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Abstract
In this study, computer-assisted analysis of prostate lesions was researched
by combining information from two different magnetic resonance (MR)
modalities: T2-weighted (T2-w) and dynamic contrast-enhanced (DCE) T1-w
images. Two issues arise when incorporating T2-w images in a computer-
aided diagnosis (CADx) system: T2-w values are position as well as sequence
dependent and images can be misaligned due to patient movement during the
acquisition. A method was developed that computes T2 estimates from a T2-w
and proton density value and a known sequence model. A mutual information
registration strategy was implemented to correct for patient movement. Global
motion is modelled by an affine transformation, while local motion is described
by a volume preserving non-rigid deformation based on B-splines. The
additional value to the discriminating performance of a DCE T1-w-based CADx
system was evaluated using bootstrapped ROC analysis. T2 estimates were
successfully computed in 29 patients. T2 values were extracted and added to the
CADx system from 39 malignant, 19 benign and 29 normal annotated regions.
T2 values alone achieved a diagnostic accuracy of 0.85 (0.77–0.92) and showed
a significantly improved discriminating performance of 0.89 (0.81–0.95), when
combined with DCE T1-w features. In conclusion, the study demonstrated a
simple T2 estimation method that has a diagnostic performance such that it
complements a DCE T1-w-based CADx system in discriminating malignant
lesions from normal and benign regions. Additionally, the T2 estimate is
beneficial to visual inspection due to the removed coil profile and fixed window
and level settings.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Several studies have indicated that multimodal MRI increases the prostate cancer (PCa)
localization accuracy of the radiologist. The accuracy is, however, dependent on the experience
of the radiologist (Hricak et al 2007, Futterer et al 2006, Chan et al 2003). To help improve the
diagnostic accuracy of the unexperienced radiologist, we investigated the value of a computer-
aided diagnosis (CADx) system. In a previous study (Vos et al 2008a), the feasibility of a
CADx system was shown that calculates the malignancy likelihood of a given suspicious area
in the peripheral zone of the prostate using T1-w DCE-MRI. Discrimination of malignant and
benign regions was performed using a support vector machine (SVM) as a classifier that was
trained with features extracted from quantitative pharmacokinetic (PK) maps as well as T1
estimates. The study showed that a diagnostic accuracy of 0.83 (0.75–0.92) was obtained by
a standalone CADx. It is expected that by adding more MR modalities, the discriminating
performance of the CADx system will further improve.

In this paper, the possibility of using T2-w images as an additional MR modality to
discriminate PCa from benign regions in the peripheral zone (PZ) of the prostate is studied,
as they are also used by the radiologist for localizing PCa. Two issues arise when including
the T2-w images in a DCE-based CADx system. First, there can be misalignment of T2-
w and DCE images as patient movement between the series is inevitable during a prostate
study. Secondly, the acquired T2-w signal intensities are not linearly related to the underlying
tissue T2 relaxation times and depend on the 3D spatial position relative to the receiving coil
elements. To resolve the nonlinearity, a T2 estimator was used that was published previously
(Engelbrecht et al 2003, Mulkern et al 2004). The approach requires both T2-w, proton
density (PD) images and a known sequence model. Note that although the acquisition of
quantitative T2 maps is possible using a multi-echo spin echo technique in a reasonable time
span on contemporary MR systems, spatial resolution will be considerably lower. Patient
movement can be retrospectively corrected by aligning images using image registration,
which is necessary for both the T2 estimation and inclusion in the CADx system. In this
study a method is proposed that models global shifts with affine transformation and local
deformation using B-splines. This method also estimates the coefficients to maximize the
mutual information (MI) between the two images. The method is based on the work of
Rueckert et al (1999) which was further developed and tested by Mattes et al (2003). MI-
based registration is a common choice to register different modalities and is considered suitable
for registration of images that do not have the same pixel intensity range (Studholme et al
1997, Maes et al 1997, Wells et al 1996, Pluim et al 2003).

