. After applying the full event selection from the resonance analysis (except the m_{jj} cut) we compute the fraction of events passing a reference trigger which also pass our analysis trigger. The reference trigger is an inclusive jet trigger that was fully efficient for $p_T > 80 \text{ GeV}$, while our event selection already requires $p_T > 150 \text{ GeV}$ to guarantee full efficiency of the reference trigger. Thus, we efficiently identify events for the dijet resonance analysis for $m_{jj} > 500 \text{ GeV}$.

In order to have uniform acceptance for the angular distribution analysis, additional lower-p_T triggers were used for different angular and mass regions. We verified that these triggers provided uniform acceptance as a function of χ for the dijet mass intervals in which they were employed. Because these lower threshold triggers sampled only a subset of the pp collisions at higher instantaneous luminosity, the effective integrated luminosity collected for dijet masses between 500 and 800 GeV was 2.2 pb^{-1} and between 800 and 1200 GeV was 9.6 pb^{-1} in the dijet angular distribution analysis. Above 1200 GeV the same trigger is used for the resonance and angular analyses, and the full 36 pb$^{-1}$ are used for both analyses.

3.2. Common Event Selection

Events are required to have at least one primary collision vertex defined by more than four charged-particle tracks. Events with at least two jets are retained if the highest p_T jet (the ‘leading’ jet) satisfies $p_T^1 > 60 \text{ GeV}$ and the next-to-leading jet satisfies $p_T^2 > 30 \text{ GeV}$. The asymmetric thresholds avoid suppression of events where a third jet has been radiated, while the 30 GeV threshold ensures that reconstruction is fully efficient for both leading jets. Events containing a poorly measured jet [17] with $p_T > 15 \text{ GeV}$ are vetoed to avoid cases where such a jet would cause incorrect identification of the two leading jets. This criterion rejects less than 0.6\% of the events. The two leading jets are required to satisfy quality criteria that ensure that they arise from in-time energy deposition.
Further requirements are made on the jets in order to optimise the analysis of the dijet mass spectrum and the study of the dijet angular distributions, described in Sections 5 and 6, respectively.

4. Theoretical Models and Monte Carlo Simulations

The MC signal samples used for the analysis have been produced with a variety of event generators. We have employed several of the most recent parton distribution functions (PDFs) so that we consistently match the orders of the matrix element calculations implemented in the different MC generators when we calculate QCD predictions, and to be conservative in the calculation of expected new physics signals (all new physics signals are calculated only to leading order).

4.1. QCD Production

The angular distribution analyses required a prediction for the angular distribution arising from QCD production. Monte Carlo samples modelling QCD dijet production were created with the Pythia 6.4.21 event generator [18] and the ATLAS MC09 parameter tune [19], using the modified leading-order MRST2007 [20] PDF (MRST2007LO*). The generated events were passed through the detailed simulation of the ATLAS detector [21], which uses the Geant4 package [22] for simulation of particle transport, interactions, and decays, to incorporate detector effects. The simulated events
were then reconstructed in the same way as the data to produce predicted dijet mass and angular distributions that can be compared with the observed distributions.

Bin-by-bin correction factors (K-factors) have been applied to the angular distributions derived from MC calculations to account for next-to-leading order (NLO) contributions. These K-factors were derived from dedicated MC samples and are defined as the ratio $NLO_{ME}/PYTSHOW$. The NLO_{ME} sample was produced using matrix elements in NLOJET++ \[23\] \[25\] with the NLO PDF from CTEQ6.6 \[26\]. The $PYTSHOW$ sample was produced with the PYTHIA generator restricted to leading-order (LO) matrix elements and parton showering using the MRST2007LO* PDF.

The angular distributions generated with the full PYTHIA calculation include various non-perturbative effects such as multiple parton interactions and hadronization. The K-factors defined above were designed to retain these effects while adjusting for differences in the treatment of perturbative effects. We multiplied the full PYTHIA predictions of angular distributions by these bin-wise K-factors to obtain a reshaped spectrum that includes corrections originating from NLO matrix elements. Over the full range of χ, the K-factors change the normalised angular distributions by up to 6%, with little variability from one mass bin to the other.

The QCD predictions used for comparison to the measured angular distributions in this article are the product of the two-step procedure described above.

4.2. Models for New Physics Phenomena

MC signal events for a benchmark beyond-the-Standard-Model resonant process were generated using the excited-quark ($qg \rightarrow q^*$) production model \[27\] \[28\]. The excited quark q^* was assumed to have spin 1/2 and quark-like couplings, relative to those of the SM $SU(2)$, $U(1)$, and $SU(3)$ gauge groups, of $f = f' = f_\gamma = 1$, respectively. The compositeness scale (Λ) was set to the q^* mass. Signal events were produced using the PYTHIA event generator with the MRST2007LO* PDF and with the renormalization and factorization scales set to the mean p_T of the two leading jets. We also used the PYTHIA MC generator to decay the excited quarks to all possible SM final states, which are dominantly qg but also qW, qZ, and $q\gamma$. The MC samples were produced using the ATLAS MC09 parameter tune.

We also considered two other models of new physics that generate resonant signatures: axigluons and Randall-Sundrum (RS) gravitons. The axigluon interaction \[29\] \[31\] is described by the Lagrangian

$$\mathcal{L}_{Aq\bar{q}} = g_{QCD} \bar{q} A_{\mu}^{\alpha} \frac{\lambda^{\alpha}}{2} \gamma^{\mu} \gamma_5 q.$$

The parton-level events were generated using the CalcHEP Monte Carlo package \[32\] with the MRST2007LO* PDF. We used a PYTHIA MC calculation to model the production and decays of an RS graviton \[33\] \[34\] of a given mass. We performed this calculation with the dimensionless coupling $\kappa/\tilde{M}_{Pl} = 0.1$, where \tilde{M}_{Pl} is the reduced Planck mass, to set limits comparable to other searches \[7\] \[35\].
For non-resonant new phenomena, we used a benchmark quark contact interaction as the beyond-the-Standard-Model process. This models the onset of kinematic properties that characterise quark compositeness: the hypothesis that quarks are composed of more fundamental particles. The model Lagrangian is a four-fermion contact interaction \[\mathcal{L}_{qqqq}(\Lambda) = \frac{\xi g^2}{2\Lambda^2} \bar{\Psi}_q \gamma_\mu \Psi_q \bar{\Psi}_q \gamma^\mu \Psi_q,\] where \(g^2/4\pi = 1\) and the quark fields \(\Psi_q^L\) are left-handed. The full Lagrangian used for hypothesis testing is then the sum of \(\mathcal{L}_{qqqq}(\Lambda)\) and the QCD Lagrangian. The relative phase of these terms is controlled by the interference parameter, \(\xi\), which is set for destructive interference (\(\xi = +1\)) in the current analysis. Previous analyses \[\cite{3}\] showed that the choice of constructive (\(\xi = -1\)) or destructive (\(\xi = +1\)) interference changed exclusion limits by \(\sim 1\%\). MC samples were created by a Pythia 6.4.21 calculation using this Lagrangian, with each sample corresponding to a distinct value of \(\Lambda\).

As another example for non-resonant new physics phenomena, we considered Randall-Meade quantum black holes (QBH) \[\cite{39}\]. We used the BLACKMAX black hole event generator \[\cite{40}\] to simulate the simplest two-body final state scenario describing the production and decay of a Randall-Meade QBH for a given fundamental quantum gravity scale \(M_D\). These would appear as a threshold effect that also depends on the number of extra space-time dimensions.

