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Chapter 1

Introduction and Outline

1.1 Motivation

Prostate cancer is the most commonly diagnosed cancer among men and remains the second leading cause
of cancer death in men. In 2010, more than 217,000 men in the United States (US) were diagnosed with
prostate cancer [1]. The American Cancer Society estimated that approximately 32,000 men died from the
disease in the US in 2010. In Europe, more than 338,00 males were diagnosed with prostate cancer in
2008 and almost 71000 men died because of prostate cancer [2]. The growth of the population and, more
importantly, the aging population is a major cause of the high number of prostate cancer cases and will
contribute to an increase in cancer burden. For that reason, there is a ongoing debate whether screening for
prostate cancer should be performed.

Screening can help find cancers in an early stage when they are more easily cured. An important trial to
determine the effect of screening for breast cancer was performed between 1977 and 1984 in Sweden [3].
The trial showed that after seven years of follow up a reduction of 31% in breast cancer mortality was
achieved when screening was applied. This led to the introduction of breast cancer screening in most
western countries. Recently, several studies have been performed that looked at whether prostate cancer
screening with the prostate-specific antigen (PSA) blood test saves lives [4, 5, 6, 7]. For example, the
European Randomized Study of Screening for Prostate Cancer (ERSPC) has shown significant reductions
in PCa mortality in an intention-to-screen analysis [8, 9]. The reduction in mortality comes, however, at
the price of over-diagnosis and over-treatment. In the study of Schroder et al. the authors specifically
warn that, in order to prevent one death from prostate cancer, 1410 men would need to be screened and 48
additional cases of prostate cancer would need to be treated. Hence, controversy still exists regarding the
effectiveness of prostate cancer screening. The ongoing debate is essentially a public demand for a more
reliable, non-invasive method that has a sufficiently high specificity in detecting prostate cancer [10].

Magnetic resonance imaging (MRI) has evolved this decade to a competitive imaging modality for
the localization of prostate cancer. The non-invasive nature and ability to provide structural, functional
and metabolic information in a single examination makes the technique suitable to improve specificity
when screening for prostate cancer. Many studies showed that multiparametric MRI, consisting of high
resolution 3D T2-weighted sequences, 3D dynamic contrast enhanced MRI, 3D ditfusion weighted imaging
or spectroscopic imaging, leads to a sufficiently high accuracy for prostate cancer detection [11, 12, 13, 14,
15]. Unfortunately, multiparametric MRI analysis requires a high level of expertise, suffers from observer
variability and is a labor intensive procedure [16]. For that reason the technique is considered cost inefficient
and, as a result, has not been implemented in a screening environment [17].

Computer aided diagnosis (CAD) can be of benefit to improve the consistency and accuracy of inter-
preting radiographic images by the radiologist. Additionally, it can speed up the reading time considerably.
CAD research has been successfully pursued in other diagnostic areas such as mammography [18, 19], CT
chest [20, 21, 22], CT colonography [23, 24] as well as retinal imaging [25]. However, published literature
on prostate CAD research is still relatively immature.

The motivation of this thesis was therefore to research state of the art CAD methods that can assist in
a better diagnosis of prostate cancer, reduce the observer variability and be of benefit to a more efficient
workflow for the radiologist.
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4 Chapter 1

tumor, where the stage of the tumor categorizes the risk of cancer having spread beyond the prostate. Mostly,
the options of treatment are determined using nomograms of which the Partin tables is most commonly
used [33]. The Partin tables estimate the chance of organ-confined disease, capsular penetration, seminal
vesicle invasion and lymph node metastasis, based on the result of DRE, biopsy Gleason score and serum
PSA level [34]. Higher Gleason scores indicate larger differences from normal tissue and more aggressive
disease. Gleason scores of 2 to 4 resemble well differentiated or low grade tumors. Cancers with Gleason
scores of 5 to 7 are called moderately differentiated or intermediate grade. Cancers with Gleason scores of
8 to 10 are called poorly differentiated or high grade.

Several options of treatment are available: active surveillance, radical prostatectomy, radiotherapy, and
focal therapy. Active surveillance is provided to men that have a small, localised, well-differentiated PCa.
It involves a conservative monitoring of the tumor and not to treat the patient immediately, though the urol-
ogist can intervene when the cancer progresses above pre-defined threshold, such as short PSA doubling
time or deteriorating histopathological factors on repeat biopsy. With a radical prostatectomy, the prostate
is removed surgically. This can also include removal of lymph nodes in case of metastases. The neurovas-
cular bundle should be free of tumor tissue to enable a nerve-sparing surgery. In this way, the normal sexual
function and ability to urinate can be preserved. However, an accurate localization of the tumor is of high
importance to be able to perform nerve-sparing surgery. Another option would be to perform radiation
therapy, either with external beam radiation or internal radiation (brachytherapy). In external beam radia-
tion, the patient receives radiation treatment from an external source, usually over an 8- to 9-week period.
Brachytherapy involves placing small radioactive pellets, sometimes referred to as seeds, into the prostate
tissue and is recommended for low-risk cancers. Recently, there is a shift towards minimally invasive focal
therapies such as delivering a boost dose to the dominant intra-prostatic lesion, cryotherapy (ablation of
prostate tissue by local induction of extremely cold temperatures) or lasertheraphy [35]. It stands to rea-
son that an accurate localization, grading and staging of the PCa is of paramount importance before these
therapies can be performed.

1.4 Prostate Magnetic Resonance Imaging

With Magnetic Resonance Imaging (MRI), structural, functional and metabolic information can be non-
invasively obtained from the patient. A typical prostate multiparametric MR examination consists of three-
directional T2-weighted (T2-w) MR imaging, diffusion weighted imaging (DWI), dynamic contrast en-
hanced (DCE) MR imaging and, in case of staging, spectroscopic imaging. The examination is performed
within 30 to 60 minutes depending on the amount of sequences used. Fig. 1.3 shows a screen capture of the
in-house developed system (MRCAD) that is used in the clinic to process and visualize the multiparametric
MR data for diagnosis of PCa patients. Appendix A provides a detailed explanation of the MRCAD system.

T2-weighted MRI has been used to diagnose PCa for quite some years. T2-weighted MRI is most often
performed in multiple views, i.e., transversal, coronal and sagittal view, with a high in-plane resolution
and a relatively thick slice distance. In a T2-weighted image, PCa often appears as an area of low signal
intensity in a bright normal peripheral zone. However, benign conditions such as biopsy haemorrhage,
prostatitis, BPH and effect of treatment can mimic the presence of cancer. As a result, the accuracy of
tumor localization using T2-weighted MRI is rather low, ranging from 67% to 72% [11]. Furthermore, a
correct interpretation of a T2-weighted image requires a high level of expertise [36].

DCE-MRI is a minimal invasive technique which can be used to study tissue perfusion and vascular
permeability. Due to the high vascularity, increased capillary permeability as well as interstitial hyperten-
sion in tumors, DCE-MRI shows better distinction between malignant lesions and normal tissue compared
to T2-weighted MRI alone [37, 38, 39, 40, 41, 42, 43, 44]. The principles of DCE-MRI li¢ in the analysis of
signal-time or kinetic curves at a specific location in T1-weighted images. A sequential set of T1-weighted
images is acquired before and during an intravenous bolus injection of paramagnetic gadolinium chelate,
preferably by using a power injector. The contrast agent will induce an increased signal intensity on a
T1-weighted image at vessel lumen and interstitial space. The kinetic curves are summarized into a set
of kinetic parameters. The derived kinetic parameter maps are often displayed as color-coded transparent
overlays on top of anatomical images. This prevents the need to manually analyze cach curve individu-
ally. An example signal-time curve with several descriptive parameters is demonstrated in figure 1.4. The
kinetic parameters are used to characterize lesions. A typical malignant lesion shows a faster initial rise,
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Introduction and Outline 7

(a) ROC curves for localization performance of prostate cancer by  (b) ROC curves showing that the diagnostic performance of
the radiologist using information from 1) T2-weighted MRI, spec-  the radiologist is experience dependent [36].

troscopic MRI (MRS), dynamic contrast enhanced MRI (MPKS),

dynamic contrast enhanced MRI and spectroscopic MRI combined

(PKMRS) showing that combining multiple MR modalities in-

creases the localization performance considerably. [11].

Figure 1.6: ROC curves show the results of the interpretation of T2-weighted (unenhanced) and dynamic
contrast-enhanced MRI by an experienced radiologist and two less experienced radiologists. The results
indicate an additional value of multiparametric MRI to all radiologist. Additionally, the ROC curves show
that the diagnostic performance depends on the experience of the radiologist.

1.5 Computer Aided Diagnosis

CAD systems can be of benefit to improve the diagnostic accuracy of the radiologist, reduce reader variabil-
ity, and speed up the reading time. The aim of CAD is to automatically highlight cancer suspicious regions,
leading to a reduction of search and interpretation errors, as well as a reduction of the variation between
and within observers [49].

CAD systems generally consist of multiple sequential stages, as illustrated in figure 1.7. In the initial
stage, lesion candidates are selected within a likelihood map that was generated by voxel classification of
one or more images. Hereafter, the lesion candidates are segmented into a region of interest from which
region based features are extracted. Finally, the extracted information is fused by a supervised classifier
into a malignancy likelihood. The last stage ensures a reduction of the amount of false positives that were
localized in the initial stage. The radiologist uses the calculated malignancy likelihood and the location as
additional information in order to diagnose the patient.