To our knowledge, no studies have been reported about similar work on PCa using
DCE-MRI and T2-w images. Chan et al (2003) describe the only in vivo CADx system
that provides an estimated malignancy likelihood using multimodal MRI. They constructed
a summary statistical map of the peripheral zone based on the utility of multi-channel
statistical classifiers combining textural and anatomical features in PCa areas from T2-w
images, diffusion-weighted images (DWI), PD maps and T2 maps. The achieved diagnostic
performance of 0.84 is, however, of limited clinical value because the discrimination did not
include benign regions such as prostatitis or hemorrhage. Madabhushi et al (2005) generated
similar statistical maps based on T2-w images using whole mount sections as the ‘ground
truth’ and showed the additional value of combining numerous features. Unfortunately no
discrimination performance was calculated, computation time for analysis of one complete
MRI scene exceeds an hour and the method is limited to 2D ex vivo MRI. Viswanath et al
(2008) extended the method of Madabhushi et al with a non-rigid registration scheme to map
PCa whole mount histological sections onto corresponding 2D DCE-MRI. Though the method
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potentially improves the objective annotation of PCa, the corresponding slice still needs to
be selected. The unsupervised classification by k-means clustering achieved an accuracy of
77%. Their advocated methodology is, however, evaluated on a per-pixel basis, whereas the
proposed method captures the heterogeneous nature of PCa by using percentiles within a given
region (Collins and Padhani 2004, Padhani 2003).

The purpose of this study was to investigate the feasibility of including T2-w MR in a
multi-modal computer-aided diagnostic system for prostate MR.

2. Materials and methods

2.1. Patient characteristics

The study set consisted of 34 consecutive patients (mean age, 60 years; range 50–69 years) that
were selected in a previous study of Futterer et al (2006). These patients had biopsy-proven
PCa and underwent DCE-MR imaging at 1.5-T, complementary to the routine staging MR
imaging examination of the prostate. Patients were included (between 1 April 2002 and 1 June
2004) in the study only if they were candidates for radical retropubic prostatectomy within
6 weeks after MR imaging. The study of Fütterer et al was approved by the institutional
review board and informed consent was obtained from all patients prior to MR imaging.
After imaging, all patients underwent radical retropubic prostatectomy. Exclusion criteria
were previous hormonal therapy, contra-indications to MR imaging (e.g. cardiac pacemakers,
intracranial clips), contraindications to endorectal coil insertion (e.g. anorectal surgery,
inflammatory bowel disease). The mean prostate-specific antigen level was 8 ng mL−1 (range
3.2–23.6 ng mL−1) and the mean Gleason score was 6.1 (range 5–8). MRI was performed on
average 3 weeks after transrectal ultrasonographically guided sextant biopsy of the prostate.

2.2. MR protocol

Images were acquired with a 1.5 T whole body MR scanner (Sonata, Siemens Medical
Solutions, Erlangen, Germany). A pelvic phased-array coil and a balloon-mounted
disposable endorectal surface coil (MedRad R©, Pittsburgh, PA, USA, inserted and inflated
with approximately 80 cm3 of air) were used as a receiver. The integrated body coil was used
for transmitting. All patients who received 1 mg of glucagon (Glucagon R©, Novo Nordisk,
Bagsvaerd, Denmark) were administered intramuscularly directly prior to the MRI scan, to
reduce peristaltic bowel movement during the examination.

Table 1 shows the sequence parameters. The protocol for acquisition consisted first of
a localizer and two fast gradient spin echo measurements for patient and coil positioning
verification. Thereafter, high-spatial-resolution T2-w turbo spin echo imaging in the axial,
sagittal and coronal planes, covering the prostate and seminal vesicles, was performed. Next,
3D T1-w spoiled gradient echo images were acquired before and during an intravenous bolus
injection of paramagnetic gadolinium chelate (0.1 mmol kg−1, gadopentetate, Magnevist R©;
Schering, Berlin, Germany) using a power injector (Spectris, Medrad R©, Pittsburgh, PA, USA)
with an injection rate of 2.5 ml s−1 followed by a 15 ml saline flush. The recorded repetition
time (TR) of 34 ms represents the time to acquire 12 k-lines (two of 12 slices were used for
oversampling). A 6/8 partial Fourier reconstruction (FFT) was used to reduce the acquisition
time. With these settings, complete 3D volumes were acquired every 2 s for a duration of
120 s. Before contrast injection, the same axial 3D T1-w gradient echo sequence, though
with a longer TR time without partial Fourier reconstruction, was used to obtain PD-w images
at identical positioning to allow calculation of the T2 estimates and the PK parameters. The
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Table 1. Parameters for MR imaging.