Previous ATLAS jet studies \[\cite{41}\] have shown that the use of different event generators and models for non-perturbative behaviour has a negligible effect on the observables in the kinematic region we are studying. All of the MC signal events were modelled with the full ATLAS detector simulation.

5. Search for Dijet Resonances

We make a number of additional selection requirements on the candidate events to optimise the search for effects in the dijet mass distribution. Each event is required to have its two highest-\(p_T\) jets satisfy \(|\eta_j| < 2.5\) with \(|\Delta \eta_{jj}| < 1.3\). In addition, the leading jet must satisfy \(p_T^1 > 150\) GeV and \(m_{jj}\) must be greater than 500 GeV. These criteria have been shown, based on studies of expected signals and QCD background, to efficiently optimise the signal-to-background in the sample. There are 98,651 events meeting these criteria.

5.1. The Dijet Mass Distribution

In order to develop a data-driven model of the QCD background shape, a smooth functional form

\[
f(x) = p_1(1 - x)^{p_2}x^{p_3 + p_4 \ln x},\]

(4)
Figure 2. The observed (D) dijet mass distribution (filled points) fitted using a binned QCD background (B) distribution described by Eqn. 4 (histogram). The predicted q^* signals normalised to 36 pb$^{-1}$ for excited-quark masses of 1000, 1700, and 2500 GeV are overlaid. The bin-by-bin significance of the data-background difference is shown in the lower panel.

where $x \equiv m_{jj}/\sqrt{s}$ and the p_i are fit parameters, is fit to the dijet mass spectrum. Although not inspired by a theory, this functional form has been empirically shown to model the steeply falling QCD dijet mass spectrum [3, 5, 7]. Figure 2 shows the resulting mass spectrum and fitted background, indicating that the observed spectrum is consistent with a rapidly falling, smooth distribution. The bin widths have been chosen to be consistent with the dijet mass resolution, increasing from ~ 50 to ~ 200 GeV for dijet masses from 600 to 3500 GeV, respectively. The p-value of the fit to the data, calculated using the chi-squared determined from pseudo-experiments as a goodness-of-fit statistic, is 0.88. Although this p-value suggests that there is no significant overall disagreement, we use a more sensitive statistical test, the BumpHunter algorithm [42, 43], to establish the presence or absence of a resonance.

In its implementation for this analysis, the BumpHunter algorithm searches for the signal window with the most significant excess of events above the background, requiring insignificant discrepancy (Poisson counting p-value $> 10^{-3}$) in both adjacent sidebands. Starting with a two-bin window, the algorithm increases the signal window and shifts its location until all possible bin ranges, up to half the mass range spanned by the data, have been tested. The most significant departure from the smooth spectrum, defined by the set of bins that have the smallest probability of arising from a background fluctuation assuming Poisson statistics, is therefore identified. The algorithm naturally
accounts for the “trials factor” to assess the significance of its finding, by performing a series of pseudo-experiments to determine the probability that random fluctuations in the background-only hypothesis would create an excess as significant as the observed one anywhere in the spectrum. The background to which the data are compared is obtained from the aforementioned fit, excluding the region with the biggest local excess of data in cases where the \(\chi^2 \) test yields a p-value less than 0.01. Although this is not the case in the actual data, it can happen in some of the pseudo-experiments that are used to determine the p-value. The reason for this exclusion is to prevent potential new physics signal from biasing the background.

The most significant discrepancy identified by the BUMPHUNTER algorithm is a three-bin excess in the dijet mass interval 995-1253 GeV. The p-value of observing an excess at least as large as this assuming a background-only hypothesis is 0.39. We therefore conclude that there is no evidence for a resonance signal in the \(m_{jj} \) spectrum, and proceed to set limits on various models.

5.2. Exclusion Limits Using the Dijet Mass

We set Bayesian credibility intervals by defining a posterior probability density from the likelihood function for the observed mass spectrum, obtained by a fit to the background functional form and a signal shape derived from MC calculations. A prior constant in the possible signal strength is assumed. The posterior probability is then integrated to determine the 95% credibility level (C.L.) for a given range of models, usually parameterised by the mass of the resonance. A Bayesian approach is employed for setting limits using the dijet mass distribution as it simplifies the treatment of systematic uncertainties.

The systematic uncertainties affecting this analysis arise from instrumental effects, such as the jet energy scale (JES) and resolution (JER) uncertainties, the uncertainty on the integrated luminosity and the uncertainties arising from the background parameterization. Extensive studies of the performance of the detector using both data and MC modelling have resulted in a JES uncertainty ranging from 3.2 to 5.7% in the current data sample [15]. The systematic uncertainty on the integrated luminosity is 11% [44]. The uncertainties on the background parameterization are taken from the fit results discussed earlier, and range from 3% at 600 GeV to \(\sim 40\% \) at 3500 GeV. These uncertainties are incorporated into the analysis by varying all the sources according to Gaussian probability distributions and convolving these with the Bayesian posterior probability distribution. Credibility intervals are then calculated numerically from the resulting convolutions.

Uncertainties on the signal models come primarily from our choice of PDFs and the tune for the PYTHIA MC, which provides the best match of observed data with the predictions with that choice of PDF. Our default choice of PDFs for the dijet mass analysis is MRST2007LO* [20] with the MC09 tune [19]. Limits are quoted also using CTEQ6L1 and CTEQ5L PDF sets, which provide an alternate PDF parametrization.
Table 1. The 95% C.L. lower limits on the allowed q^* mass obtained using different tunes and PDF sets. The MC09$'$ tune is identical to MC09 except for the Pythia parameter PARP(82) = 2.1 and use of the CTEQ6L1 PDF set.

<table>
<thead>
<tr>
<th>MC Tune</th>
<th>PDF Set</th>
<th>Observed Limit [TeV]</th>
<th>Expected Limit [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC09</td>
<td>MRST2007LO*</td>
<td>2.15</td>
<td>2.27</td>
</tr>
<tr>
<td>MC09$'$</td>
<td>CTEQ6L1</td>
<td>2.06</td>
<td>2.19</td>
</tr>
<tr>
<td>Perugia0</td>
<td>CTEQ5L</td>
<td>2.14</td>
<td>2.26</td>
</tr>
</tbody>
</table>

and allow comparisons with previous results [3], respectively. For the q^* limit analysis, we also vary the renormalization and factorization scales in the Pythia calculation by factors of one-half and two, and find that the observed limit varies by ~ 0.1 TeV.

5.3. Limits on Excited Quark Production

The particular signal hypothesis used to set limits on excited quarks (q^*) has been implemented using the Pythia MC generator, with fixed parameters to specify the excited quark mass, m_{q^*} and its decay modes, as discussed in Section 4. Each choice of mass constitutes a specific signal template, and a high-statistics set of MC events was created and fully simulated for each choice of m_{q^*}. The acceptance, A, of our selection requirements ranges from 49% to 58% for m_{q^*} from 600 to 3000 GeV, respectively. The loss of acceptance comes mainly from the pseudorapidity requirements, which ensure that the candidate events have a high signal-to-background ratio.

In Fig. 3 the resulting 95% C.L. limits on $\sigma \cdot A$ for excited quark production are shown as a function of the excited quark mass, where σ is the cross section for production of the resonance and A is the acceptance for the dijet final state. The expected limit is also shown, based on the statistics of the sample and assuming a background-only hypothesis. We see that the observed and expected limits are in reasonable agreement with each other, strengthening our earlier conclusion that there is no evidence of a signal above the smooth background. Comparing the observed limit with the predicted q^* cross section times acceptance, we exclude at 95% C.L. q^* masses in the interval $0.60 < m_{q^*} < 2.15$ TeV. The expected limit excludes $m_{q^*} < 2.07$ TeV.