Most prostate CAD researchers have focused on the initial voxel classification stage [50, 51, 52, 53,
54, 55]. They obtained likelihood maps by combining information from multiparametric MR images using
mathematical descriptors. These studies showed on a voxel basis that the discrimination between benign
and malignant tissue is feasible with good performances. However, localization of the tumor, the final
diagnosis and patient management is left to the radiologist. The task of a computer aided detection system
is, however, to localize suspicious lesions and to estimate a malignancy likelihood for each detected lesion.
Therefore, the goal of computer aided detection is to reduce search errors, reduce interpretation errors, and
reduce variation between and within observers [49]. Computer aided diagnosis systems on the contrary
only have a classification task for differential diagnosis of user provided regions.

The challenge to introduce CAD in the clinical workflow with a prostate cancer screening environment
is enormous. The lack of standardized sequences and objective quantitative features of PCa are important
obstacles for prostate MR CAD to become widely available. Furthermore, to become successful in a clinical
environment, the intended CAD system should be fully automated, robust to the large population variation
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Chapter 2

Computerized analysis of prostate lesions in the
peripheral zone using dynamic contrast
enhanced MRI

This chapter is based on the manuscript “Computerized analysis of prostate lesions in the peripheral zone
using dynamic contrast enhanced MRI.” by Pieter C. Vos , Thomas Hambrock , Christina A. Hulsbergen -
van de Kaa , Jurgen J. Fiitterer , Jelle Barentsz , Henkjan Huisman Published in Medical Physics, vol. 25,
no. 4, pp. 621-630, 2008.
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Chapter 2

Abstract

A novel automated computerized scheme has been developed for determining a likelihood measure of ma-
lignancy for cancer suspicious regions in the prostate based on dynamic contrast-enhanced MRI (DCE-MRI)
images.

Our database consisted of 34 consecutive patients with histologically proven adenocarcinoma in the peripheral
zone of the prostate. Both carcinoma and non-malignant tissue were annotated in consensus on MR images
by aradiologist and a researcher using whole mount step-section histopathology as standard of reference. The
annotations were used as regions of interest (ROI). A feature set comprising pharmacokinetic parameters and
a T1 estimate was extracted from the ROIs to train a support vector machine as classifier. The output of the
classifier was used as a measure of likelihood of malignancy. Diagnostic performance of the scheme was
evaluated using the area under the ROC curve.

The diagnostic accuracy obtained for differentiating prostate cancer from non-malignant disorders in the pe-
ripheral zone was 0.83 (0.75-0.92). This suggests that it is feasible to develop a CAD system capable of
characterizing prostate cancer in the peripheral zone based on DCE-MRIL.
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2.1 Introduction

It is estimated that one out of ten male cancer deaths in 2007 will be caused by prostate cancer (PCa).
Furthermore, with a total of 218,890 cases, PCa is the most common non-cutaneous cancer in the United
States [56]. PCa incidence rates continues to increase, although at a slower rate than those reported for
the early 1990s and before. This trend may be attributable to increased screening through prostate-specific
antigen (PSA) testing as well as the aging of the population. The definitive diagnosis of PCa is most often
established through transrectal ultrasound (TRUS)-guided sextant biopsy.

For men diagnosed with prostate cancer, a number of treatment options exist, with differing side ef-
fects. The therapeutic options are mostly determined using nomograms of which the Partin tables is most
commonly used [33]. The Partin tables estimate the chance of organ-confined disease, capsular penetra-
tion, seminal vesicle invasion and lymph node metastasis, based on the result of digital rectal examination,
biopsy Gleason score and PSA value [34]. However, these clinical assessments are not accurate in deter-
mining the local stage. Elevated PSA levels can be observed in non-malignant disorders such as prostatitis
or benign prostatic hyperplasia (BPH). The limitations of sextant biopsy are increasingly recognized, which
has provoked interest in multimodal magnetic resonance imaging (MRI) as an alternative method of tumor
evaluation [57]. Accurate staging is important for a proper discase management. Curative therapy is only
effective in cases of organ confined (surgical candidate) PCa, whereas androgen therapy and/or radiother-
apy is more effective in advanced disease. Accurate localization is important for evaluation of the tumor
location and the distance to the neurovascular bundle and prostate capsule, to determine if a nerve sparing
operation is possible, or assist the planning of intensity-modulated radiotherapy [38, 59, 60].

MRI localization can reduce the number of repeat biopsies, improve the staging performance and guide
surgery or radiotherapy. T2-weighted MRI using a pelvic phased-array coil can visualize the prostate in-
cluding the surrounding anatomy and depict tumor suspicious areas of low signal intensity within a high-
intensity peripheral zone. An endorectal coil improves the spatial resolution, resulting in better anatomi-
cal visualization which may result in an improved diagnostic accuracy of the localization and staging of
PCa [61, 62, 11, 57]. However, in addition to PCa, the differential diagnosis of a low signal intensity
area includes post-biopsy hemorrhage, prostatitis, BPH, effect of hormonal or radiation treatment, fibrosis,
calcifications, smooth muscle hyperplasia and fibromuscular hyperplasia [63].

Dynamic contrast-enhanced MRI (DCE-MRI) can be used as an additional tool to visualize PCa (neo-)
vascularity and interstitial space. Due to the high vascularity, increased capillary permeability as well
as interstitial hypertension in tumors, DCE-MRI shows better distinction between malignant lesions and
normal tissue compared to conventional MRI alone [37, 38, 39, 40, 41, 42, 43, 44]. Fiitterer et al. [11]
showed that using T2-w images in combination with DCE-MRI for localizing PCa, equal or greater than
0.5 cm?, resulted in an accuracy of 81-91% whereas using T2-w MR images alone resulted in a localizing
accuracy of 68%.

Post-biopsy hemorrhage, prostatitis and BPH can all mimic PCa enhancement patterns, thus comprising
the specificity of the technique. Another major obstacle to the application of MRI analysis in the routine
clinical practice of prostate imaging is the variability of interpretation criteria and absence of interpretation
guidelines [57]. Our study aims to increase the objectivity and reproducibility of prostate MRI interpretation
by developing a computer aided diagnosis (CAD) system.

The proposed method enables an objective automated quantification and classification of features to
discriminate between benign and malignant lesions, and may improve the tumor localization accuracy of the
radiologist. In addition to objective analysis, computerized analysis can take full advantage of information
across slices in 3D multi-feature data sets which is difficult to assess visually from individual images. CAD
has been successfully pursued in other diagnostic areas such as mammography [64, 65], CT chest [66] as
well as breast MRI [67, 68]. In the field of the prostate, Chan et al. [50] constructed a summary statistical
map of the peripheral zone based on the utility of multi-channel statistical classifiers by combining textural
and anatomical features in PCa arcas from T2-w images, diffusion weighted images (DWI), proton density
maps and T2 maps. Madabhushi et al. [69] generated similar statistical maps based on T2-w images using
histological maps as ground truth and showed the additional value of combining features. However, to our
knowledge, there has been no reported studies about similar work on PCa using DCE-MRI.

The purpose of this study was to investigate the feasibility of a CAD system capable of objectively
discriminating PCa from non-malignant disorders located in the peripheral zone of the prostate. Localizing
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PCa in the central gland of the prostate is considered difficult because this arca is often affected by BPH,
which can have areas of low signal intensity on T2-w images and shows enhancement patterns in DCE-MRI
similar to that of PCa. Nevertheless, 65% to 74% of the prostate tumor nodules are located in the peripheral
zone¢ and central gland tumors are often less aggressive [11]. The focus of this study is therefore on the
peripheral zone of the prostate.
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volumes from the acquired volumes. Examples of acquired volumes are T2-w images and T1-w images.
Additionally, descriptive parameter maps derived from DCE T1-w images by means of pharmacokinetic
modeling are computed (see appendix 2.7 for a description on pharmacokinetic modeling) [11]. In each
view all available volumes can be rendered either as background or as transparent color coded overlays.
The cursor is positionable in one of the views with the mouse after which the CAD system will instantly
update the location in all views. Although the MR data is obtained in slices, the CAD system visualizes
the data as 3D volumes taking all directions into account. Figure 2.2 demonstrates the CAD system with a
dedicated prostate hanging protocol as it is used in our clinic for localizing PCa.

2.2.2 Lesion segmentation

A 3D drawing tool has been implemented which allows the user to easily delineate a suspicious lesion in
3D. At the request of the user a 3D sphere shaped ROI is added at the position of the cursor and visualized
in all views. It is adjustable in size to fully delineate the suspicious area. The intended use is to adjust
the sphere to be large enough to fully include the lesion’s size, as to reduce inter-observer variability (see
section 2.2.3).

Let an ROI S, define a set of N cartesian voxel locations x; in the MR coordinate system:

S’r’:{x17x27"'7x1\7}' (21)
Let V; ;, represent a set of scalar values in image volume [, identified by S, :
Ve = {dp()|zs € Sp} (2:2)

The assumption is that all image volumes [1, I», .. ., I are registered to each other in the MR coordinate
system and as a result, a lesion segmentation in /;, will segment the same lesion area in /1, regardless of
the image resolution or orientation.

