
Frontiers in Neuroinformatics www.frontiersin.org March 2010 | Volume 4 | Article 7 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 31 March 2010
doi: 10.3389/fninf.2010.00007

level, and introduced the measurement of deviation from a con-
straint as a cost function for optimization, rather than a count 
of discrete violations. Although this method does not produce a 
unique optimal hierarchy – an indeterminacy problem similar to 
that reported by Hilgetag et al. (1996) – it does always produce an 
optimal hierarchy. The method is also easily implemented, such 
that an optimal hierarchy can be calculated for any arbitrary set 
of cortical areas with tract tracing information, and easily updated 
if new data are produced.

A further question which emerges from this process is that of 
suitable optimization criteria. Whether a hierarchy is considered 
optimal depends on the notion of optimality that is employed, 
and there are many options for defi ning optimality. In Reid 
et al. (2009), we utilized the sum of deviations as an objective 
function to be minimized, but it is uncertain whether this is the 
best choice of criterion, and to what extent the addition of fur-
ther objectives might improve the resulting hierarchy. This also 
introduces the related issue of how sensitive the optimization is 
to this choice of criteria. In the present article we explore these 
possibilities, investigating in particular the effects of adding (1) 
the number of violations, and (2) the maximal deviation, to the 
objective function.

INTRODUCTION
In 1991, Felleman and Van Essen formalized the idea of a visual 
cortical hierarchy using a large number of tract tracing results 
obtained from macaque monkeys. Their general premise was that 
the laminar source and termination patterns of corticocortical 
projections contained information about their hierarchical direc-
tionality, which allowed projections to be labelled as ascending, 
descending, or lateral. Using this information as a constraint, the 
authors presented a cortical hierarchy in which most of these direc-
tion relationships were satisfi ed (see Figure 4, Felleman and Van 
Essen, 1991).

Since the publication of this article, the question emerged: what 
is the optimal visual cortical hierarchy? Using the same set of criteria 
and notion of optimality, Hilgetag et al. (1996) demonstrated that 
there are at least 100,000 hierarchies which are even more optimal 
than that introduced by Felleman and Van Essen (i.e., having less 
constraint violations). In Reid et al. (2009), we introduced a new 
approach to calculating hierarchies, which combined the laminar 
data from Felleman and Van Essen (1991) with new concepts from 
Vezoli et al. (2004) that permitted the additional representation of 
the hierarchical distance of a projection. Our approach utilized a 
continuous, rather than discrete scale for describing  hierarchical 
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With these inequalities we allow a deviation of Δ
(u,v)

 from the 
constraints assigned to an edge (u, v) by the interval [x, y]. The Δ

(u,v)
 

is specifi c for every edge (u, v) which means one distinct variable 
Δ

(u,v)
 for every edge is needed. Ideally, the value of these Δ

(u,v)
 should 

be kept as small as possible, preferable 0. Since all Δ
(u,v)

 measure a 
deviation, their values are always non-negative. Also note that at 
most one of the two conditions for an edge (u,v) can require an Δ

(u,v)
 

larger than 0. The objective is now to fi nd a hierarchy that best fi ts 
the data, i.e., with as little overall deviation as possible. To accom-
plish this the sum of all deviations Δ

(u,v)
 should be minimal.

To calculate such an hierarchy we use a well known method 
called linear programming. A detailed introduction on linear pro-
gramming can be found (for example) in the book of Papadimitiou 
and Steiglitz (1998). In brief the aim of linear programming is the 
optimization of a linear objective function, subject to linear equality 
and inequality constraints. Those linear problems have the follow-
ing form, which is also called linear program:

Maximize/minimize the expression

c x c x c xn n1 1 2 2+ + +, ,K  (3)

subject to constraints
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Here x
1
,x

2
,…,x

n
 are variables, for which values need to be found. 

All other elements are constants.
There are different ways to solve these kinds of problems. The 

oldest and most widely used is the simplex algorithm which was 
developed in 1947 by Dantzig (see for example Dantzig, 1963). It 
has an exponential worst case run time but most instances can 
be solved much faster. Today the inner point method invented by 
Karmarkar (1984) is often used as well, which has a polynomial 
runtime. For this work the optimization procedure was performed 
using the Gnu Linear Problem Kit1 which can be used for linear 
programming as well as mixed integer programming.