The sensitivity of the resulting limit to the choice of PDFs was modest, as shown in Table 1, where the observed and expected mass limits are compared for several other models. In all cases, the mass limits vary by less than 0.1 TeV. The inclusion of systematic uncertainties result in modest reductions in the limit, illustrating that the limit setting is dominated by statistical uncertainties.

5.4. Limits on Axigluon Production

We set limits on axigluon production using the same procedure followed for the q^* analysis, creating templates for the signal using the axigluon model described in Sec. 4.
and full detector simulation. There are large non-resonant contributions to the cross section at low dijet mass, so we require at the parton-level that the axigluon invariant mass be between 0.7 and 1.3 times the nominal mass of the resonance. Having made this requirement, we note that the axigluon and q^* signal templates result in very similar limits. So for convenience we use the q^* templates in setting cross section limits on axigluon production.

The resulting limits are shown in Fig. 3. Using the MRST2007LO* PDFs, we exclude at 95% C.L. axigluon masses in the interval $0.60 < m < 2.10$ TeV. The expected limit is $m < 2.01$ TeV. If only statistical uncertainties are included, the limit rises by ~ 0.2 TeV, indicating that the systematic uncertainties are not dominant.

5.5. Limits on Quantum Black Hole Production

We search for production of Randall-Meade QBHs as these are expected to produce low multiplicity decays with a significant contribution to dijet final states. Several scenarios are examined, with quantum gravity scales M_D ranging from 0.75 TeV to 4.0 TeV, and with the number of extra dimensions, n, ranging from two to seven. The fully simulated MC events are used to create templates similar to the q^* analysis. These QBH models produce threshold effects in m_{jj} with long tails to higher m_{jj} that compete with the QCD background. However, the cross section is very large just above the threshold and
Table 2. The 95% C.L. lower limits on the allowed quantum gravity scale for various numbers of extra dimensions.

<table>
<thead>
<tr>
<th>Number of Extra Dimensions</th>
<th>Observed M_D Limit [TeV]</th>
<th>Expected M_D Limit [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.20</td>
<td>3.22</td>
</tr>
<tr>
<td>3</td>
<td>3.38</td>
<td>3.39</td>
</tr>
<tr>
<td>4</td>
<td>3.51</td>
<td>3.52</td>
</tr>
<tr>
<td>5</td>
<td>3.60</td>
<td>3.61</td>
</tr>
<tr>
<td>6</td>
<td>3.67</td>
<td>3.68</td>
</tr>
<tr>
<td>7</td>
<td>3.73</td>
<td>3.74</td>
</tr>
</tbody>
</table>

so it is possible to extract limits given the resulting resonance-like signal shape.

The resulting limits are illustrated in Fig. 4, showing the observed and expected limits, as well as the predictions for QBH production assuming two, four and six extra dimensions. The observed lower limits on the quantum gravity scale, M_D, with and without systematic uncertainty, and the expected limit with and without systematic uncertainty, at 95% C.L. are summarised in Table 2. Using CTEQ6.6 parton distribution functions, we exclude at 95% C.L. quantum gravity scales in the interval $0.75 < M_D < 3.67$ TeV for the low multiplicity Randall-Meade QBHs with six extra dimensions. The expected limit is $M_D < 3.64$ TeV.

5.6. Limits on RS Graviton Production

We search for production of Randall-Sundrum gravitons by creating dijet mass templates using the MC calculation described in Sec. 4. In this case, the sensitivity of the search is reduced by the lower production cross section, and by our kinematic criteria that strongly select for final states that have either high-energy hadronic jets or electromagnetic showers.

The limits obtained for this hypothesis are illustrated in Fig. 5, showing the observed and expected limits, as well as the predictions for RS graviton production. It is not possible to exclude any RS graviton mass hypothesis, given the small expected signal rates and the relatively large QCD backgrounds. A limit on RS graviton models could be established with increased statistics, though more sophisticated strategies to improve signal-to-background may be necessary.

5.7. Simplified Gaussian Model Limits

We have used these data to set limits in a more model-independent way by employing as our signal template a Gaussian profile with means ranging from 600 GeV to 4000 GeV and with the width, σ, varying from 3% to 15% of the mean.

Systematic uncertainties are treated in the same manner as described previously, using pseudo-experiments to marginalise the posterior probabilities that depend on
Figure 4. The 95% C.L. upper limits on the cross section \times acceptance versus the quantum gravity mass scale M_D for a Randall-Meade QBH model, taking into account both statistical and systematic uncertainties. The cross section \times acceptance for QBH models with two, four and six extra dimensions are shown. The 68% and 95% C.L. contours of the expected limit are shown as the band.

Figure 5. The 95% C.L. upper limits on the cross section \times acceptance for a Randall-Sundrum graviton, taking into account both statistical and systematic uncertainties. The 68% and 95% C.L. contours of the expected limit are shown as the band.
parameters that suffer from systematic uncertainty. However, given that the decay of the dijet final state has not been modelled, assuming only that the resulting dijet width is Gaussian in shape, we adjusted the treatment of the jet energy scale by modelling it as an uncertainty in the central value of the Gaussian signal.

The 95% C.L. limits are shown in Table 3 expressed in terms of number of events observed after all event selection criteria have been applied. We stress that these event limits are determined by assuming a Gaussian signal shape. Their variation as a function of mass and width reflects the statistical fluctuations of data in the binned \(m_{jj} \) distribution used to set them.

These limits can be employed by computing for a given model the acceptance \(A \) using a standard Monte Carlo calculation. The jet \(p_T \) and \(\eta \) requirements should first be applied to determine the expected signal shape in \(m_{jj} \). Since a Gaussian signal shape has been assumed in determining the limits, we recommend removing any long tails in \(m_{jj} \) (a \(\pm 20\% \) mass window is recommended). The fraction of MC events surviving these requirements is an estimate of the acceptance, and can be used to calculate the expected event yield given a cross section for the process and assuming a sample size of \(36 \text{ pb}^{-1} \). This event yield can then be compared with the limit in Table 3 matching the expected signal mean and width to the appropriate entry in the table.

6. Angular Distribution Analyses

For all angular distributions analyses, the common event selection criteria described in Sec. 3 are applied, including the transverse momentum requirements on the two leading jets: \(p_T^{j_1} > 60 \text{ GeV} \) and \(p_T^{j_2} > 30 \text{ GeV} \). Additionally, \(\chi \) distributions are accumulated only for events that satisfy \(|y_B| < 1.10 \) and \(|y^*| < 1.70\). The \(|y^*|\) criterion determines the maximum \(\chi \) of 30 for this analysis. These two criteria limit the rapidity range of both jets to \(|y_{1,2}| < 2.8\) and define a region within the space of accessible \(y_1 \) and \(y_2 \) with full and uniform acceptance in \(\chi \) for \(m_{jj} > 500 \text{ GeV} \). These kinematic cuts have been optimised by MC studies of QCD and new physics signal samples to assure high acceptance for all dijet masses.

Detector resolution effects smear the \(\chi \) distributions, causing events to migrate between neighboring bins. This effect is reduced by choosing the \(\chi \) bins to match the natural segmentation of the calorimeter, making them intervals of constant \(\Delta y \) for these high \(p_T \) dijet events. The \(F_\chi \) and \(F_\chi(m_{jj}) \) variables are even less sensitive to migration effects, given that they depend on separation of the data sample into only two \(\chi \) intervals.