2.2.3 Feature extraction

Areduced feature set ;. is calculated from the scalars values of the available volumes (V;. ;). Each feature in
the feature vector F, = {f1, fa,. .., f1.}, with L the number of features, is a first-order statistic of the scalar
values of volume [;,. One of these statistics are the 25% or 75% percentile. These percentiles are especially
suited for volumes that show an heterogeneous pattern, €.g. the derived volume K¢ [70, 71, 72]. This
heterogeneity is most common for tumor and differs from normal tissue and benign lesions [73, 74]. The
25% or 75% percentile will differ more from the average value when hotspots are present and will give an
estimate of the value in that hotspot, as demonstrated in figure 2.3. This heterogeneity is also recognized
by the pathologist (at macro scale). They base a histological grade on the Gleason system, in which the
dominant and secondary glandular histological pattern are determined. By segmenting the whole lesion
and using percentiles to extract the hotspot, variability among users is reduced. Stoutjesdijk et al. [75]
showed that manual selection of the hotspots is the major source of variation in the interpretation of the
DCE characteristics of breast MRI lesions. Thus, annotating the whole enhancing region instead of just
the hotspot and automatically extracting the features sensitive to hotspots within the region, makes the
technique more reproducible. An additional advantage of using percentiles is that it is less sensitive to
extreme values.
To do so, V., is summarized into a single scalar value f,  ,, by calculating its percentile p:

Hy i (frkp) = ps (2.3)

where H, ;. is the cumulative density histogram of the scalar values in V. ;.

2.2.4 Classification

The final step of the CAD program is to combine the computed features and to estimate the likelihood of
malignancy of the region of interest. The malignancy likelihood I, is calculated using a trained classifier 7:

by = 7(F;T), (2.4)
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where T’ is a training set of feature vectors and truth states. Classification was performed using support
vector machine (SVM) analysis on the feature set (provided by the statistical package R [76]) [77, 78].
SVMs are currently widely used in similar problems as they can act as a general purpose non-linear classi-
fier. SVMs have been shown to perform well on various datasets of limited size. SVMs map input vectors
to a higher dimensional space where a maximal separating hyperplane is constructed by means of a kernel
function. For this study the radial basis function kernel K (u,v) = exp(—v * |u — v|*) with parameter
~v = 1/5 (5 equals the number of features used) was chosen and the cost of constraints violation (or *C’-
constant of the regularization term in the T.agrange formulation) was set to 1 [79, 80]. When the classifier
has calculated /,, the user is prompted with the estimate of the likelihood of malignancy as shown in the
example in figure 2.7(c).

2.3 Feature description
The following features were extracted from S,:

50% T1Static: The T1Static parameter is the pre-contrast static value of the T1 estimate of the longitudinal
relaxation rate in ms. T1-weighted signals are not ideally suitable for use in quantitative assessment
of contrast media concentration. We therefore use dynamic T1 mapping with snapshot FLLASH se-
quences as a direct approach to quantification, as described in Hittmair et al [45]. If a post-biopsy
hemorrhage is present, it is clearly visible as a high-intensity area on a T1-w image. The biopsy
hemorrhage is often visible as a large homogeneous area, hence the median is used to capture this.

75% V.: In the extravascular, extracellular space (EES) of normal tissue, pressure is near atmospheric
(25mmH g) values, whereas in tumors it may reach 50mmH g or even more. The interstitial hy-
pertension may be due to increased vascular permeability in combination with a lack of lymphatic
drainage due to the absence of functional lymphatic vessels within the tumor itself. This results in
an increase of the EES. The EES is therefore considered a very descriptive parameter defined as per-
centage per unit volume of tissue [81]. Interstitial leakage space at tumor hotspots can be three to five
times larger than normal tissue, hence the upper quartile is used to capture these hotspots.

75% kep & K™ ": The transfer constant (K *7°"*) and rate constant (k.,) both have units 1/min, where
K'ams relates to permeability surface area. The permeability (or leakiness) surface area refers to
the ability of tracer molecules to pass through interendothelial fenestrae and junctions into the in-
terstitial compartment. High permeability of the vasculature is a characteristic of pathological blood
vessels in inflamed tissues and tumors. In case of a tumor, both K" and kep often show focal
enhancement [73]. The upper quartile captures the presence of hotspots.

25% late wash: The late wash parameter quantifies the slope of the curve after the first wash-in phase.
Although it does not directly correlate to physiological parameters, the presence of washout is highly
indicative of PCa [39], and therefore used in our clinic as a diagnostic parameter. When capillary
permeability is very high, the backflow of contrast medium is also rapid, resulting in a negative late
wash following the shape of the plasma concentrations. Because late wash enhancement is often
heterogenous, the 25th percentile is used to capture this.

The described pharmacokinetic features were extracted because quantification of kinetic parameters
has the advantage of being biologically meaningful and help to establish objective criteria for classifying
lesions [40], see appendix 2.7 for a description of how the kinetic features are derived from the raw T1-w
images. The feature selection is based on clinical experience, previous work [11] has shown that these
features are the most descriptive and are therefore preferred in our clinic. Furthermore, preselecting only
five features prevents the classifier from being distracted by either poor performing or irrelevant features
(peaking phenomenon) [78].
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2.4 Training and Evaluation

2.4.1 Dataset

The study set consisted of 34 consecutive patients that were selected in a previous study of Fiitterer et
al. [11]. These patients had biopsy-proven PCa and underwent DCE-MR imaging at 1.5-T, complementary
to the routine staging MR imaging examination of the prostate. Patients were included (between April 1,
2002, and June 1, 2004) in the study only if they were candidates for radical retropubic prostatectomy within
6 weeks after MR imaging. The study of Fiitterer et al. was approved by the institutional review board, and
informed consent was obtained from all patients prior to MR imaging. After imaging, all patients underwent
radical retropubic prostatectomy. Exclusion criteria were: previous hormonal therapy, lymph nodes positive
for metastases at frozen section analysis, contra-indications to MR imaging (e.g., cardiac pacemakers, in-
tracranial clips), contraindications to endorectal coil insertion (e.g., anorectal surgery, inflammatory bowel
disease). The mean prostate specific antigen level was 8 ng/ml. (range, 3.2-23.6 ng/mL.), mean Gleason
score was 6.1 (range, 5-8). MRI was performed on average 3 weeks after transrectal ultrasonographically
guided sextant biopsy of the prostate.

24.2 MR Acquisition

Images were acquired with a 1.5T whole body MR scanner (Sonata, Siemens Medical Solutions, Erlangen,
Germany). A pelvic phased-array coil as well as a balloon-mounted disposable endorectal surface coil
(MedRad®, Pittsburgh, PA, USA) was inserted and inflated with approximately 80 cm® of air, were used
for signal receiving. The machine body coil was used for RF transmitting. An amount of 1 mg of glucagon
(Glucagon®, Novo Nordisk, Bagsvaerd, Denmark)) was administered directly before the MRI scan to all
patients, to reduce peristaltic bowel movement during the examination.

The protocol for acquisition consisted first of a localizer and two fast gradient spin-echo measurements
for patient and coil positioning. Thereafter high-spatial-resolution T2-weighted fast spin-echo imaging in
the axial, sagittal and coronal planes, covering the prostate and seminal vesicles, was performed. The
frequency encoding direction was anteroposterior to increase the acquisition speed.

Thirdly, 3D T1-weighted spoiled gradient echo images were acquired before and during an intravenous
bolus injection of paramagnetic gadolinium chelate (0.1 mmol/kg, gadopentetate, Magnevist®; Schering,
Berlin, Germany) using a power injector (Spectris, Medrad®, Pittsburgh, PA, US) with an injection rate
of 2.5 ml/second followed by a 15 ml saline flush. At these settings a 3D volume with ten partitions,
covering the whole prostate, was acquired every 2 seconds for 120 seconds. Before contrast injection the
same axial 3D T1-weighted gradient echo sequence was used to obtain proton density images and identical
positioning to allow calculation of gadolinium chelate concentration curves [45]. See Table 2.1 for the
precise specification of the acquisitions. Within 3 weeks of biopsy, there can be postbiopsy artifacts on

Table 2.1: Parameters for MR Imaging

. Section Field Dyn
. Ima- g TE No.  No.of  Flip thick- . 1o of Phase- volume
Modality ging of signals angle Matrix of : encoding :
(msec)  (msec) . ness . view S sampling
order* echoes acquired (dgr) sections direction .
(mm) (mnm) time(sec)
T2-w spin-echo 1 3500 132 15 2 180 4 240x512 1122 280  Row NA
Intermediate-w
fast 3D
) 2 800 1.6 1 1 8 4 256x77x10 NA 280 Column  NA
gradient-echo
Dynamic T1-w
fast 3D
3 34 1.6 1 1 14 4 256x77x10 NA 280 Column 2

gradient-echo

*One of each sequence was performed before contrast agent administration. After contrast agent administration, 74 dynamic T1-weighted fast 3D
gradient-echo and five dynamic T1-weighted high-resolution 3D gradient-echo MR imaging sequences were performed

MRI. This cannot be avoided as we feel it is unethical to unnecessarily delay a scheduled prostatectomy.
The optimal timing of post-biopsy MR Imaging of the prostate has been researched by Ikonen et al. [82]
and White et al [83]. They advise deferring MR imaging for at least 3 weeks after biopsy.
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2.4.3 ROI annotation
Histopathological analysis

All patients underwent radical retropubic prostatectomy. The prostatectomy specimens were fixed overnight
(10% neutral-buffered formaldehyde) and coated with Indian ink. Axial whole mount step-sections were
made at 4-mm intervals in a plane parallel to the axial T2-w images and routinely embedded in paraffin. Tis-
sue sections of 5 pim were prepared and stained with haematoxylin and ¢osin. An experienced pathologist
(C.A.H.K) who was blinded to the imaging results, established malignancy from microscopy. Regions of
malignancy were outlined on digital macroscopic whole-mount images from a CCD camera. Figure 2.7(d)
shows an example of an histopathological map.