Echo No of Flip Slice No Field of Phase-
Sequence Duration TR TE train averages angle thickness of view encoding Spatial

Sequence type (min) (ms) (ms) length (NEX) (degree) (mm) Matrix slices (mm × mm) direction resolution

T2-w Axial tsea 3m50s 4400 132 15 2 180b 4 240 × 512 11–15 132 × 280 R-Lc .55 × .55 × 4
T2-w Sagittal tse 4m 40s 4000 132 15 2 180b 4 179 × 512 11–15 100 × 280 A-Pd .55 × .55 × 4
T2-w Coronal tse 4m 4000 132 15 2 180b 4 179 × 512 11–15 100 × 280 R-L .55 × .55 × 4
Dynamic T1-w PD 3D

gradient-echo tfle 1m0s 800 1.6 1 1 8 4 77 × 256 10f 240 × 280 A-P 3.1 × 1.1 × 4
Dynamic T1-w fast 3D

gradient-echo tfl 0m2s 34g 1.6 1 1 14 4 77 × 256 10f 240 × 280 A-P 3.1 × 1.1 × 4

a Turbo spin echo.
b Refocussing flip angle.
c Right-left.
d Anterior-posterior.
e Turbo flash.
f Two of 12 slices used for oversampling.
g Represents the time to acquire 12 k-lines.
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gadolinium concentration curves and PK parameters were calculated as reported by Huisman
et al (2001). The PK parameter set that was used in this experiment consisted of the pre-
contrast static value of the T1 estimate of the longitudinal relaxation rate in (ms) (T 1 Static),
the relative size of the extracellular, extravascular space (Ve), the rate constant (kep) and the
transfer constant (Ktrans). They are described in detail in Vos et al (2008a).

2.3. Image registration algorithm

This section describes an image registration method that automatically seeks for an estimate of
the transformation T̂ that aligns the PD image F and T2-w image M by optimizing a similarity
measure S over the transformation T:

S(F,M(T )). (1)

The registration procedure consisted of several components, the most important of which were
the choice of similarity measure, the transformation degrees of freedom and the cost function
for similarity of measurement.

2.3.1. Deformation model. An initial alignment of F and M was achieved using a 12 element
affine transformation matrix Tglobal, as reported previously (Vos et al 2008b). In general, an
affine transformation is composed of linear transformations (rotation, scaling or shear) and
a translation. It ensures a global registration with low computational costs. An additional
transformation Tlocal modelled local deformation. In this work, deformations are modelled on
cubic B-splines, because of their computational efficiency (separability in multiple dimensions,
calculation via filtering), smoothness, and local control (Rueckert et al 1999). A B-spline
transformation deforms a volume by manipulating an underlying mesh of control points (D).
Deformation is calculated using the positions of a 4 × 4 × 4 neighbourhood of control points
and third-order spline polynomials, where the parameters of the B-spline transformation are
the coordinates of the control points. In the presented method, the initial Tglobal was used as
an offset of Tlocal:

T = Tlocal · Tglobal. (2)

2.3.2. Similarity measure. In this study MI was used as a similarity measure because F
and M do not have the same appearance. When F and M are optimally aligned, their MI is
maximal:

T̂ = arg min
ψ

(−MI(ψ)), (3)

where MI(ψ) denotes the MI similarity measure as a function of the transformation
parameters, ψ . Although several implementations for the computation of MI exists, the
presented method is based on the work of Mattes et al (2003). Their registration method
makes efficient use of the B-spline basis functions that models the deformation field and
converges quickly when compared to other methods, due to stochastic sampling (Klein et al
2007).

MI relates the joint entropy to the entropies of the modalities separately:

MI(ψ) = H(f (x)) + H(m(ψ(x))) − H(f (x),m(ψ(x))), (4)

where H(f (x)) and H(m(ψ(x))) are the marginal entropies, H(f,m;ψ) is the joint entropy,
f (x) and m(x) denote observations of F and M, respectively, and x denotes the voxel
coordinate. The joint entropy H(f,m;ψ) uses a set of fixed bin centres in f and moving bin
centres in m as initialization.