EXAMPLE
Consider the example in Figure 1. We are looking for a hierarchy func-
tion h: V → R with h (v

1
) = 0 and for all (u, v) ∈E with edge value [x, y] 

the conditions h(u) + y + Δ
(u,v)

 ≥ h (v) and h (u) + x − Δ
(u,v)

 ≤ h (v) 
should hold (compare to Eq. 2).

From these inequalities we receive the following two conditions 
for every edge:

h v h u y h v h u xu v u v( ) ( ) ( ) ( ) .( , ) ( , )− − ≤ − + ≥Δ Δand
 

(4)

Since we want to calculate the values of the hierarchy function 
h for every v ∈V we also include h(v) as a variable in the linear 
program. To make the notation easier these variables will receive 
the names of the vertices in the linear program. So for every v 
∈V there is a variable v that represents the function value h(v) 
in the program.

MATERIALS AND METHODS
GRAPH REPRESENTATION AND THE HIERARCHY FUNCTION
Consider a network representing a hierarchy given as a directed 
graph G = (V, E), where V is a set of vertices and E a set of directed 
edges. Each edge in the graph is assigned a weight that signifi es the 
possible range of distances of its endpoints within the hierarchy 
(see Figure 1 for an example).

If the edge runs from vertex u to vertex v then an interval [x, y], 
x, y ∈R is assigned to that edge and the hierarchical distance 
between u and v should lie within this interval (see Figure 2). A 
positive distance value implies the edge is going up and v is above u 
in the hierarchy. A negative value means that the edge is descending 
with regard to the hierarchy and v is below u in the hierarchy. The 
value 0 signifi es that the edge does not cross levels in the hierarchy 
and u and v are on the same level.

To fi nd the hierarchy implied by these edge values we are looking 
for a function h: V → R so that for every edge (u, v) with assigned 
interval [x, y], x, y ∈R the following conditions hold:

h u x h v h u y h v( ) ( ) ( ) ( ).+ ≤ + ≥and  (1)

This function h is called the hierarchy function.
However for the example in Figure 1 it is not possible to fi nd 

such hierarchy functions because the distance information is not 
consistent. The alternative is to fi nd a hierarchy function that “best” 
fi ts the data. To do so it is necessary to allow some deviations from 
the given data. To measure this deviation we introduce a variable 
Δ

(u,v)
 for every edge (u, v). A variable Δ

(u,v)
 measures for the two 

conditions defi ned by the edge (u, v) how much the hierarchy vio-
lates these conditions. This alters the condition for the hierarchy 
function resulting from an edge (u, v) with a range [x, y] in the 
following way (compare Figure 2 and Eq. 1):

h u x h v h u y h vu v u v( ) ( ) ( ) ( ).( , ) ( , )+ − ≤ + + ≥Δ Δand
 

(2)
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FIGURE 2 | Vertices u and v with the hierarchical distance [x,y].
1http://www.gnu.org/software/glpk/



Frontiers in Neuroinformatics www.frontiersin.org March 2010 | Volume 4 | Article 7 | 3

Krumnack et al. Criteria for optimizing cortical hierarchies

With this replacement the conditions in the program look 
like this

v u y v u xu v u v− − ≤ − + ≥Δ Δ( , ) ( , ) .and
 

(5)

With those inequalities we can create a linear program to 
calculate an optimal hierarchy for the example in Figure 1. The 
objective of the program is to minimize the sum of all devia-
tions. (see Figure 3, left: the variable sumΔ is the sum of all 
deviations.)

The node v
1
 is supposed to be the starting point of the hierarchy, 

and therefore its value is fi xed at 0. The variables v
1
 to v

7
 are not 

limited by the optimization objective (c20), and thus can become 
as big or small as necessary to attain the optimal value for sumΔ.

ADDITIONAL OBJECTIVES
So far our objective for fi nding an optimal hierarchy is to keep the 
sum of deviations as small as possible for the given edge values. 
But since there is normally more than one hierarchy that fulfi ls this 
objective, it can be useful to employ additional secondary objectives. 
We will illustrate this by an example.

Consider graph A of Figure 4. Since the sum of all edge values in 
that circle is 1 the minimal sum of deviations of any hierarchy for 
this graph is 1. The question is how that sum is best distributed on 
the involved edges. One option is to concentrate the deviation on as 
few edges as possible. That does not change the sum of deviations 
but it keeps the number of violated conditions small (see Figure 4B). 