Annotation in the MRI data

The whole-mount step-section histology tumor maps were used as ground truth for training and evaluat-
ing the performance of the CAD system. The morphology of the central gland, peripheral zone, cysts,
calcifications, and urethra were used as landmarks to find the corresponding MRI slice.

Aligning MR slices to whole-mount step-sections is considered difficult [84], it is subjective and the
section thickness used in the MR imaging sequences can be different. To overcome these problems a
method was developed that semi-automatically matches MR slices to the step-sections of histopathology.
The method has the following setup: one of the views is set to a 3D rendering mode for volumes. In this
mode the volume is rendered in 3 planes in all directions. The planes can be manipulated to move through
the volume slices. In this 3D view a default 3D ellipsoid is rendered as a transparent surface. The goal is
to fit the prostate roughly by interactively resizing and translating the ellipsoid. The cross-sections of the
ellipsoid are simultancously displayed in the 2D views for a more accurate result. The final ellipsoid is than
divided in the same number of slices as the prostatectomy specimen was cut. By doing this, the specimen
images are aligned to the T2-w images. See figure 2.4 for a demonstration.

Figure 2.4: Example of a prostate segmentation to obtain an objective and more accurate correspondence with
histopathology. The left view shows a cross-section at transverse view of the prostate, the ellipse indicates the
surface bounds in the T2-w image. The middle (sagittal) view represents the number of transverse slices in
which the prostatectomy specimen was cut (9 slices). The right view shows the 3D deformable surface which
can be positioned, scaled and stretched manually to fit the prostate roughly.

The anatomy of the prostate is best imaged on T2-w images and were therefore used for correlating the
histopathological map. The features used for this experiment, however, were extracted from T1-w images.
Because the patient may have moved and no registration is applied to correct for patient movement, the pre-
contrast T1-w images were semi-transparently overlaid on the T2-w images, to allow for visual inspection
and comparison for anatomic mismatch due to patient related movements. If a mismatch was evident, it
was compensated for by correcting the annotation on the pre-contrast T1-w images, thereby avoiding the
annotation of periprostatic vasculature and urethra.
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Table 2.2: The three classification types of ) that were assigned to the annotated regions.

Region of normal enhancement and histopathological analysis

N (normal .
(normal) showed no evidence for tumor.

Histopathology confirmed tumor with a clinical relevant
diameter of at least Smm.

M (malignant) | Regions with prostatic intraepithelial neoplasia (PIN) were
excluded because they are considered to be a precursor of PCa
[85]

Region of non-malignant suspicious irregular heterogenous
enhancing areas where the underlying histopathological

NS . analysis showed no evidence for tumor.
(non-malignant

suspicious Region with histopathological confirmed prostatitis.
enhancing)

Region of post-biopsy hemorrhage without any
histopathological evidence for tumor.

An ROI was placed to cover the whole lesion volume based on histopathology. After a thorough
inspection of the segmentation, the ROI was saved to disk along with a classification label N, NS or M.
The definition of the labels are given in table 2.2.

For all saved ROIs S, with one of the assigned labels N, NS or M, information was summarized
by collecting the features f, gerans 75, fr k. 75, frve 75, frWashout,25 a0d fr T1szatic,50, s described in
section 2.3, into the feature vector F,:

eps

Fy = {fr kirans 75, fr.Kep,5: frVe 75, frWashout 25, fr T1Static,50 } (2.5)

2.4.4 ROC analysis

The discriminating performance of the CAD system was estimated by means of the area under the receiver
operator characteristics (ROC) curve (AUC). Let £ = (I4, o, . . ., L, ) be the vector of calculated malignancy
likelihoods for m ROIs with the trained classifier 7. The ROIs are split into two groups « and 3. Let
Yo = {Jjlg; € Qa} and vz = {j|g; € Qs} be the corresponding vectors of indices, where Q. and Qg
are disjoint and subsets of () (see table 2.2 for a definition of the labels). The AUC for the classification
performance between two subsets of ROIs identified by ~,, and 3 is given by [86]:

ey 2agreys VG )

AUC, ., = 2.6)
YoV8 P
with kernel function
1 af >y
bl l) =S 5 if L=l @7
0 4f I <ly

and n,,, and 7., the number of ROISs in vy, and ~g, respectively.

For this experiment two separate classifiers were trained and evaluated for its discriminating perfor-
mance. The first classifier 7;,. was trained (o discriminate regions of type {N, NS} from {M}. This
reflects localization, hence the subscript loc. The discriminating performance of 7;,,. is denoted as AUC,,,
and is computed using Eq. 2.6 by setting @, to {N, NS} and Q3 to {M}. The second classifier 74 ; was
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evaluated in a more clinical perspective, were the radiologist typically is only interested in the differentia-
tion between abnormal enhancing areas { NS} and PCa { M }. The classification performance is denoted as
AUCg; ¢ where Q. to {NS} and Qs to {M}.

Prospective performance of the lesion analysis was estimated by means of leave-one-patient-out (LOPO)
cross validation. LOPO avoids training and testing on the same data, estimating the likelihoods of ROIs in
that left-out case, and repeating the procedure until each case has been tested individually. Our study was
a diagnostic assessment with patient-clustered data, and, thus, the bootstrap resampling approach with 10
000 iterations was used for estimating the bootstrap mean AUCs and 95% confidence intervals proposed by
Rutter [86]. When a patient case is drawn, the entire set of S, for that case enters that bootstrap sample. In
doing so, bootstrapping mimics the underlying probability mechanism that gave rise to the observed data.
Statistical analyses were performed with the package R [76].

2.5 Results

Of the 34 patient studies, 4 were excluded because of insufficient dynamic data caused by patient movement
or coil artifacts. In total 39 M regions were annoted in the peripheral zone. The number of N.S regions
annotated in the peripheral zone was 21. The number annotated N regions was 30.

When looking at the scatterplots of figure 2.5 a noticeable clustering of features is seen. The scatterplots
demonstrate that the feature values are usable to characterize lesions as M, NS or N. It can be observed
that the NV regions are compact and well clustered. Although the regions of type NS and M show a larger
spread, they are still clustered and can thus be differentiated. Furthermore, the N.S regions appear to be
more clustered than the M regions.

The localization performance of the discrimination between { N, NS} and {M} is demonstrated in
the ROC curve shown in figure 2.6(a). The figure shows that the diagnostic accuracy (AU C),.) was 0.92
(95% confidence intervals = 0.87-0.97)). In figure 2.6(b) the discriminating performance between {/N.S}
{M} regions is demonstrated. The diagnostic accuracy (AU Cy;) in this case was 0.83 ( 95% confidence
intervals = 0.75-0.92)). The ROC curves show that the performances are statistically better than chance.

Figure 2.7 presents a true positive case as well as a true-negative case: in both the transverse and
coronal views of the prostate, a bi-lateral enhancement is seen in the peripheral zone when overlaying
several parametric maps on the T2-w images. Because of the enhancement, both sides are suspicious for
cancer. The CAD system however, calculated a likelihood of malignancy of 80% for the annotated region
that was identified as PCa by histophathology. In the other region, the CAD system calculated a likelihood
of 20% of being malignant. Additionally, histopathology confirmed that there was no evidence for tumor at
the specific location.

2.6 Discussion

This study showed that it is feasible to develop a CAD system capable of discriminating PCa from the
normal peripheral zone and non-malignant disorders with a diagnostic accuracy of 0.92 (0.87-0.97). It
was also shown that it is possible to develop a more clinically relevant CAD system, where the radiologist
typically is only interested in abnormal enhancing areas. For the discrimination of solely non-malignant
suspicious enhancing (N .S) areas from PCa in the peripheral zone, a diagnostic accuracy of 0.83 (0.75-
0.92) was obtained. This CAD system thus has the potential of being a valuable, additional diagnostic
aid.

The proposed CAD method has some similarity with the study of Fiitterer et al. [11]. In their study, it
was shown that when using T2-w images and DCE-MRI in localizing PCa, radiologists achieved an overall
accuracy of 0.92, when discriminating PCa pre-assigned regions from normal peripheral zone and non-
malignant disorder pre-assigned regions. Although the focus of this study was the normal peripheral zone of
the prostate, similar regions were used for the characterization by the CAD system. Furthermore, the same
patient database was used. Our CAD method on the contrary, was trained with primarily pharmacokinetic
features, whereas the radiologist used the T2-w images as an additional feature of region characterization.

The results of this study demonstrate for the first time in an objective manner that including DCE-MRI
can discriminate PCa from NS areas in the peripheral zone. This is supported by former studies where
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True positive fraction
True positive fraction

False positive fraction False positive fraction
(a) ®)

Figure 2.6: ROC curves showing the discriminating performance of the CAD system of the two separate
trained classifiers 77, and 74;¢. The dotted curves are part of the bootstrapping approach and represent the
95% confidence intervals of the solid-line ROC curve. Subfigure 2.6(a) shows the discriminating performance
between regions of type N and NS versus M. Subfigure 2.6(b) shows the discriminating performance be-
tween regions of type N S versus M.

human observers concluded the same [44, 42, 43, 40, 41, 37, 39, 38, 87, 88].