1724 P C Vos et al

The entropy of an image is computed from the probability density function (pdf) of the
image intensities. Parzen windowing was used to obtain a differentiable pdf. This reduces
the effects of quantization from interpolation and discretization from binning the data, see
Thévenaz and Unser (2000) for a detailed description. The joint entropy is computed using

H(f,m;ψ) =
∑

x∈XF

wf (IF (xF ) − f )wm(IM(g(xF ;ψ)) − m), (5)

where IF (xF ) and IM(g(xF ;ψ)) are samples of the fixed and interpolated moving images,
respectively, and wf and wm are the Parzen window kernels (Mattes et al 2003). To reduce
the computational costs, the set of intensity samples (XF) was set to a randomly selected 20%
of the total number of voxels and the joint histogram was calculated based on 100 bins for
each image. These settings gave robust results on all experiment data. To further speed up
the calculation of the MI(ψ), samples were only drawn from a subregion of F. This will be
further discussed in section 2.3.5.

2.3.3. Constraint on the transformation. In addition to the MI similarity measure, a
regularization term P was incorporated in the registration method to constrain the deformation
of the coordinate space:

C(F,M(T )) = −S(F,M(T )) + αP (T ), (6)

where α is a user-defined weight factor for P, allowing more control over the influence of
the regularization term on the overall cost C. Similar to the work of Rohlfing et al (2003), a
volume preserving constraint was incorporated and implemented by penalizing deviations of
the Jacobian determinant J of the deformation from unity, that is, it assumes local rigidity and
penalizes local tissue expansion and compression:

P(ψ) = 1

ND

∑

x∈D

|log(Jψ(x)|, (7)

where D represents the set of control points used for the deformation.
Calculation of the gradient of the constraint is necessary for an efficient and robust

optimization (see section 2.3.4). The derivatives were calculated using the common finite-
difference approximation:

δP

δi

≈ P(ψi + δi) − P(ψi)

δi

, (8)

where δi equals 1 mm and the subscript i refers to the parameter index.

2.3.4. Optimization of the cost function. The L-BFGS-B (Zhu et al 1997), a limited-
memory, quasi-Newton minimization package, was used to optimize the cost function C until
termination criteria were satisfied. The limited-memory method is well suited for optimizing
the large number of parameters ψ in the B-spline transformation when a high resolution of
control points is used. L-BFGS-B provides an additional advantage in that it allows bound
constraints (B) on the independent variables. In this manner, maximum displacements of the
control points can be controlled. Note that displacements in the slice direction were considered
unlikely and therefore restricted with a fixed bound set to 0. The optimization terminates when
the change in C between consecutive iterations falls below the tolerance of 1e−4.
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2.3.5. Centered cropped optimization strategy. A high resolution of control points in
the B-spline transform T comes with high computational costs, due to the high number of
displacements of the control points D that needs to be explored. For the intended application,
the focus is on the non-rigid displacement of the prostate. Hence, it suffices to limit the
registration method to the centre area of the pelvis, where the prostate is situated. The set of
control points (D) is defined over the entire volume (F) plus a finite support region of three at
the borders, thereby extending the region of interest. Simply defining a smaller mesh inside
the volume results in interpolation artefacts near the edges of the grid. Therefore, optimization
was limited to a centred subset (DR ⊂ D) of control points. Because the number of parameters
in DR is much smaller, the registration method becomes considerably faster. The resolution of
the grid control points was set to 14 × 14 × 8 (including the finite support region). A centred
subregion (DR) of size 4 × 4 × 3 was chosen such that the prostate area was covered in all
cases.