6.1. Systematic and Statistical Uncertainties

Dijet angular distribution analyses have a reduced sensitivity to the JES and JER uncertainties compared to other dijet measurements since data and theoretical distributions are normalised to unit area for each mass bin in all cases. Nevertheless, the JES still represents the dominant systematic uncertainty in the current studies.
Table 3. The 95% C.L. upper limits on the number of observed signal events for Gaussian reconstructed m_{jj} distributions. The effects of systematic uncertainties due to the luminosity, the background fit and the jet energy scale have been included. We present the signal widths as σ/m.

<table>
<thead>
<tr>
<th>Mean m (GeV)</th>
<th>0.03</th>
<th>0.05</th>
<th>0.07</th>
<th>0.10</th>
<th>0.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>434</td>
<td>638</td>
<td>849</td>
<td>1300</td>
<td>1990</td>
</tr>
<tr>
<td>700</td>
<td>409</td>
<td>530</td>
<td>789</td>
<td>1092</td>
<td>945</td>
</tr>
<tr>
<td>800</td>
<td>173</td>
<td>194</td>
<td>198</td>
<td>218</td>
<td>231</td>
</tr>
<tr>
<td>900</td>
<td>88</td>
<td>103</td>
<td>123</td>
<td>162</td>
<td>311</td>
</tr>
<tr>
<td>1000</td>
<td>147</td>
<td>179</td>
<td>210</td>
<td>278</td>
<td>391</td>
</tr>
<tr>
<td>1100</td>
<td>143</td>
<td>169</td>
<td>204</td>
<td>263</td>
<td>342</td>
</tr>
<tr>
<td>1200</td>
<td>91</td>
<td>120</td>
<td>168</td>
<td>223</td>
<td>262</td>
</tr>
<tr>
<td>1300</td>
<td>65</td>
<td>80</td>
<td>101</td>
<td>120</td>
<td>122</td>
</tr>
<tr>
<td>1400</td>
<td>35</td>
<td>42</td>
<td>50</td>
<td>57</td>
<td>66</td>
</tr>
<tr>
<td>1500</td>
<td>24</td>
<td>27</td>
<td>32</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>1600</td>
<td>21</td>
<td>25</td>
<td>29</td>
<td>36</td>
<td>49</td>
</tr>
<tr>
<td>1700</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>38</td>
<td>43</td>
</tr>
<tr>
<td>1800</td>
<td>25</td>
<td>26</td>
<td>30</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>1900</td>
<td>22</td>
<td>22</td>
<td>25</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>2000</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>2100</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>2200</td>
<td>8.4</td>
<td>9.4</td>
<td>11</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>2300</td>
<td>6.8</td>
<td>7.3</td>
<td>7.4</td>
<td>8.3</td>
<td>9.0</td>
</tr>
<tr>
<td>2400</td>
<td>4.9</td>
<td>5.2</td>
<td>6.1</td>
<td>6.6</td>
<td>8.0</td>
</tr>
<tr>
<td>2500</td>
<td>4.6</td>
<td>4.9</td>
<td>5.4</td>
<td>6.4</td>
<td>6.9</td>
</tr>
<tr>
<td>2600</td>
<td>4.9</td>
<td>5.0</td>
<td>5.3</td>
<td>6.0</td>
<td>6.6</td>
</tr>
<tr>
<td>2700</td>
<td>5.1</td>
<td>5.0</td>
<td>5.0</td>
<td>5.2</td>
<td>5.7</td>
</tr>
<tr>
<td>2800</td>
<td>5.0</td>
<td>5.0</td>
<td>4.9</td>
<td>5.0</td>
<td>5.2</td>
</tr>
<tr>
<td>2900</td>
<td>4.6</td>
<td>4.5</td>
<td>4.7</td>
<td>4.6</td>
<td>4.8</td>
</tr>
<tr>
<td>3000</td>
<td>4.1</td>
<td>4.2</td>
<td>4.3</td>
<td>4.5</td>
<td>4.7</td>
</tr>
<tr>
<td>3200</td>
<td>3.2</td>
<td>3.5</td>
<td>3.6</td>
<td>3.8</td>
<td>4.1</td>
</tr>
<tr>
<td>3400</td>
<td>3.1</td>
<td>3.1</td>
<td>3.2</td>
<td>3.5</td>
<td>3.7</td>
</tr>
<tr>
<td>3600</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.3</td>
<td>3.6</td>
</tr>
<tr>
<td>3800</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>4000</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.3</td>
</tr>
</tbody>
</table>
As described in a previous publication [6], our dijet angular analyses use pseudo-experiments to convolve statistical, systematic and theoretical uncertainties. The primary sources of theoretical uncertainty are NLO QCD renormalization (μ_R) and factorization scales (μ_F), and PDF uncertainties. The former are varied by a factor of two independently, while the PDF errors are sampled from a Gaussian distribution determined using CTEQ6.6 (NLO) PDF error sets. The resulting bin-wise uncertainties for normalised χ distributions are typically up to 3% for the combined NLO QCD scales and 1% for the PDF uncertainties. These convolved experimental and theoretical uncertainties are calculated for all Monte Carlo angular distributions (both QCD and new physics samples). These statistical ensembles are used for estimating p-values when comparing QCD predictions to data, and for parameter determination when setting limits.

6.2. Observed χ and $F_\chi(m_{jj})$ Distributions

The analysis method used in the first ATLAS publication on this topic [6] is revisited here for the full 2010 data sample. The χ distributions are shown in Fig. 6 for several relatively large m_{jj} bins, defined by the bin boundaries of 520, 800, 1200, 1600 and 2000 GeV. There are 71,402 events in the sample, ranging from 42,116 events in the lowest mass bin to 212 events with $m_{jj} > 2000$ GeV. These bins were chosen to assure sufficient statistics in each mass bin. This is most critical for the highest mass bin - the focal point for new physics searches. The χ distributions are compared in the figure to the predictions from QCD MC models and the signal that would be seen in one particular new physics model, a QBH scenario with a quantum gravity mass scale of 3 TeV and six extra dimensions.

The data appear to be consistent with the QCD predictions, which include systematic uncertainties. To verify this, a binned likelihood is calculated for each distribution assuming that the sample consists only of QCD dijet production. The expected distribution of this likelihood is then calculated using pseudo-experiments drawn from the QCD MC sample and convolved with the systematic uncertainties as discussed above. The p-values for the observed likelihood values, from the lowest to highest mass bins, are 0.44, 0.33, 0.64, 0.89 and 0.44, respectively, confirming that the SM QCD hypothesis is consistent with the data.

We compute the $F_\chi(m_{jj})$ observable, introduced in Sec. 2 using the same mass binning employed in the dijet resonance searches. The observed $F_\chi(m_{jj})$ data are shown in Fig. 7 and compared to the QCD predictions, which include systematic uncertainties. We also show the expected behaviour of $F_\chi(m_{jj})$ if a contact interaction with the compositeness scale $\Lambda = 5.0$ TeV were present. Statistical analyses using $F_\chi(m_{jj})$ use mass bins starting at 1253 GeV to be most sensitive to the high dijet mass region. Assuming only QCD processes and including systematic uncertainties, the p-value for the observed binned likelihood is 0.28, indicating that these data are consistent with QCD predictions.
In the absence of any evidence for signals associated with new physics phenomena, these distributions are used to set 95% confidence level (C.L.) exclusion limits on a number of new physics hypotheses.