Another possibility can be seen in Figure 4C, there the deviation is 
distributed on all edges. This keeps the maximum deviation small 
and therefore all distances imposed by the hierarchy close to the 
original edge weights. Figures 4B,C are not the only options for an 
optimal hierarchy. Note that there is an infi nite number of other 
hierarchies with a minimal sum of deviations for this example.

The question is: which hierarchy describes the information given 
by the edge values best? The advantage of minimizing the number of 
violations is that most of the original distance information is preserved 
in the hierarchy, and we ideally disregard only the information that fi ts 
the model the least. Minimizing the maximum deviation, alternatively, 
has the advantage that all the information is treated equally and non 
is disregarded completely. The rationale for this is that it is better to 
change many distances a little than few distances a lot.

To implement these additional objectives, additional variables 
are needed in the program. In the fi rst case it is necessary to count 
and minimize the number of violations, which can not be done 
with just linear programming, but rather requires the use of mixed 
integer programming. For the second option we need to minimize 
the maximal deviation, which can easily be integrated in the linear 
program, so it will be discussed fi rst.

Maximal deviation
To calculate the maximal deviation of the hierarchy we introduce 
a variable Δ

max
 which measures the maximal deviation from any 

constraints. To implement this every constraint of the original 

Minimize
objective: sumΔ

Subject to
c01: v3 − v1 − Δ1 ≤ 3
c02: v3 − v1 + Δ1 ≥ 1
c03: v3 − v2 − Δ2 ≤ 1
c04: v3 − v2 + Δ2 ≥ −2
c05: v5 − v2 − Δ3 ≤ 1
c06: v5 − v2 + Δ3 ≥ 0
c07: v4 − v3 − Δ4 ≤ 2
c08: v4 − v3 + Δ4 ≥ 1
c09: v6 − v3 − Δ5 ≤ 2
c10: v6 − v3 + Δ5 ≥ 0
c11: v7 − v4 − Δ6 ≤ 2
c12: v7 − v4 + Δ6 ≥ 1
c13: v2 − v5 − Δ7 ≤ 1
c14: v2 − v5 + Δ7 ≥ 0
c15: v6 − v5 − Δ8 ≤ −1
c16: v6 − v5 + Δ8 ≥ −3
c17: v3 − v7 − Δ9 ≤ 1
c18: v3 − v7 − Δ9 ≤ 0
c19: v1 = 0
c20: -sumΔ + Δ1 + Δ2 + Δ3 + Δ4

+Δ5 + Δ6 + Δ7 + Δ8 + Δ9 = 0
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FIGURE 3 | Left: The linear program to calculate an optimal hierarchy for the graph from Figure 1. The objective is to minimize the sum of all deviations (defi ned 
by constraint c20). Right: The resulting hierarchy. Red numbers are the hierarchy levels of nodes, blue numbers the actual distances in the hierarchy.
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program is doubled and in the second version the specifi c Δ
(u,v)

 
for the edge is replaced by the global Δ

max
. So we now have four 

conditions in the program for an edge (u,v) with edge value [x,y] 
(compare Eq. 5):

v u y v u y

v u x v u x

u v

u v

− − ≤ − − ≤
− + ≥ − + ≥

Δ Δ
Δ Δ

( , )

( , )

, ,

, .

max

max  
(6)

If one of the original constraints only holds if Δ
(u,v)

 is greater than 
0, then Δ

max
 needs to be as least as big as Δ

(u,v)
 for the doubled 

constraints to hold as well. Since this is true for every constraint it 
means Δ

max
 needs to be at least as large as the largest edge specifi c 

deviation. If Δ
max

 is included in the objective to be minimized it 
will take exactly the value of the maximal edge specifi c deviation 
Δ

(u,v)
.

Since the prime objective is still to minimize the sum of all 
deviations we introduce a factor in the objective to give the sum 
of deviations a bigger weight than the maximal deviation Δ

max
. 

The factor needs to be large enough that the smallest edge-specifi c 
deviation Δ

(u,v)
 multiplied by the factor is considerably larger than 

Δ
max

. This ensures that Δ
max

 is not of the same magnitude as the 
sum of deviations with regard to the optimization and therefore 
does not infl uence the primary optimization goal. The result is 
a hierarchy with a minimal sum of deviations, but among those 
hierarchies one with the smallest possible Δ

max
 is chosen.