2.4. Histological verification

All patients underwent radical retropubic prostatectomy. From the prostatectomy specimens,
whole-mount step-section histology tumour maps were created by an experienced pathologist
who was blinded to the imaging results. The whole-mount step-section histology tumour maps
were used as ground truth for training and evaluating the performance of the CADx system.
The morphologies of the central gland, peripheral zone, cysts, calcifications and urethra were
used as landmarks to find the corresponding MRI slice. The anatomy of the prostate is best
imaged on T2-w images and is therefore used for correlating the histopathological map. A
method was implemented to prevent bias when annotating the ground truth, as described
elsewhere (Vos et al 2008a). Using this method, regions of normal PZ, PCa, benign PZ
tissue (identified as tumour suspicious on T2-w and DCE-MRI but not representing tumour on
pathology) and levator ani muscle were outlined manually. The regions that contained muscle
were used for the reference tissue method, as explained in section 2.5.

2.5. Quantitative T2 estimation from T2-w and PD series

T2 relaxation times can be computed with a fast method that uses a known sequence signal
model as prior knowledge and only a few echo times (TE) to fit the T2 relaxation curve.
Hittmair et al (1994) presented a method that estimates the T1 relaxation rate with only two
repetition times (TR) and a spin echo sequence as a signal model. In this study a comparable
approach is applied to estimate the T2 using a T2-w turbo spin echo sequence and PD-w
gradient echo sequence. It is assumed that a T2-w sequence is used, such that the TR is much
larger than the T1 tissue relaxation times. Then the effect of T1 can be neglected and the
received signal s at location x for a T2-w turbo spin echo sequence is

st2w(x) = Gt2w sin(θt2w)ρ(x) exp(−TE/T 2(x)), (9)

where Gt2w represents the gain setting and θt2w the excitation flip angle for the T2-w sequence
and ρ is a function comprising proton density fluctuations and coil profile at location x. The
spatial dependence through ρ(x) models the commonly observed spatial inhomogeneity that
is caused by the receive and send coil sensitivity profiles. In the case of a PD-w image, the
effect of T1 and T2 should be reduced when TE is set short and TR is set long. Assuming
that both sequences use the same coil setup (ρ(x) is identical), the received PD signal can be
approximated by

spd(x) = Gpd sin(θpd)ρ(x), (10)
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where Gpd is the gain setting and θpd is the excitation flip angle for the PD-w gradient echo
sequence. The T 2 at position x is derived by rewriting equations (9) and (10):

T 2(x) = −TE

log(st2w(x)) − log(spd(x)) − log(ηt2w,pd)
, (11)

where ηt2w,pd is the gain ratio of Gt2w sin(θt2w) to Gpd sin(θpd). In theory, η can be estimated
from the MR sequences parameters, but the data were not stored in the DICOM header provided
by the MR system. Furthermore, any coil profile artefacts, differences in voxel size, TR or
receiver bandwidth can still result in acquisition-to-acquisition signal intensity variations, in
spite of the fact that commercial MR systems are nowadays equipped with internal calibration
methods. These variations are captured in η and need to be estimated from the data. Therefore,
an estimator for the gain ratio ηt2w,pd was built using a reference tissue Rref with the known
T2 value from the literature. In this study the levator ani muscle was used (35.3 ± 3.85 ms
at 1.5 T and 37 ◦C (Gold et al 2004)). The gain setting can now be found by performing
least-squares optimization using the data from all pixels within the annotated reference tissue:

ηopt = arg min
η

∑

x∈Rref

(T 2(x; η) − 35)2. (12)

The least-squares procedure that was used, uses Brent’s method of parabolic interpolation,
protected by golden-section subdivisions if the interpolation is not converging.

2.6. Training and validation

The CADx system extracts a PK and T2 feature set from a region of interest (ROI) using
percentiles. The extracted set of features is presented to a trained SVM which calculates the
malignancy likelihood for a lesion. The calculated likelihood is presented to a radiologist
to assist in his or her diagnosis. The CADx system was implemented in an open source
programming environment: the Visualization ToolKit (VTK) using the Tool Command
Language (Tcl) and C++.

The discriminating performance of the CADx system was estimated using the area under
the receiver operator characteristics (ROC) curve (AUC). Classification was performed using
SVM analysis on the feature set (provided by the statistical package R (Hornik 2005))

A prospective-performance estimate of the lesion analysis was made by means of leave-
one-patient-out (LOPO) cross-validation. LOPO avoids training and testing on the same
data, estimating the likelihoods of ROIs in that left-out case and repeating the procedure until
each case has been tested individually. This study was a diagnostic assessment with patient-
clustered data; therefore, a bootstrap resampling approach with 10 000 iterations was used for
estimating the mean AUCs and 95% confidence intervals, as proposed by Rutter (2000).