The developed CAD system is capable of displaying multimodal MR images including DWI, T2*-w
images, derived spectral maps from spectroscopic data, etc. Although the CAD program is developed in
such a manner that it can include features from all available images as relevant information to train the
classifier, only the pharmacokinetic and T1 estimate data was used. To further include features from the
additional modalities, registration techniques are essential to compensate for patient movements. It can be
expected that by extracting the additional features, the discriminating performance of the CAD system will
further improve. Several studies indicated that combining multimodal MR images increased the localization
accuracy [11, 57].

Histological correlation with MR images is recognized to be an imperfect gold standard for a number
of reasons. These include: errors in registering the location of the imaging sections with histological
slice specimens, inaccuracies resulting from tissue shrinkage secondary to fixation and errors due to partial
volume averaging effects [38, 84, 89]. In most studies the number of slices is simply counted taking the
shrinkage into account and using the morphology of the central gland, peripheral zone, cysts, calcifications,
and urethra as landmarks to find the corresponding MRI slice. In this study great effort was put into the
histopathology and MRI correspondence for an objective annotation of the ground truth. Therefore a 3D
deformable surface was created to semi-automatically segment the prostate and divide it in the same number
of slice-sections of the histopathology tumor maps. The method ensures that the user is only guided by the
histopathology tumor maps, precontrast T1-w and T2-w images for placement of the ROIs. No DCE-
MRI parametric maps were used as guidance in ROI placement, since this could introduce bias in CAD
performance estimates. To further reduce user-variability, the whole lesion was annotated instead of just
the hotspot as suggested by Stoutjesdijk et. al. [75].

Kiessling et al. [90] evaluated the accuracy of descriptive and physiological parameters calculated from
signal intensity-time curves using T1-weighted DCE-MRI to differentiate prostate cancers from the periph-
eral gland. Although they did not create a CAD system capable of calculating a malignancy likelihood,
they did evaluate the discriminating performance of the kinetic parameters. Their best performing parame-
ter, early degree of enhancement, achieved an AUC of 0.81. This result can be compared to our localizing
classifier AUC,, of 0.92. The difference in performance can be attributed to the method that was cho-
sen to calculate the pharmacokinetic parameters. Kiessling used the method proposed by Brix et al. [91]
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where a fixed arterial input function for every patient is assumed (fixed calibration), whereas in this study
the reference tissue model (per patient calibration) was used (see appendix A). In a previous study [92] we
showed that a per patient calibration indeed has a positive effect on the discriminating performance of PK
parameters over a fixed calibration.

Chan et al. [50] describe the only in-vivo CAD system that provides an estimated malignancy likelihood
by combining information from T2-weighted, T2-mapping, and line scan diffusion images. They achieved
a diagnostic performance of 0.84. This can be compared to our AUC},. of 0.92. The lower performance
is likely attributed to the lack of DCE-MRI features. Moreover, we have also researched and demonstrated
the ability of our method to discriminate suspicious enhancing benign regions from malignant regions. The
latter is of even greater importance in actual clinical conditions.

The current study has a number of limitations. The CAD system is not fully automated, since the user
needs to identify normal peripheral zone for calibration with the reference tissue method (see appendix 2.7).
As aresult, the healthy tissue needs to be annotated in advance, which could result in the annotation of PCa,
which makes the CAD system not clinical usable. An automated calibration technique makes the CAD
system fully automated and is being researched. The effect of user-variability in annotating the ground
truth on the performance has not been researched.

In conclusion, this study demonstrated the possibility to develop a CAD system capable of objectively
discriminating malignant lesions from NS areas located in the normal peripheral zone of the prostate with
an accuracy of 0.83 (95% confidence intervals = 0.75-0.92)).
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2.7 Appendix: DCE-MRI postprocessing and pharmacokinetic mod-
eling

All MRI data was transferred to an independent workstation with in-house build software. Each MR signal
enhancement-time curve was first fitted to a general exponential signal enhancement model as described
previously [37]. This reduces a curve to a 5 parameter model: baseline (sg); start of signal enhancement
(tg), which defines the onset of the exponential curve; time-to-peak (7), the exponential constant; peak
enhancement (s;), the signal amplitude at which the exponential curve levels off; and late wash, defined
as the slope of the late part of the exponential curve. The reduced signal enhancement-time curve was
converted to a reduced tracer concentration [mmol/ml] - time curve [45] effectively converting s, 0 Cyq 5.
We have implemented the method [45] such that in an intermediate step the T1 estimates are computed.
The T1Static parameter is the baseline T1 estimate (sg) prior to contrast enhancement.

Analysis of DCE-MRI data is usually based on the indicator dilution theory and requires knowledge of
the concentration of the contrast agent in the blood plasma. Without any calibration, inter-patient plasma
profile variability causes fluctuations in PK estimates, which are not related to the tissue condition. When
using a power injector the most likely cause of plasma curve differences is the patient itself, e.g. differ-
ences in body weight (total distributional volume), heart rate, vascular condition. Removing the plasma
shape can be regarded as a form of patient calibration. Among the wide variety of techniques for estimating
plasma profiles, we have chosen for the reference tissue method and experienced robust results with the
technique [93]. The reference tissue method assumes that a tissue arca within the patient is available with
a known tissue model based on literature values [94, 93]. By doing a deconvolution the actual tissue im-
pulse response can be determined. Deconvolution of the plasma profile and estimation of pharmacokinetic
parameters conforms to the theoretical derivations [95] but is implemented in the reduced signal space as
shown in the following equation:

Cyd pes
= JPtissue 28
Cyd, Pplasma 28)
1
by = ————————— 2.9)
Ttissue — Tplasma
K'rons — V. k., (2.10)

where V. is an estimate of the extracellular volume [%], K7%"* the volume transfer constant [1/min],
and k., the rate constant [1/min] between extracellular extravascular and plasma space. The subscript
"tissue” stands for a measurement in the tissue under investigation and subscript "plasma’ for the reference
tissue plasma estimates based on literature values [94]. The reference tissue was determined by selecting
manually a set of voxels in the healthy (normal) peripheral zone using whole mount section histopathology
as guidance.
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Computer assisted analysis of peripheral zone
prostate lesions using T2-weighted and dynamic
contrast enhanced T1-weighted MRI

This chapter is based on the manuscript “Computer assisted analysis of peripheral zone prostate lesions us-
ing T2-weighted and dynamic contrast enhanced T1-weighted MRL.” by Pieter C. Vos, Thomas Hambrock,
Jelle Barentsz, Henkjan Huisman Physics in Medicine and Biology, vol. 55, no. 6, pp. 17191734, 2010.
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Abstract

In this study, computer assisted analysis of prostate lesions was researched by combining information
from two different magnetic resonance (MR) modalities: T2-weighted (T2-w) and dynamic contrast en-
hanced (DCE) T1-w images. Two issues arise when incorporating T2-w images in a Computer Aided Diag-
nosis (CADX) system: T2-w values are position as well as sequence dependent and images can be misaligned
due to patient movement during the acquisition. A method was developed that computes T2 estimates from
a T2-w and proton density value and a known sequence model. A mutual information registration strategy
was implemented to correct for patient movement. Global motion is modelled by an affine transformation,
while local motion is described by a volume preserving non-rigid deformation based on B-Splines. The ad-
ditional value to the discriminating performance of a DCE T1-w based CADX system was evaluated using
Bootstrapped ROC analysis.

T2 estimates were successfully computed in 29 patients. T2 values were extracted and added to the CADx
system from 39 malignant, 19 benign and 29 normal annotated regions. T2 values alone achieved a diagnostic
accuracy of 0.85 (0.77-0.92) and showed a significantly improved discriminating performance of 0.89 (0.81-
0.95), when combined with DCE T1-w features.

In conclusion, the study demonstrated a simple T2 estimation method that has a diagnostic performance such
that it complements a DCE T1-w based CADx system in discriminating malignant lesions from normal and
benign regions. Additionally, the T2 estimate is beneficial to visual inspection due to the removed coil profile
and fixed window and level settings.
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3.1 Introduction

Several studies have indicated that multimodal MRI increases the prostate cancer (PCa) localization accu-
racy of the radiologist. The accuracy is, however, dependent on the experience of the radiologist [57, 11, 50].
To help improve the diagnostic accuracy of the unexperienced radiologist, we investigated the value of
a Computer Aided Diagnosis (CADx) system. In a previous study [96], the feasibility was shown of a
CADx system that calculates the malignancy likelihood of a given suspicious arca in the peripheral zone
of the prostate using T1-w DCE-MRI. Discrimination of malignant and benign regions was performed
using a support vector machine (SVM) as classifier that was trained with features extracted from quantita-
tive pharmacokinetic (PK) maps as well as T1 estimates. The study showed that a diagnostic accuracy of
0.83 (0.75-0.92) was obtained by a stand-alone CADx. It is expected that by adding more MR modalities,
the discriminating performance of the CADx system will further improve.