6.3. Exclusion Limits from Likelihood Ratios

Most of the dijet angular distribution analyses described below use likelihood ratios for comparing different hypotheses and parameter estimation. Confidence level limits are set using the frequentist CL$_{s+b}$ approach [48]. As an example, for the $F^\chi(m_{jj})$ distributions the variable Q is defined as follows:

$$ Q = -2 [\ln L (F^\chi(m_{jj})|H0) - \ln L (F^\chi(m_{jj})|H1)] , $$

(5)

where $H0$ is the null hypothesis (QCD only), $H1$ is a specific hypothesis for new physics with fixed parameters and $L(F^\chi(m_{jj})|H)$ is the binned likelihood for the $F^\chi(m_{jj})$ distribution assuming H as the hypothesis. Pseudo-experiments are used to determine the expected distribution for Q for specific hypotheses. The new physics hypothesis is then varied to calculate a Neyman confidence level.
6.4. Limits on Quark Contact Interactions

The $F_\chi(m_{jj})$ variable is used for the first time in this paper to set limits on quark contact interactions (CI), as described in Section 4. MC samples of QCD production modified by a contact interaction are created for values of Λ ranging from 0.50 to 8.0 TeV.

For the pure QCD sample (corresponding to $\Lambda = \infty$), the $F_\chi(m_{jj})$ distribution is fit to a 2nd order polynomial. For MC samples with finite Λ, the distributions are fit, as a function of m_{jj}, to the 2nd order polynomial plus a Fermi function, which is a good representation of the onset curve for contact interactions. QCD K-factors from Section 4 are applied to the QCD-only component of the spectra before calculating $F_\chi(m_{jj})$. This is done through an approximation that neglects possible NLO corrections in the interference term between the QCD matrix element and the contact interaction term. The issue of NLO corrections to contact terms has been independently identified elsewhere [49].

The $F_\chi(m_{jj})$ event sample is fit in each m_{jj} bin of the distribution as a function of $1/\Lambda^2$, creating a predicted $F_\chi(m_{jj})$ surface as a function of m_{jj} and Λ. This surface enables integration in m_{jj} vs Λ for continuous values of Λ. Using this surface, the 95% C.L. limit on Λ is determined using the log-likelihood ratio defined in Eq. 5. The resulting 95% C.L. quantile is shown in Fig. 8.

Figure 8 also shows the expected value of Q for various choices of Λ as well as the expected 95% C.L. limit and its 68% contour interval.
The observed exclusion limit is found from the point where the 95% quantile (dotted line) crosses the median value of the distribution of Q values for the QCD prediction (dashed line). This occurs at $\Lambda = 9.5$ TeV. The expected limit is $\Lambda = 5.7$ TeV. The observed result is significantly above the expected limit because the data has fewer centrally produced, high mass dijet events than expected from QCD alone, as can be seen in Fig. 7 where the observed values of $F_\chi(m_{jj})$ fall below the QCD prediction for dijet masses around 1.6 TeV and above 2.2 TeV. These data are statistically compatible with QCD, as evidenced by the p-value of the binned likelihood. The expected probability that a limit at least as strong as this would be observed is $\sim 8\%$.

As a cross-check, a Bayesian analysis of $F_\chi(m_{jj})$ has been performed, assuming a prior which is constant in $1/\Lambda^2$. This analysis sets a 95% credibility level of $\Lambda > 6.7$ TeV. The expected limit from this Bayesian analysis is 5.7 TeV, comparable to the CL$_{s+b}$ expected limit. While the observed limit from CL$_{s+b}$ analysis is significantly higher than the Bayesian results, we have no basis on which to exclude the CL$_{s+b}$ result a posteriori.

As an additional cross-check, the earlier F_χ analysis of the $dN/d\chi$ distributions, coarsely binned in m_{jj} [6], has been repeated. With the larger data sample and higher threshold on the highest m_{jj} bin (2 TeV), the observed and expected limits are $\Lambda > 6.8$ TeV and $\Lambda > 5.2$ TeV, respectively. As anticipated, these limits are not as strong as those arising from the $F_\chi(m_{jj})$ analysis because of the coarser m_{jj} binning.

Finally, an analysis was performed to see if a more sensitive measure could be
created by setting limits based on all 11 bins of the highest mass \((m_{jj} > 2\ \text{TeV})\) \(\chi\) distribution, instead of the two intervals used in the \(F_\chi\) analysis. In this method, for each bin the same interpolating function used in the \(F_\chi(m_{jj})\) analysis is fit to the bin contents resulting from all QCD+CI MC samples, yielding the CI onset curve. Limits are set using the same log-likelihood ratio and pseudo-experiment methods employed in the \(F_\chi(m_{jj})\) analysis. The observed 95% C.L. limit is \(\Lambda > 6.6\ \text{TeV}\). For the current data sample, the expected limit is 5.4 TeV. Since the expected limit exceeds that from the \(F_\chi\) analysis, this method shows promise for future analyses.

6.5. Limits on Excited Quark Production

The \(F_\chi(m_{jj})\) distributions are also used to set limits on excited quark production. As described earlier, the \(q^*\) model depends only on the single parameter, \(m_{q^*}\). Twelve simulated \(q^*\) mass \((m_{q^*})\) samples in the range from 1.5 to 5.0 TeV are used for the analysis. Based on the assumption that interference of QCD with excited quark resonances is negligible, \(q^*\) MC samples are scaled by their cross sections and added to the NLO QCD sample (which has been corrected using bin-wise K-factors). By analogy with the contact interactions analysis above, a likelihood is constructed by comparing the expected and observed \(F_\chi(m_{jj})\) distributions for each value of \(m_{q^*}\). We then form a likelihood ratio with respect to the QCD-only hypothesis and use this to set confidence intervals on the production of a \(q^*\).

Figure 9 illustrates the limit setting procedure for the \(q^*\) model. The observed
exclusion limit is found from the point where the 95% quantile (dotted line) crosses the measured value of Q (dashed line). This occurs for $m_{q^*} = 2.64$ TeV. The expected limit, determined from the point where the QCD prediction (solid line) crosses the 95% quantile, is 2.12 TeV. The observed limit falls near the 68% ($\pm 1 \sigma$) interval of the expected limit. The difference in observed and expected limits arises from the lower observed $F_\chi(m_{jj})$ values for dijet masses above 2.2 TeV.

This result can be compared to the limits obtained from the dijet resonance analysis, which sets observed exclusion limits on q^* masses of 2.15 TeV.

6.6. Limits on $\sigma_{QCD} \times A_{QCD}$ for Additive Signals

For new physics signals that do not interfere significantly with QCD, limit setting may be done in a more model-independent way. Monte Carlo signal samples are simulated independently from QCD samples and, for any given choice of new physics model parameters, the two samples are added to create a combined MC sample for comparison with data. This is implemented by introducing a variable θ_{np} defined as

$$\theta_{np} = \frac{\sigma_{np} \times A_{np}}{\sigma_{QCD} \times A_{QCD}},$$

where σ and A are the cross section and acceptance for the given process, and “np” refers to the new physics process. This variable represents the contribution of signal events in terms of cross section times acceptance relative to the QCD background. The acceptance factors are determined by MC calculations.

6.7. Limits on Quantum Black Hole Production

The Randall-Meade model of QBH production [39], introduced in Section 4 and used to set limits on these phenomena in the dijet resonance analysis, is employed again here to search for QBH production using the dijet angular distributions. The θ_{np}-parameter limit-setting method, sensitive to $\sigma_{QBH} \times A_{QBH}$, is used for this analysis since the QBH production model does not include interference with QCD.