The intent of this study was not to provide a new T2 estimator. Nevertheless, some
validation was performed to research the validity of the T2 estimates. First, visual inspection
was performed. Secondly, the median and variation for T2 relaxation time of the normal
peripheral zone were computed. The results were compared with those found in the
literature. Thirdly, the method was compared with a multi-echo spin echo sequence, where
the T2 relaxation curve was automatically fitted by a Siemens mono-exponential decay fitting
algorithm. The sequence settings were seven echo times (15.6–109.2 ms), a spatial resolution
of 1.2 × 1.2 × 3.0 mm, matrix of 192 × 96, field of view of 230 × 115, TR of 2080, flipangle
of 180 and 16 slices. The levator ani muscle was used as reference and the mean relaxation
time was calculated for muscle, benign PZ, fat, normal PZ, normal transition zone (TZ) and
lesion PZ in a random patient case. Linear regression and Pearson correlation statistics were
performed.
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Figure 1. The left T2-w image of the prostate demonstrates the coil sensitivity of conventional
MR images. Voxels near the endorectal coil are more intense compared to voxels that are ventrally
located. The right image shows the computed T2 image. Note that the coil profile is strongly
reduced.

The effect of registration on the diagnostic performance of the CADx system was studied.
In this experiment, T2-w values, T2 estimates without registration, T2 estimates after affine
registration and T2 estimates after the implemented non-rigid registration were extracted from
the annotated regions and tested for their discriminative value. In the following experiment,
the effect of parameter settings on the diagnostic performance was valuated. The method
was tested with different constraint settings (B) and various Jacobian weighting factors (α),
to search for the optimal discriminative performance. In the final experiment the additional
discriminative value of T2 estimates in a multimodal setup was tested and compared with the
performance of the previous developed CADx system.

3. Results

In total, 34 consecutive patients with histologically proven adenocarcinoma of the prostate
were recruited. Four patient studies were excluded because of bad dynamic data caused by
large patient movement, coil artefacts and one due to large noise values. In total 39 malignant
regions were annotated in the peripheral zone. The number of benign regions annotated in
the peripheral zone was 19. The number of annotated regions in the normal peripheral zone
was 29.

Figure 1 shows an example case, where the coil profile is prominently visible in the T2-w
image but is removed by the method in the quantitative T2 image.

In figure 2 the value of non-rigid registration is demonstrated. Patient movement during
the examination and internal (bowel) movement were corrected by the method.

The median calculated T2 relaxation time was 82 ± 7.5 ms for normal PZ, 68 ± 15.4 ms
for benign regions and 60 ± 6.9 ms for malignant regions, at the best possible setting of the
registration method and using the levator ani muscle as reference tissue. In figure 3, the T2
values of several tissues of one patient case are shown and compared to a Siemens T2 sequence
acquired in that same study. A significant linear correlation can be observed.

Figure 4 shows the histograms of the distributions of the T2-w values, T2 estimates
without registration, T2 estimates after affine registration and T2 estimates after non-rigid
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Figure 2. Sample images illustrating the necessity for nonrigid registration. The acquired T2-w
image (background image) and the PK parameter Ktrans (colour-coded transparent overlay) are
misaligned in the first image. Typical enhancement patterns are observed periurethral (arrow) and
at the neurovascular bundles, but due to patient movement during the examination, the enhancement
patterns do not match the underlying T2-w image (left). This can also be observed in the figure
in the middle which shows the result of an affine registration, where after a global correction the
neurovascular bundles match the enhancement patterns, but a periurethral mismatch is still present.
The right image shows the result of the non-rigid registration method. Note the correct location of
enhancement at the periurethral region.

Figure 3. Plot showing the mean T2 relaxation times for several tissues in a patient case, with T2
values generated by a traditional multi-echo sequence of the MR system on the x-axis and on the
y-axis and the T2 values generated by the proposed method. The linear regression model and the
Pearson correlation statistics are shown.

registration that were extracted from all normal, benign and malignant regions. It can be
observed that the amount of overlap between the distributions (especially M and N) is lowest
after the non-rigid registration.