In this paper, the possibility of using T2-w images as an additional MR modality to discriminate PCa
from benign regions in the peripheral zone (PZ) of the prostate is studied, as they are also used by the
radiologist for localizing PCa. Two issues arise when including the T2-w images in a DCE based CADx
system. Firstly, there can be misalignment of T2-w and DCE images as patient movement between the series
is inevitable during a prostate study. Secondly, the acquired T2-w signal intensities are not linearly related
to the underlying tissue T2 relaxation times and depend on the 3D spatial position relative to the receiving
coil elements. To resolve the nonlinearity, a T2 estimator was used that was published previously [97, 98].
The approach requires both T2-w, proton density (PD) images and a known sequence model. Note that
although the acquisition of quantitative T2 maps is possible using a multi-echo spin echo technique in a
reasonable time span on contemporary MR systems, spatial resolution will be considerably lower. Patient
movement can be retrospectively corrected by aligning images using image registration, which is necessary
for both the T2 estimation as well as inclusion in the CADx system. In this study a method is proposed that
models global shifts with affine transformation and local deformation using B-Splines. The method also
estimates the coefficients to maximize the mutual information (M) between the two images. The method
is based on the work of Rueckert et al. [99] which was further developed and tested by Mattes et al. [100].
M T based registration is a common choice to register different modalities and is considered suitable for
registration of images that do not have the same pixel intensity range [101, 102, 103, 104].

To our knowledge, there have been no reported studies about similar work on PCa using DCE-MRI and
T2-w images. Chan et al. [50] describe the only in-vivo CADx system that provides an estimated malig-
nancy likelihood using multimodal MRI. They constructed a summary statistical map of the peripheral zone
based on the utility of multi-channel statistical classifiers combining textural and anatomical features in PCa
areas from T2-w images, diffusion weighted images (DWI), PD maps and T2 maps. The achieved diag-
nostic performance of 0.84 is, however, of limited clinical value because the discrimination did not include
benign regions such as prostatitis or hemorrhage. Madabhushi et al. [69] generated similar statistical maps
based on T2-w images using whole mount sections as the “ground truth” and showed the additional value of
combining numerous features. Unfortunately no discrimination performance was calculated, computation
time for analysis of one complete MRI scene exceeds an hour and the method is limited to 2D ex vivo MRI.
Viswanath et al. [105] extended the method of Madabhushi et al. with a non-rigid registration scheme to
map PCa whole mount histological sections onto corresponding 2D DCE-MRI. Though the method po-
tentially improves the objective annotation of PCa, the corresponding slice still needs to be selected. The
unsupervised classification by k-means clustering achieved an accuracy of 77%. Their advocated method-
ology is, however, evaluated on a per-pixel basis, whereas the proposed method captures the heterogeneous
nature of PCa by using percentiles within a given region [73, 74].

The purpose of this study was to investigate the feasibility of including T2-w MR in a multi-modal
computer aided diagnostic system for prostate MR.

3.2 Materials and Methods

3.2.1 Patient Characteristics

The study set consisted of 34 consecutive patients (mean age, 60 years; range, 50-69 years) that were
selected in a previous study of Fiitterer et al. [11]. These patients had biopsy-proven PCa and underwent
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DCE-MR imaging at 1.5-T, complementary to the routine staging MR imaging examination of the prostate.
Patients were included (between April 1, 2002, and June 1, 2004) in the study only if they were candidates
for radical retropubic prostatectomy within 6 weeks after MR imaging. The study of Fiitterer et al. was
approved by the institutional review board and informed consent was obtained from all patients prior to
MR imaging. After imaging, all patients underwent radical retropubic prostatectomy. Exclusion criteria
were: previous hormonal therapy, contra-indications to MR imaging (e.g., cardiac pacemakers, intracranial
clips), contraindications to endorectal coil insertion (¢.g., anorectal surgery, inflammatory bowel disease).
The mean prostate specific antigen level was 8 ng/mlL (range, 3.2-23.6 ng/ml.), mean Gleason score was 6.1
(range, 5-8). MRI was performed on average 3 weeks after transrectal ultrasonographically guided sextant
biopsy of the prostate.

3.2.2 MR Protocol

Images were acquired with a 1.5T whole body MR scanner (Sonata, Siemens Medical Solutions, Erlan-
gen, Germany). A pelvic phased-array coil as well as a balloon-mounted disposable endorectal surface
coil (MedRad®, Pittsburgh, PA, USA, inserted and inflated with approximately 80 cm? of air) were used
as receiver. The integrated body coil was used for transmit. All patients received one mg of glucagon
(Glucagon®, Novo Nordisk, Bagsvaerd, Denmark) was administered intramuscularly directly prior to the
MRI scan, to reduce peristaltic bowel movement during the examination.

Table 3.1 shows the sequence parameters. The protocol for acquisition consisted first of a localizer
and two fast gradient spin echo measurements for patient and coil positioning verification. Thereafter,
high-spatial-resolution T2-w turbo spin echo imaging in the axial, sagittal and coronal planes, covering
the prostate and seminal vesicles, was performed. Next, 3D T1-w spoiled gradient echo images were ac-
quired before and during an intravenous bolus injection of paramagnetic gadolinium chelate (0.1 mmol/kg,
gadopentetate, Magnevist®; Schering, Berlin, Germany) using a power injector (Spectris, Medrad®, Pitts-
burgh, PA, US) with an injection rate of 2.5 ml/second followed by a 15 ml saline flush. The recorded
repetition time (TR) of 34 msec represents the time to acquire 12 k-lines (two of 12 slices where used for
oversampling). A 6/8 partial Fourier reconstruction (FFT) was used to reduce the acquisition time. With
these settings, complete 3D volumes were acquired every two seconds for a duration of 120 seconds. Before
contrast injection, the same axial 3D T1-w gradient echo sequence, though with a longer TR time without
partial Fourier reconstruction, was used to obtain PD-w images at identical positioning to allow calcula-
tion of the T2 estimates and the PK parameters. The gadolinium concentration curves and PK parameters
were calculated as reported by Huisman et al. [37]. The PK parameter set that was used in this experi-
ment, consisted of the pre-contrast static value of the T1 estimate of the longitudinal relaxation rate in [ms]
(T'1Static), the relative size of the extracellular, extravascular space (V.), the rate constant (k.p) and the
transfer constant (K'7%"*). They are described in detail in [96].

3.2.3 Image Registration Algorithm

This section describes an image registration method that automatically seeks for an estimate of the trans-
formation 7" that aligns the PD image F' and T2-w image M by optimizing a similarity measure S over the
transformation T

S(F, M(T)). (3.1)

The registration procedure consisted of several components, the most important of which were the choice
of similarity measure, the transformation degrees of freedom and the cost function for similarity of mea-
surement.

Deformation model

An initial alignment of I' and M was achieved using a 12 element affine transformation matrix 7'g;opai,
as reported previously [106]. In general, an affine transformation is composed of linear transformations
(rotation, scaling or shear) and a translation. It ensures a global registration with low computational costs.
An additional transformation 77,.,; modeled local deformation. In this work, deformations are modelled on
cubic B-splines, because of their computational efficiency (separability in multiple dimensions, calculation



Table 3.1: Parameters for MR Imaging

S Duration TR TE Echo No. of Flip angle Sl.lce . No. of F.leld of Phase—l Spatial

equence Seq. type (min) (msec) (msec) train averages (der) thickness Matrix slices view (mm  encoding resolution
length (NEX) g (mm) X mm) direction

T2-w Axial tse’ 3ms0s 4400 132 15 2 1807 4 240x512  11-15 132x280  R-L3 .55%.55%4

T2-w Sagittal tse 4m40s 4000 132 15 2 1807 4 179x512 11-15 100x280 A-P* .55x.55x%4

T2-w Coronal tse 4m 4000 132 15 2 1807 4 179x512 11-15 100x280 R-L .55x.55x%4

Dynamic T1-w

PD 3D tfi2 1m0s 800 1.6 1 1 8 4 77x256 108 240x280 A-P 3.1x1.1x4

gradient-echo

Dynamic T1-w

fast 3D t Om2s 345 1.6 1 1 14 4 77x256 108 240x280 A-P 3.1x1.1x4

gradient-echo

I Turbo spin echo, 2Turbo flash, 3Right—1eft, 4 Anterior-Posterior, 5Represents the time to acquire 12 k-lines,® Two of 12 slices used for oversampling, 7Refocussing flip angle
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via filtering), smoothness, and local control [99]. A B-Spline transformation deforms a volume by manipu-
lating an underlying mesh of control points (D). Deformation is calculated using the positions of a 4x4x4
neighborhood of control points and third-order spline polynomials, where the parameters of the B-Spline
transformation are the coordinates of the control points. In the presented method, the initial T;p,; Was
used as offset of T}, .q1:

T = Eacal~Tgl0bal7 (3.2)

Similarity measure

In this study M T was used as a similarity measure because /' and A do not have the same appearance.
When F' and M are optimally aligned, their M I is maximal:

N

T = argmin(~MI() (3.3)

where M I(+)) denotes the M1 similarity measure as a function of the transformation parameters, . Al-
though several implementations for the computation of M I exists, the presented method is based on the
work of Mattes et al. [100]. Their registration method makes efficient use of the B-Spline basis functions
that models the deformation field and converges quickly when compared to other methods, due to stochastic
sampling [107].

M I relates the joint entropy to the entropies of the modalities separately:

MI() = H(f(z)) + H(m((x))) — H(f (@), m(¢(x))), (3.4)

where H (f(z)) and H(m(v(x))) are the marginal entropies, H ( f, m; ) the joint entropy, f(z) and m(x)
denote observations of F' and M, respectively and = denotes the voxel coordinate. The joint entropy
H(f,m;) uses a set of fixed bin centres in f and moving bin centres in m as initialization.