MC samples are created corresponding to discrete values of the QBH quantum gravity mass scale M_D ranging from 2.0 to 4.0 TeV and for two to seven extra dimensions (n), and are used to determine the acceptance A_{QBH}. The acceptance is found to vary from 58% to 89% as M_D is varied from 2.0 to 4.0 TeV, for the case of six extra dimensions. These studies have shown that the signal acceptance for the model considered here varies little with the model parameter n. Thus, A_{QBH} found from full simulation of the sample with $n = 6$ is applied to the limit analysis for other choices of n, which have different cross sections.

The MC events with dijet masses greater than 2.0 TeV are binned in χ with the same bin boundaries used in Fig. 6. Pseudo-experiments are used to incorporate the JES uncertainty into the predicted χ distributions. In each χ bin a linear fit is made for $dN/d\chi$ vs θ_{np}, creating a family of lines that define a $dN/d\chi$ surface in θ_{np} vs χ. Scale and PDF uncertainties, and the uncertainty on the JES correlation between the
two jets, are incorporated into this surface using pseudo-experiments, and a value of F_χ is calculated from each distribution. The expected distribution of F_χ values is obtained using additional pseudo-experiments modelling the finite statistics of the high m_{jj} event sample. A likelihood ratio is formed comparing the likelihood of a given value of F_χ for a QBH hypothesis to the likelihood from QCD processes alone. Finally, pseudo-experiments are performed to extract the 95% C.L. exclusion limit on F_χ as a function of θ_{np}.

Figure 10 illustrates the θ_{np} parameter limit-setting procedure for the case $n = 6$. The observed exclusion limit is found from the point where the 95% C.L. contour (dotted line) crosses the measured value of $F_\chi = 0.052$ (dashed line), which occurs at $\theta_{np} = 0.020$. The expected limit, determined from the point where the QCD prediction, 0.071 (solid line), crosses the 95% C.L. contour, is at 0.075. The observed limit falls just outside the 68% ($\pm 1\sigma$) interval of the expected limit. These limits on θ_{np} are translated into limits on $\sigma \times A$ using the QCD cross section and the acceptance for fully simulated dijets, $\sigma_{QCD} \times A_{QCD} = 7.21$ pb, resulting in an observed 95% C.L. upper limit $\sigma_{QBH} \times A_{QBH} < 0.15$ pb.

Figure 11 shows the $\sigma_{QBH} \times A_{QBH}$ vs M_D curves for two, four and six extra dimensions. The measured and expected limits for $\sigma_{QBH} \times A_{QBH}$ are plotted as horizontal lines. The crossing points of these lines with the n vs M_D curve yield expected and observed exclusion limits for the QBH model studied here. The 95% C.L. lower limit on the quantum gravity mass scale is 3.69 TeV for six extra dimensions. The expected limit is 3.37 TeV. The limits for all extra dimensions studied here, $n = 2$ to 7,
Figure 11. The cross section \(\times \) acceptance for QBHs as a function of \(M_D \) for two, four and six extra dimensions. The measured and expected limits are shown in the solid and dashed line.

Table 4. The 95% C.L. exclusion limits on \(M_D \) for various choices of extra dimensions for the Randall-Meade QBH model determined by the \(\theta_{np} \) parameter analysis for \(m_{jj} > 2.0 \) TeV.

<table>
<thead>
<tr>
<th>Extra Dimensions</th>
<th>Expected Limit (TeV)</th>
<th>Observed Limit (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.91</td>
<td>3.26</td>
</tr>
<tr>
<td>3</td>
<td>3.08</td>
<td>3.41</td>
</tr>
<tr>
<td>4</td>
<td>3.20</td>
<td>3.53</td>
</tr>
<tr>
<td>5</td>
<td>3.29</td>
<td>3.62</td>
</tr>
<tr>
<td>6</td>
<td>3.37</td>
<td>3.69</td>
</tr>
<tr>
<td>7</td>
<td>3.43</td>
<td>3.75</td>
</tr>
</tbody>
</table>

are listed in Table 4.

The limit for \(\sigma_{QBH} \times A_{QBH} \) may also be applied to any new physics model that satisfies the following criteria: (1) the \(F_\chi \) of \(np \) signal-only event samples should be roughly independent of \(m_{jj} \), as is the case for \(q^* \), QBH, and contact interactions; and (2) this \(F_\chi \) should be close to the value of \(F_\chi \) for the current QBH study [0.58]. It is not necessary that the \(m_{jj} \) spectrum be similar, or that the QCD+\(np \) sample have the same \(F_\chi \).

It should also be noted that the results from this \(\theta_{np} \) parameter analysis are in agreement with the expected and observed limits obtained for the same QBH model.
in the dijet resonance analysis. These two analyses are focusing on complementary variables in the two-dimensional space of m_{jj} and χ yet arrive at similar limits.

A cross-check of these results is made by extracting a QBH limit using the $F_\chi(m_{jj})$ distribution for the case of six extra dimensions. Signal and background samples are created by combining the QBH signals for various M_D's with the QCD background sample corrected by K-factors. The $F_\chi(m_{jj})$ distribution is then fit in each m_{jj} bin as a function of $1/M_D^2$ using the same interpolating function employed in $F_\chi(m_{jj})$ contact interactions analysis. The likelihood ratio construction and limit setting procedures used in the CI analysis are also applied in this study, resulting in observed and expected 95% C.L. limits for M_D of 3.78 TeV and 3.49 TeV, respectively. A further cross-check is performed using the 11-bin χ analysis to set limits on a QBH for the case of six extra dimensions. This study yields an observed 95% C.L. limit of $M_D > 3.49$ TeV and an expected limit of $M_D > 3.36$ TeV.

The expected and observed limits resulting from these four studies are summarised with the results of the other analyses in Table 5. The strongest expected limits on QBH production come from the dijet resonance analysis, but the angular analyses are in close agreement, yielding limits within 0.3 TeV of each other for the QBH hypothesis under study.

7. Conclusion

Dijet mass and angular distributions have been measured by the ATLAS experiment over a large angular range and spanning dijet masses up to ≈ 3.5 TeV using 36 pb$^{-1}$ of 7 TeV pp collision data. The angular distributions are in good agreement with QCD predictions and we find no evidence for new phenomena. Our analysis, employing both the dijet mass and the dijet angular distributions, places the most stringent limits on contact interactions, resonances and threshold phenomena to date.

In Table 5 the constraints on specific models of new physics that would contribute to dijet final states are summarised.

We quote as the primary results the limits using the technique with the most stringent expected limit. Therefore, we exclude at 95% C.L. excited quarks with masses in the interval $0.60 < m_{q^*} < 2.64$ TeV, axigluons with masses between 0.60 TeV and 2.10 TeV, and Randall-Meade quantum black holes with $0.75 < M_D < 3.67$ TeV assuming six extra dimensions.

We also exclude at 95% C.L. quark contact interactions with a scale $\Lambda < 9.5$ TeV. As noted earlier, the observed limit is significantly above the expected limit of 5.7 TeV for this data sample, and above the limits from an alternative calculation using Bayesian statistics. However, we quote this result since the statistical approach is a standard procedure that was chosen a priori.

In a number of cases, searches for the same phenomenon have been performed using dijet mass distributions, dijet angular distributions, or both. We are able to set comparable limits using these complementary techniques, while at the same time
searching for evidence of narrow resonances, threshold effects, and enhancements in angular distributions that depend on the dijet invariant mass.

This combined analysis is expected to emerge at the TeV scale. With increased integrated luminosity and continued improvements to analysis techniques and models, we expect to increase the ATLAS discovery reach for new phenomena that affect dijet final states.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal;

Table 5. The 95% C.L. lower limits on the masses and energy scales of the models examined in this study. We have included systematic uncertainties into the upper limits using the techniques described in the text. The result with the highest expected limit is shown in bold face and is our quoted result.