Figure 6 shows the effect of varying the parameters α and B on the registration method. At
low Jacobian weighting factors (α < 1.5), the algorithm tends to be sensitive to the settings of
B. Best settings were found at B = ±25 mm and α = 1.5. With these parameter settings, the
diagnostic value of the T2 estimates was quantified by the discriminating performance of the
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Figure 4. Histograms of T2-w values, T2 estimates without registration (None), T2 estimates using
affine registration and T2 estimates using B-spline registration. Here, green represents all normal
PZ regions, black represents all benign regions and red all malignant regions of the database.

CADx system. In a tumour localization setup, where normal PZ regions were discriminated
from benign and malignant regions, a diagnostic performance of 0.97 (0.94–1.00) was achieved
using non-rigid registration, as shown in figure 5. Using the non-rigid registration method,
a significant improvement was shown compared to the affine registration method, as well
as to not using registration. The T2-w values were of no diagnostic value to the CADx
system. In a differentiation setup, where normal and benign PZ regions were discriminated
from malignant PZ regions, the CADx system achieved a diagnostic performance of 0.85
(0.77–0.92) after non-rigid registration (figure 5). This accuracy was significantly better than
not using registration (p = 0.03), but did not show a significant improvement to an affine
registration.

The accuracy of the CADx system for discriminating normal PZ and benign regions from
malignant regions was 0.84 (0.76–0.92) using the PK parameters alone. Adding the estimated
T2 relaxation times to the PK feature set resulted in an accuracy of 0.89 (0.81–0.95), which
was a significant improvement (p = 0.03) (figure 7).
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Figure 5. ROC curves showing the discriminating performance of the CADx system using T2
estimates and T2-w values. The T2 estimates were first extracted when no registration was applied,
second after affine registration and third after non-rigid registration. The left graph shows the result
at a differentiation setup, where PZ and benign PZ regions are discriminated from malignant PZ
regions. It can be noted that normal PZ and benign regions are well differentiable from malignant
regions. The right graph demonstrates the discriminating performance in a localization setup,
where normal PZ is differentiated from both benign regions and malignant regions.

4. Discussion

This study showed the feasibility of including T2-w MR in a multi-modal CADx system for
prostate MR. T2 estimates were shown to be of a significant additional diagnostic value for the
in-house developed CADx system (Vos et al 2008a). Moreover, coil profile sensitivity, that
was present in the T2-w images, was noticeably diminished, making these images potentially
more beneficial for clinical interpretation during diagnostic viewing.

Registration had a strong influence on the diagnostic performance of the T2 estimates in
discriminating normal and benign from malignant regions. This study is unique in comparing
registration methods on the actual effect upon the diagnostic performance. While the most
registration literature is limited to visual observation or simulated deformations, the present
study quantified the effect upon the diagnostic performance. The effect is demonstrated in
figure 5. The non-rigid registration method showed the highest diagnostic accuracy. As an
example, figure 2 illustrates organ movement that could not be compensated for using affine
registration, but was resolved by free form deformation using cubic B-splines (Rueckert et al
1999). A disadvantage of this technique is that it can lead to loss of topology. Therefore, the
Jacobian determinant as a volume preserving constraint on the transformation was included.
Figure 6 demonstrates that including such a constraint, the diagnostic performance of the
CADx system improves and leads to a more robust registration, as it is less dependent on other
parameter settings.

The T2 estimator in this study is a novel, simple method in a CADx context. Although a
full validation is outside the scope of this study, some aspects indicate validity. First, visual
inspection showed that the coil profile was removed. Secondly, the inter-patient variability of
T2 estimates in the normal PZ was small (±7.5 ms). Thirdly, a significant linear correlation
was shown between the T2 estimates of our method and the multi-echo spin echo sequence
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Figure 6. Parameters grid search for the B-spline registration, with bound (B), the optimizer
constraint on the displacement of the control points, α the Jacobian factor and Az the diagnostic
performance of the CADx system.