The entropy of an image is computed from the probability density function (pdf) of the image inten-
sities. Parzen-windowing was used to obtain a differentiable pdf. This reduces the effects of quantization
from interpolation and discretization from binning the data, see Thevenaz et al. [108] for a detailed descrip-
tion. The joint entropy is computed using:

H(fm;w) = 3 wilIe(er) = Pom(Iu(glae; ) —m), (3.5)

reXp

where Ip(xp) and Iy (g(zp; ) are samples of the fixed and interpolated moving images, respectively and
wy and wy, are the Parzen window kernels [100]. To reduce the computational costs, the set of intensity
samples (X ) was set to a randomly selected 20% of the total number of voxels and the joint histogram
was calculated based on 100 bins for each image. These settings gave robust results on all experiment data.
To further speed up the calculation of the M I(+), samples were only drawn from a subregion of F'. This
will be further discussed in section 3.2.3.

Constraint on the transformation

In addition to the M similarity measure, a regularization term P was incorporated in the registration
method to constrain the deformation of the coordinate space:

C(F,M(T))=-S(F,M(T))+ aP(T), (3.6)

where « is a user defined weight factor for P, allowing more control over the influence of the regularization
term on the overall cost C'. Similar to the work of Rohlfing et al. [109], a volume preserving constraint was
incorporated and implemented by penalizing deviations of the Jacobian determinant J of the deformation
from unity, that is, it assumes local rigidity and penalizes local tissue expansion and compression:

P@) = z% S Jlog(Jy()], 3.7)

zeD

where D represents the set of control points used for the deformation.
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Calculation of the gradient of the constraint is necessary for an efficient and robust optimization (sec
section 3.2.3). The derivatives were calculated using the common finite-ditference approximation:

oP P+ 6) — P()
5 5 ’

where J; equals 1 mm and the subscript ¢ refers to the parameter index.

(3.8)

Optimization of the cost function

The L.-BFGS-B [110], a limited-memory, quasi-Newton minimization package, was used to optimize the
cost function C' until termination criteria were satisfied. The limited-memory method is well suited for op-
timizing the large number of parameters ¢ in the B-Spline transformation when a high resolution of control
points is used. L-BFGS-B provides an additional advantage in that it allows bound constraints (B) on the
independent variables. In this manner, maximum displacements of the control points can be controlled.
Note that displacements in the slice direction were considered unlikely and therefore restricted with a fixed
bound set to 0. The optimization terminates when the change in C' between consecutive iterations falls
below the tolerance of 1e .

Centered cropped optimization strategy

A high resolution of control points in the B-Spline transform 7" comes with high computational costs, due
to the high number of displacements of the control points D that needs to be explored. For the intended
application, the focus is on the non-rigid displacement of the prostate. Hence, it suffices to limit the regis-
tration method to the center area of the pelvis, where the prostate is situated. The set of control points (D) is
defined over the entire volume (F') plus a finite support region of three at the borders, thereby extending the
region of interest. Simply defining a smaller mesh inside the volume results in interpolation artifacts near
the edges of the grid. Therefore, optimization was limited to a centered subset (D r C D) of control points.
Because the number of parameters in Dy is much smaller, the registration method becomes considerably
faster. The resolution of the grid control points was set to 14x14x8 (including the finite support region). A
centered subregion (D g) of size 4x4x3 was chosen such that the prostate area was covered in all cases.

3.2.4 Histological Verification

All patients underwent radical retropubic prostatectomy. From the prostatectomy specimens, whole-mount
step-section histology tumor maps were created by an experienced pathologist who was blinded to the imag-
ing results. The whole-mount step-section histology tumor maps were used as ground truth for training and
evaluating the performance of the CADx system. The morphology of the central gland, peripheral zone,
cysts, calcifications and urethra were used as landmarks to find the corresponding MRI slice. The anatomy
of the prostate is best imaged on T2-w images and were therefore used for correlating the histopathological
map. A method was implemented to prevent bias when annotating the ground truth, as described else-
where [96]. Using this method, regions of normal PZ, PCa, benign PZ tissue (identified as tumor suspicious
on T2-w and DCE-MRI but not representing tumor on pathology) and levator ani muscle were outlined
manually. The regions that contained muscle were used for the reference tissue method, as explained in
section 3.2.5.

3.2.5 AQuantitative T2 estimation from T2-w and PD series

T2 relaxation times can be computed with a fast method that uses a known sequence signal model as prior
knowledge and only a few echo times (TE) to fit the T2 relaxation curve. Hittmair et al. [45] presented a
method that estimates the T1 relaxation rate with only two repetition times (TR) and a spin echo sequence
as signal model. In this study a comparable approach is applied to estimate the T2 using a T2-w turbo spin
echo sequence and PD-w gradient echo sequence. It is assumed that a T2-w sequence is used, such that
the TR is much larger then the T1 tissue relaxation times. Then the effect of T1 can be neglected and the
received signal s at location = for a T2-w turbo spin echo sequence is:

st2w(2) = Growsin(Orw ) p(a)exp(—TE/T2(x)), (3.9)
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where Gy, represents the gain setting and 69, the excitation flip angle for the T2-w sequence and p is
a function comprising proton density fluctuations and coil profile at location z. The spatial dependence
through p(z) models the commonly observed spatial inhomogeneity that is caused by the receive and send
coil sensitivity profiles. In case of a PD-w image, the effect of T1 and T2 should be reduced when TE is
set short and TR is set long. Assuming that both sequences use the same coil setup (p(z) is identical), the
received PD signal can be approximated by:

spa(2) = Gpasin(Bpq)p(z), (3.10)

where G4 is the gain setting and 0,4 the excitation flip angle for the PD-w gradient echo sequence. The
T'2 at position z is derived by rewriting Eq. 3.9 and Eq. 3.10:

B -TE
~ log(sizw(@)) —log(spa(2)) — log(mhaw,pa)’

T2(x) (3.11)

where 72. pa 1S the gain ratio of Gy sin(biw ) 10 Gpasin(fyq). In theory, 1 can be estimated from the
MR sequences parameters, but the data was not stored in the DICOM header provided by the MR system.
Furthermore, any coil profile artifacts, differences in voxel size, TR or receiver bandwidth can still result
in acquisition-to-acquisition signal intensity variations, in spite of the fact that commercial MR systems
are nowadays equipped with internal calibration methods. These variations are captured in 7 and need to
be estimated from the data. Therefore, an estimator for the gain ratio 7,2, pq¢ Was built using a reference
tissue R,.; with known T2 value from literature. In this study levator ani muscle was used (35.3+3.85
msec at 1.5T and 37°C [111]). The gain setting can now be found by performing least squares optimization
using the data from all pixels within the annotated reference tissue:

Nopt = argmin Y (T2(x;7) — 35)°. (3.12)
n
TERrey

The least square procedure that was used, uses Brent’s method of parabolic interpolation, protected by
golden-section subdivisions if the interpolation is not converging.

3.2.6 Training and Validation

The CADx system extracts a PK and T2 feature set from a region of interest (ROI) using percentiles. The
extracted set of features is presented to a trained SVM which calculates the malignancy likelihood for a
lesion. The calculated likelihood is presented to a radiologist to assist in his or her diagnosis. The CADx
system was implemented in an open source programming environment The Visualization ToolKit (VTK)
using the Tool Command Language (Tcl) and C++.

The discriminating performance of the CADX system was estimated using the area under the receiver
operator characteristics (ROC) curve (AUC). Classification was performed using SVM analysis on the fea-
ture set (provided by the statistical package R [76])

A prospective—performance estimate of the lesion analysis was made by means of leave-one-patient-out
(LLOPO) cross validation. T.LOPO avoids training and testing on the same data, estimating the likelihoods
of ROIs in that left-out case and repeating the procedure until each case has been tested individually. This
study was a diagnostic assessment with patient-clustered data, therefore a bootstrap resampling approach
with 10 000 iterations, was used for estimating the mean AUCs and 95% confidence intervals, as proposed
by Rutter [86].

The intent of this study was not to provide a new T2 estimator. Nevertheless, some validation was
performed to research the validity of the T2 estimates. Firstly, visual inspection was performed. Secondly,
the median and variation for T2 relaxation time of the normal peripheral zone were computed. The results
were compared with those found in literature. Thirdly, the method was compared with a multi-echo spin
echo sequence, where the T2 relaxation curve was automatically fitted by a Siemens mono-exponential
decay fitting algorithm. The sequence settings were 7 echo times (15.6-109.2msec), a spatial resolution of
1.2x1.2x3.0mm, matrix of 192x96, field of view of 230x115, TR of 2080, flipangle of 180 and 16 slices.
Levator ani muscle was used as reference and the mean relaxation time was calculated for Muscle, Benign
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Figure 3.5: ROC curves showing the discriminating performance of the CADx system using T2 estimates
and T2-w values. The T2 estimates were first extracted when no registration was applied, second after affine
registration and third after non-rigid registration. The left graph shows the result at a differentiation setup,
where PZ and benign PZ regions are discriminated from malignant PZ regions. It can be noticed that normal
PZ and benign regions are well differentiable from malignant regions. The right graph demonstrates the
discriminating performance in a localization setup, where normal PZ is differentiated from both benign regions
and malignant regions.