<table>
<thead>
<tr>
<th>Model and Analysis Strategy</th>
<th>95% C.L. Limits (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expected</td>
</tr>
<tr>
<td>Excited Quark q⁺</td>
<td></td>
</tr>
<tr>
<td>Resonance in m_{jj}</td>
<td>2.07</td>
</tr>
<tr>
<td>$F_X(m_{jj})$</td>
<td>2.12</td>
</tr>
<tr>
<td>Randall-Meade Quantum Black Hole for $n = 6$</td>
<td></td>
</tr>
<tr>
<td>Resonance in m_{jj}</td>
<td>3.64</td>
</tr>
<tr>
<td>$F_X(m_{jj})$</td>
<td>3.49</td>
</tr>
<tr>
<td>θ_{np} Parameter for $m_{jj} > 2$ TeV</td>
<td>3.37</td>
</tr>
<tr>
<td>11-bin χ Distribution for $m_{jj} > 2$ TeV</td>
<td>3.36</td>
</tr>
<tr>
<td>Axigluon</td>
<td></td>
</tr>
<tr>
<td>Resonance in m_{jj}</td>
<td>2.01</td>
</tr>
<tr>
<td>Contact Interaction Λ</td>
<td></td>
</tr>
<tr>
<td>$F_X(m_{jj})$</td>
<td>5.7</td>
</tr>
<tr>
<td>F_X for $m_{jj} > 2$ TeV</td>
<td>5.2</td>
</tr>
<tr>
<td>11-bin χ Distribution for $m_{jj} > 2$ TeV</td>
<td>5.4</td>
</tr>
</tbody>
</table>
MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

Search for New Physics in Dijet Distributions with the ATLAS Detector

[45] J. Pumplin et al. New generation of parton distributions with uncertainties from global QCD
The ATLAS Collaboration

G. Aad48, B. Abbott111, J. Abdallah11, A.A. Abdelalim49, A. Abdessalem118, O. Abdinov10, B. Abi112, M. Abolins88, H. Abramowicz153, H. Abreu115, E. Acerbi89a,89b, B.S. Acharya164a,164b, D.L. Adams24, T.N. Addy56, J. Adelman175, M. Aderholt99, S. Adomeit98, P. Adragna75, T. Adye129, S. Aefsky22, J.A. Aguilar-Saavedra124a,a, M. Aharrouce81, S.P. Ahlen21, F. Ahles48, A. Ahmad148, M. Ahsan40, G. Aielli133a,133b, T. Akdogan18a, T.P.A. Akesson79, G. Akimoto155, A.V. Akimov94, A. Akiyama67, M.S. Alam1, M.A. Alam76, S. Albrand155, M. Aleksa29, I.N. Aleksandrov65, M. Alleo89a, F. Alessandria89a, C. Alexa25a, G. Alexander153, G. Alexandre49, T. Alexopoulos9, M. Alhroob20, M. Aliev15, G. Alimonti89a, J. Alison120, M. Aliyev10, P.P. Allport73, S.E. Allwood-Spiers53, J. Almond82, A. Aloisio102a,102b, R. Alon171, A. Alonso79, M.G. Alviggi102a,102b, K. Amako66, P. Amara29, C. Amelung22, V.V. Ammosov128, A. Amorim124a,b, G. Amorós167, N. Amram153, C. Anastopoulos139, T. Andeen34, C.F. Anders20, K.J. Anderson30, A. Andreazza89a,89b, V. Andrei58a, M-L. Andrieux55, X.S. Anduaga70, A. Angerami34, F. Anghinolfi29, N. Anjos124a, A. Anno47, A. Antonaki8, M. Antonelli47, S. Antonelli19a,19b, A. Antonov96, J. Antos144b, F. Anulli132a, S. Aoun83, L. Aperio Bella4, R. Apolle118, G. Arabidze88, I. Aracena143, Y. Ara66, A.T.H. Arce44, J.P. Archambault28, S. Aref29,c, J-F. Arguin14, E. Arik18a,*, M. Arik18a, A.J. Armbruster87, O. Arnaez81, C. Arnault115, A. Artamonov95, G. Artoni132a,132b, D. Arutinov20, S. Asai155, R. Asfandiyarov172, S. Ask27, B. Ásman146a,146b, L. Asquith5, K. Assamagan24, A. Astbury169, A. Astvatsatourov52, G. Atoian175, B. Aubert4, B. Auerbach175, E. Auge115, K. Augsten127, M. Aurousseau145a, N. Austin73, R. Avramidou9, D. Axen168, C. Ay54, G. Azuelos93,d, Y. Azuma155, M.A. Baak29, G. Baccaglioni89a, C. Bacci134a,134b, A.M. Bach14, H. Bachacou136, K. Bachas29, G. Bachy29, M. Backes49, M. Backhaus20, E. Badescu25a, P. Bagnaia132a,132b, S. Bahinipati2, Y. Bai32a, D.C. Bailey158, T. Bain158, J.T. Baines129, O.K. Baker175, M.D. Baker24, S. Baker77, F. Baltasar Dos Santos Pedrosa29, E. Banas38, P. Banerjee93, Sw. Banerjee169, D. Banfi29, A. Bangert137, V. Bansal169, H.S. Bansil17, L. Barak171, S.P. Baranov94, A. Barashkou65, A. Barbaro Galtieri14, T. Barber27, E.L. Barberio86, D. Barberis50a,50b, M. Barbero20, D.Y. Bardin65, T. Barillari99, M. Barisonzi174, T. Barklow143, N. Barlow27, B.M. Barnett129, R.M. Barnett14, A. Baroncelli134a, A.J. Barr118, F. Barreiro80, J. Barreiro Guimarães da Costa57, P. Barrillon115, R. Bartoldus143, A.E. Barton71, D. Bartsch20, V. Bartsch149, R.L. Bates53, L. Batkova144a, J.R. Batley27, A. Battaglia16, M. Battistin29, G. Battistoni89a,
Search for New Physics in Dijet Distributions with the ATLAS Detector

Search for New Physics in Dijet Distributions with the ATLAS Detector
Search for New Physics in Dijet Distributions with the ATLAS Detector
Search for New Physics in Dijet Distributions with the ATLAS Detector
Search for New Physics in Dijet Distributions with the ATLAS Detector

Search for New Physics in Dijet Distributions with the ATLAS Detector

Search for New Physics in Dijet Distributions with the ATLAS Detector
Search for New Physics in Dijet Distributions with the ATLAS Detector

Search for New Physics in Dijet Distributions with the ATLAS Detector
Search for New Physics in Dijet Distributions with the ATLAS Detector