Figure 7. ROC curves showing the diagnostic performance of the CADx system using the T2
estimates after non-rigid registration, versus only using PK parameters and the additional value of
T2 estimates when they are combined with the PK parameters.

(r = 0.97, p = 0.001). Finally, adding the T2 values as feature to the CADx system resulted
in a significantly improved discriminating performance of 0.89 (0.81–0.95), compared to only
using the PK features (0.84 (0.76–0.92)). The performance increase agrees well with the
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previous literature on combining T2 estimates and PK parameters (Hricak et al 2007, Futterer
et al 2006, Chan et al 2003).

The calculated T2 relaxation times for the prostate (82 ± 7.5 ms) were compared with
those found in the literature. In the small study of de Bazelaire et al (2004) (based on data
from three healthy men), prostate and vertebra relaxation rates of 88 ± 0 ms were calculated.
Chan et al (2003) found relaxation rates of 128.3 ± 42.9 ms for nonbrachytherapy patients and
88 ± 21 ms for post-brachytherapy patients in the normal PZ. More recently Roebuck et al
(2009), using a different T2 map imaging sequence, found, in 18 men with biopsy-proven PCa,
relaxation rates of 193 ± 49 ms in healthy tissue and 100±26 ms in suspected cancer. Liney
et al (1997) found in an early study relaxation rates of 96.2 ± 15.2 ms in patients but in a more
recent study 135.5 ± 40.0 ms in the normal PZ of patients (Gibbs et al 2001). Two observations
can be made from this literature survey. First, there is no consensus on the absolute T2 value
of normal PZ. Consequently, any T2 discrimination protocol or CADx system has to account
for the T2 estimation method that was used. Secondly, a large inter-patient variability. The
presented method has a much lower variability, which partly explains the good discriminative
properties of the estimated T2 relaxation times. The reduced variability may be explained by
the use of reference tissue (section 2.5). In doing so, the method calibrates on a per patient
basis which may be better in capturing machine dependences. The effect of using calibration
on the diagnostic performance was also demonstrated in a previous study (Vos et al 2007), but
then in a pharmacokinetic context.

The T2 estimator has a number of potential shortcomings. First, muscle T2 variability
can result in different T2 estimates, as it is used as reference tissue. The variability is
an effect of physical activity and muscle training. In this study, we used the levator ani
muscle as reference tissue. In contrast to most skeletal muscles, levator ani muscles are
non-voluntary; therefore, intra-patient T2 variation is small. Secondly, the method is sensitive
to B1 fluctuations. The volume of interest (prostate region), however, is in the middle of the
image where B1 fluctuations are less present. Thirdly, the T2-w tse sequence has contributed
data from different echo times (depending on the echo train length and k-space sampling)
and therefore the estimated T2 values might not be in exact concordance with a multi-echo
spin echo-derived estimation. The slight inaccuracy, however, will be evident in all patients
and all tissues evaluated. The inaccuracy will be compensated for by using reference tissue
calibration (e.g., muscle). Fourthly, the T2-w and PD-w coil setup should be identical.

The current study has a number of limitations. One limitation is the amount of time needed
for the non-rigid registration, which now ranges from 5 min to 15 min. This, however, will
not conflict the intended application since the radiologist does not evaluate the images directly
after the acquisition and the registration can thus be performed offline. A second limitation
is the manual annotation of the levator ani muscle, which is needed for the reference tissue
method. One solution is to have more information on actual gain coefficients and sequence
models used by the MR system. Yet the reference tissue method may have a positive effect
on the discriminating performance as stated above. Another potential method would be an
automated segmentation of the levator ani muscle and is part of further research. Nevertheless,
manual segmentation of the muscle and computation of the T2 estimates are performed in
seconds. Third limitation is that the registration method parameter Jacobian constraint weight
(α) requires tuning (figure 6). Different MR hardware (e.g., at 3 Tesla) and sequence settings
may require different parameter settings.

In conclusion, the study demonstrated a simple T2 estimation method that has a diagnostic
performance such that it complements a DCE T1-w-based CADx system in discriminating
malignant lesions from normal and benign regions with a significant improved accuracy of
0.89 (0.81–0.95) compared to those only using DCE-derived features.
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