Figure 3.6: Parameters grid search for the B-Spline registration, with bound (B) the optimizer constraint on
the displacement of the control points, « the Jacobian factor and Az the diagnostic performance of the CADx
system.

curacy. As an example, Fig. 3.2 illustrates organ movement that could not be compensated for using affine
registration, but was resolved by free form deformation using cubic B-Splines [99]. A disadvantage of this
technique is, that it can lead to loss of topology. Therefore, the Jacobian determinant as volume preserving
constraint on the transformation was included. Fig. 3.6 demonstrates that including such a constraint, the
diagnostic performance of the CADx system improves and leads to a more robust registration, as it is less
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from different echo times (depending on the echo train length and k-space sampling) and therefore the
estimated T2 values might not be in exact concordance with a multi-echo spin echo derived estimation. The
slight inaccuracy, however, will be evident in all patients and all tissues evaluated. The inaccuracy will be
compensated for by using reference tissue calibration (e.g., muscle). Fourthly, the T2-w and PD-w coil
setup should be identical.

The current study has a number of limitations. One limitation is the amount of time needed for the
non-rigid registration, which now ranges from 5 min to 15 min. This, however, will not conflict the in-
tended application, since the radiologist does not evaluate the images directly after the acquisition and the
registration can thus be performed offline. A second limitation is the manual annotation of levator ani mus-
cle, which is needed for the reference tissue method. One solution is to have more information on actual
gain coefficients and sequence models used by the MR system. Yet the reference tissue method may have
a positive effect on the discriminating performance as stated above. Another potential method would be
an automated segmentation of the levator ani muscle and is part of further research. Nevertheless, manual
segmentation of the muscle and computing the T2 estimates is performed in seconds. Third limitation is
that the registration method parameter Jacobian constraint weight (o) requires tuning (Fig. 3.6). Different
MR hardware (e.g., at 3 Tesla) and sequence settings may require different parameter settings.

In conclusion, the study demonstrated a simple T2 estimation method that has a diagnostic performance
such that it complements a DCE T1-w based CADx system in discriminating malignant lesions from normal
and benign regions with a significant improved accuracy of 0.89 (0.81-0.95) compared to only using DCE
derived features.
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Automated calibration for computerized
analysis of prostate lesions using
pharmacokinetic magnetic resonance images

This chapter is based on the manuscript “Automated calibration for computerized analysis of prostate le-
sions using pharmacokinetic magnetic resonance images.” by Pieter C. Vos , Thomas Hambrock (MD) ,
Jelle Barentsz , Henkjan Huisman MICCAI September 20-24, 2009, Proceedings, Part II, Volume 576172009,
Pages 836-843.
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Chapter 4

Abstract

The feasibility of an automated calibration method for estimating the arterial input function when calculating
pharmacokinetic parameters from Dynamic Contrast Enhanced MRI is shown. In a previous study [96],
it was demonstrated that the computer aided diagnoses (CADX) system performs optimal when per patient
calibration was used, but required manual annotation of reference tissue. In this study we propose a fully
automated segmentation method that tackles this limitation and tested the method with our CADx system
when discriminating prostate cancer from benign areas in the peripheral zone.

A method was developed to automatically segment normal peripheral zone (P Z) tissue. Context based seg-
mentation using the Otsu histogram based threshold selection method and by Hessian based blob detection,
was developed to automatically select normal PZ as reference tissue for the per patient calibration.

In 38 consecutive patients carcinoma, benign and normal tissue were annotated on MR images by a radiologist
and a researcher using whole mount step-section histopathology as standard of reference. A feature set com-
prising pharmacokinetic parameters was computed for each ROI and used to train a support vector machine
as classifier.

In total 42 malignant, 29 benign and 37 normal regions were annotated. The diagnostic accuracy obtained
for differentiating malignant from benign lesions using a conventional general patient plasma profile showed
an accuracy of 0.65 (0.54-0.76). Using the automated segmentation per patient calibration method the diag-
nostic value improved to 0.80 (0.71-0.88), whereas the manual segmentation per patient calibration showed a
diagnostic performance of 0.80 (0.70-0.90).

These results show that an automated per-patient calibration is feasible, a significant better discriminating per-
formance compared to the conventional fixed calibration was obtained and the diagnostic accuracy is similar
to using manual per-patient calibration.
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4.1 Introduction

Several studies have indicated that multi-modal MRI increases the prostate cancer (PCa) localization accu-
racy of the radiologist. The accuracy is, however, dependent on the experience of the radiologist [57, 11, 50].
To help improve the diagnostic accuracy of the (unexperienced) radiologist, we are investigating the possi-
ble additional value of CADx. Previously [96], the feasibility was demonstrated of an in-house developed
CADx system that calculates the malignancy likelihood of a given suspicious area in the peripheral zone of
the prostate using T1-w DCE-MRI at 1.5T. Discrimination of malignant and benign regions was performed
using a support vector machine (SVM) as classifier that was trained with features extracted from quanti-
tative pharmacokinetic (PK) maps as well as T1 estimates. The study showed that a diagnostic accuracy
of 0.83 (0.75-0.92) was obtained by a stand-alone CADx, which is comparable to an expert radiologist
performance.

Pharmacokinetic (PK) DCE-MRI could further improve PCa differentiation by reducing inter patient
and inter MR scanner fluctuations compared to conventional DCE-MRI. PK tissue parameters are estimated
by fitting a tracer physiologic compartment model to the observed DCE-MRI data that is driven by a plasma
profile. Various techniques for estimating plasma profiles exist. Quite some PK estimators do not include
per patient calibration, but use a general patient plasma profile (fixed calibration) [115, 116]. Huisman
et al. [117] demonstrated that the plasma profile varies per patient and thus, fixed calibration can cause
fluctuation among patient when estimating the PK parameters. In [92], it was shown that the CADx system
performs significantly better using per patient calibration instead of fixed calibration. The presented method
was, however, dependent on manual annotation of healthy tissue before a malignancy likelihood could be
calculated. This study addresses that limitation by presenting a more objective and automated calibration
method and investigates its effect on the diagnostic accuracy of the CADx system.

The purpose of this study was to investigate the feasibility of a CADx system capable of objectively
discriminating PCa from non-malignant disorders located in the peripheral zone of the prostate using an
automated per patient calibration method.

4.2 Method

4.2.1 Pharmacokinetic modeling

Analysis of DCE-MRI data requires knowledge of the concentration of the contrast agent in the blood
plasma. Without calibration (or fixed calibration), inter-patient plasma profile variability causes fluctuations
in PK estimates, which are not related to the tissue condition. When using a power injector the most likely
cause of differences in plasma curves are differences in body weight (total distributional volume), heart rate,
vascular condition. Removing the plasma shape can be regarded as a form of patient calibration whereas
fixed calibration uses a fixed plasma function over all patients.

The parametric model for analyzing contrast agent concentration time curves in DCE-MRI is the two
compartment model of Tofts et al. [95]. The observed concentration-time curve can be expressed as:

Cy(t) = h(t; to, Vo, K™ W ashout) ® Cp(t), 4.1)

where C,(.) denotes the observed tracer concentration, 4(.) the tissue impulse response, Cy () the plasma
input function and to,V., K" W ashout are parameters from the model. The reference tissue method
estimates the plasma input function by:

A

Cp(t) = Cr’@f,v (t)/hmf,v (t)7 4.2)
where Cy.¢ ., (.) represents the observed plasma profile for tissue v and hy.y ., (.) a reference plasma profile

for tissue v based on literature. The reference tissue method is considered to be a robust technique [93].

4.2.2 Automated per patient calibration

In a previous study [92], it was demonstrated that using PZ as reference tissue gave good results for
estimating PK parameters. In this study a method was developed to auto segment PZ. The method is
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(a) DCE of the prostate area. (b) DCE of the bladder area.

Figure 4.1: Rational for modeling an early and large enhancing blob in the pelvic area.

divided into two stages. First, the location of the prostate is detected using a blob detection method. In the
second stage, this location is further refined to segment a PZ region.

Automated localization of the prostate

The prostate can be modelled as a large enhancing area (or blob) in the pelvis. Figure 4.1(a) demonstrates
this model where the prostate can easily be detected by a human observer. Large and strong enhancements
can be observed in the transition zone of the prostate making it suitable for detection. First experimental
results showed however, that this assumption is not only true for the prostate. Because the acquisition
time for the DCE-MRI can be rather long (3 min), contrast agent also arrives in the bladder, resulting
in a comparably large enhancing blob, as demonstrated in figure 4.1(b). The prostate model is therefore
extended by including the arrival time of the contrast agent (¢o of C,(¢)). Otsu’s automatic threshold
selection method from gray-level histograms ([118]) is used to segment early enhancing structures in the
relative enhancement image V' (x):

Vo (x){ X(X) , to(z) <thots 4.3)

A common approach to detect blobs is to consider the Taylor expansion of V5 at multiscale for a given
neighborhood of pixel = [119],

Vo (x4 6x,0) = Vo(x,0) + 6xI'V, + 6xT H,ox, (4.4)

where V, and H,, are the gradient vector and Hessian vector of an image at scale o. Here, V is convolved
using derivatives of Gaussians:

é é
EVO(X7 o) = UVO(X)&G()Q o). 4.5)

Next, from H, eigenvalues A, are compuied, corresponding the the k-th normalized vector ¢ and
analyzed to determine the likelihood of a pixel x belonging to a blob. This analysis is based on the following
likelihood function (for bright blob, dark background):

P(x, o) = (@) A (@)] [ As ()], (4.6)





















































































































































































