J. Stark55, P. Staroba125, P. Starovoitov91, A. Staude98, P. Stavina144a, G. Stavropoulos14, G. Steele63, P. Steinbach43, P. Steinberg24, I. Stekl127, B. Stelzer142, H.J. Stelzer41, O. Stelzer-Chilton159a, H. Stenzel52, K. Stevenson75, G.A. Stewart53, J.A. Stillings20, T. Stockmanns20, M.C. Stockton29, K. Stoieng48, G. Stoica25a, S. Stonjek99, P. Strachota126, A.R. Stradling7, A. Straessner43, J. Strandberg87, S. Strandberg146a,146b, A. Strandlie117, M. Stran109, E. Strauss143, M. Straus111, P. Strizene144b, R. Ströhm173, D.M. Strom114, J.A. Strong76, R. Stroynowski39, J. Strube129, B. Stugu13, I. Stumer24,8, J. Stupak148, P. Sturm174, D.A. Soh151,0, D. Su143, HS. Subramaniam2, Y. Sugaya116, T. Sugimoto101, C. Suh106, K. Suita67, M. Suk126, V.V. Sulin94, S. Sultansoy3d, T. Sumida29, X. Sun55, J.E. Sundermann48, K. Suruliz164a,164b, S. Sushk11, G. Susinno36a,36b, M.R. Sutton139, Y. Suzuki66, Yu.M. Sviridov128, S. Swedish168, I. Sykora144a, T. Sykora126, B. Szeless29, J. Sánchez167, D. Ta105, K. Tackmann29, A. Taffard163, R. Tafirout159a, A. Taga117, N. Taiblum153, Y. Takahashi101, H. Takai24, R. Takashima69, H. Takeda67, T. Takehita140, M. Talby83, A. Talyshev107, M.C. Tansett24, J. Tanaka155, R. Tanaka115, S. Tanaka131, S. Tanaka66, Y. Tanaka100, K. Tan167, N. Tannoury83, G.P. Tappend29, S. Tapprogge81, D. Tardif158, S. Tarem152, F. Tarrade24, G.F. Tartarelli89a, P. Tas126, M. Tasevsky125, E. Tassi36a,36b, M. Tatarkhanov14, C. Taylor77, F.E. Taylor92, G.N. Taylor86, W. Taylor159b, M. Teixeira Dias Castanheira75, P. Teixeira-Dias70, K.K. Tenming48, H. Ten Kate29, P.K. Teng151, S. Terada66, K. Terashi155, J. Terron80, M. Terwort41,m, M. Testa47, R.J. Teuscher$^{158, i}$, C.M. Tevlin82, J. Thadome174, J. Therhaag20, T. Thevenaux-Pelzer78, M. Thiouye175, S. Thoma48, J.P. Thomas17, E.N. Thompson84, P.D. Thompson17, P.D. Thompson158, A.S. Thompson53, E. Thomson129, M. Thomson77, R.P. Thum87, T. Tic125, V.O. Tikhomirov94, Y.A. Tikhonov107, C.J.W.P. Timmermans104, P. Tipton175, F.J. Tique Aires Viegas29, S. Tisserant83, J. Tobias48, B. Toczek37, T. Todorov5, S. Todorova-Nova161, B. Toggers163, J. Tojo66, S. Toká144a, K. Tokunaga67, K. Tokushuku66, K. Tollefson88, M. Tomoto101, L. Tompkins14, K. Tomis103, A. Tonazzo134a,134b, G. Tong32a, A. Tonoyan13, C. Topfel16, N.D. Topilin65, I. Torchian29, E. Torrence114, E. Torró Pastor167, J. Toth$^{83, w}$, F. Touchard83, D.R. Tovey139, D. Traynor75, T. Trefzger173, J. Treis20, L. Tremblet29, A. Tricoli29, I.M. Trigger159a, S. Trincaz-Duvoid78, T.N. Trinh78, M.F. Tripiana70, N. Triplett64, W. Trischuk158, A. Trivedi$^{24, v}$, B. Trocm55, C. Troncon89a, M. Trottier-McDonald142, A. Trzupek38, C. Tsarouchas29, J.C-L. Tseng118, M. Tsakiris105, P.V. Tsiareska90, D. Tsoniou4, G. Tspolitis9, V. Tsiskaridze18, E.G. Tskhadadze51, I.I. Tsukerman95, V. Tsulaia123, J.-W. Tsung20, S. Tsumo66, D. Tsybychev148, A. Tua139, J.M. Tuggle30, M. Turala38, D. Turecek127, I. Turk Cakir3e, E. Turlay105, R. Turra9a,80b, P.M. Tuts34, A. Tykhonov74, M. Tylnad146a,146b, M. Tyndel129, D. Typaldos17, H. Tyrvainen29, G. Tzanakos8, K. Uchida20, I. Ueda155, R. Ueno28, M. Ugland13, M. Uhlbrock20, M. Uhrmacher54, F. Ukegawa160, G. Unal29, D.G. Underwood5, A. Undrus24, G. Unei163, Y. Unno66, D. Urbaniec34, E. Urkovsky153, P. Urquijo49, P. Urrejola31a, G. Usai7,
Search for New Physics in Dijet Distributions with the ATLAS Detector

1 University at Albany, Albany NY, United States of America
2 Department of Physics, University at Alberta, Edmonton AB, Canada
3 (a)Department of Physics, Ankara University, Ankara; (b)Department of Physics, Dumlupinar University, Kutahya; (c)Department of Physics, Gazi University, Ankara; (d)Division of Physics, TOBB University of Economics and Technology, Ankara; (e)Turkish Atomic Energy Authority, Ankara, Turkey
4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
6 Department of Physics, University of Arizona, Tucson AZ, United States of America
7 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Física d’Altes Energies and Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 (a)Institute of Physics, University of Belgrade, Belgrade; (b)Vinca Institute of Nuclear Sciences, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a)Department of Physics, Bogazici University, Istanbul; (b)Division of Physics,
Search for New Physics in Dijet Distributions with the ATLAS Detector

Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
19 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston MA, United States of America
22 Department of Physics, Brandeis University, Waltham MA, United States of America
23 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
31 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) High Energy Physics Group, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
34 Nevis Laboratory, Columbia University, Irvington NY, United States of America
35 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
37 Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas TX, United States of America
40 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham NC, United States of America
45 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 Fachhochschule Wiener Neustadt, Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a)INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 Institute of Physics and HEP Institute, Georgian Academy of Sciences and Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Science, Hiroshima University, Hiroshima, Japan
60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
61 Department of Physics, Indiana University, Bloomington IN, United States of America
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City IA, United States of America
64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
Search for New Physics in Dijet Distributions with the ATLAS Detector

122 (a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
123 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
124 (a)Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b)Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
125 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
126 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
127 Czech Technical University in Prague, Praha, Czech Republic
128 State Research Center Institute for High Energy Physics, Protvino, Russia
129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130 Physics Department, University of Regina, Regina SK, Canada
131 Ritsumeikan University, Kusatsu, Shiga, Japan
132 (a)INFN Sezione di Roma I; (b)Dipartimento di Fisica, Università La Sapienza, Roma, Italy
133 (a)INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a)INFN Sezione di Roma Tre; (b)Dipartimento di Fisica, Università Roma Tre, Roma, Italy
135 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b)Centre National de l’Énergie des Sciences Techniques Nucleaires, Rabat; (c)Université Cadi Ayyad, Faculté des sciences Semlalia Département de Physique, B.P. 2390 Marrakech 40000; (d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e)Faculté des Sciences, Université Mohammed V, Rabat, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Énergie Atomique), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
138 Department of Physics, University of Washington, Seattle WA, United States of America
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby BC, Canada
143 SLAC National Accelerator Laboratory, Stanford CA, United States of America
144 (a)Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava;
Search for New Physics in Dijet Distributions with the ATLAS Detector

(b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

(a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

(a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

Department of Physics, Royal Institute of Technology, Stockholm, Sweden

Department of Physics and Astronomy, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, University of Toronto, Toronto ON, Canada

(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada

Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan

Science and Technology Center, Tufts University, Medford MA, United States of America

Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

(a) INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Fisica, Università di Udine, Udine, Italy

Department of Physics, University of Illinois, Urbana IL, United States of America

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Waseda University, Tokyo, Japan
Search for New Physics in Dijet Distributions with the ATLAS Detector

\(z\) Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France

\(aa\) Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

\(ab\) Also at Department of Physics, Nanjing University, Jiangsu, China

* Deceased