As factor we used 100 which proved to be large enough that the 
resulting hierarchy is still one with a minimal sum of deviations, 
so it fulfi lled the requirements outlined in the previous paragraph. 
The results for the graph from Figure 1 are shown in Figure 5A 
(compare to Figure 3).
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FIGURE 4 | (A) A graph with edge values. (B) One possible hierarchy obtained by optimizing for the number of constraint violations. (C) Another possible hierarchy 
obtained by optimizing for the maximum deviation. Both (B) and (C) red numbers are the hierarchy levels of nodes, blue numbers the actual distances in the hierarchy.
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deviations and in addition the number of deviations. Again, red numbers are 
the hierarchy levels of nodes, blue numbers the actual distances in 
the hierarchy.
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Number of violations
To minimize the number of violations in a hierarchy it is necessary 
to count them within the program. To accomplish this we introduce 
an edge-specifi c integer variable B

(u,v)
 which assumes the value 1 if 

Δ
(u,v)

 > 0 and 0 if Δ
(u,v)

 = 0. The sum of these violation counters can 
then be included in the objective to be minimized along with the 
sum of the deviations. These variables are not reals but integers, so 
it is necessary to use mixed integer programming. Mixed integer 
problems look like the linear problems we have seen so far (com-
pare again to Eq. 3), but some of the variables can only take integer 
values. This gives the optimization problem a higher complexity: 
other than linear optimization problems, mixed integer problems 
can in general not be solved effi ciently, they are NP-hard. While 
there are well-known algorithms to solve these problems, one of the 
fi rst was developed by Land and Doig (1960), this does not mean 
that solutions can actually be found for all mixed integer problems 
as there are limitations of computer memory and time.

A problem with the implementation is that an integer variables 
B

(u,v)
 could take any non-negative integer value, but we want them 

to only take the values 0 and 1. To ensure this we use a trick: For 
the program we double every constraint from the original program 
and get four conditions for an edge (u,v) with edge value [x,y] 
(compare Eqs 5 and 6):

v u y v u B y

v u x v u B

u v u v

u v u v

− − ≤ − − ⋅ ≤
− + ≥ − + ⋅ ≥

Δ
Δ

( , ) ( , )

( , ) ( , )

, ,

,

100

100 xx.
 (7)

The two original conditions measure once again the size of a 
deviation from a constraint and the two new conditions test if there 
actually is a deviation. The factor 100 in front of the B

(u,v)
 is much 

bigger than any number that actually occurs in the calculation. If 
we look at one of the conditions from Eq. 7, say v − u − 100·B

(u,v)
 ≤ y 

then if v − u ≤ y the variable B
(u,v)

 can assume the value 0. If on the 
other hand v − u > y then the variable B

(u,v)
 needs to be at least 1 

for the second inequality in Eq. 7 to hold. (Remember, unlike Δ
(u,v)

 
the variable B

(u,v)
 is an integer and does not take values between 0 

and 1.) Since the factor 100 is chosen to be a lot bigger than |v − u − y| 
the inequality v − u − y − 100·1 ≤ 0 always holds. Therefore, with 
B

(u,v)
 = 1 the constraint is fulfi lled, and there is no need for any B

(u,v)
 to 

be bigger than 1. By the same argument as above for Δ
max

 we get

B Bu v u v u v u v( , ) ( , ) ( , ) ( , )= ⇔ = = ⇔ >0 0 1 0Δ Δand

if the sum of all B
(u,v)

 is included in the objective to be minimized. 
The results for the graph from Figure 1 is shown in Figure 5B 
(compare to Figure 3).

Note that all three examples have the same sum of all deviations 
since it is primarily being optimized in all three cases. The differ-
ences lie in the second part of the objective, i.e. the maximal devia-
tion and the number of deviations. Also note that the hierarchies 
shown here are again not the only optimal hierarchies that can be 
found for these criteria.

EMPIRICAL DATA
We use the data set described by Felleman and Van Essen (1991) 
for the visual system of the macaque monkey (FV91). As regions 
MDP and MIP had no constraints defi ned, they are not included 
here. The projections in this network were assigned ranges 
according to a modifi cation of the original relationship clas-
sifi cation scheme, which incorporates ideas presented in sub-
sequent publications (Kennedy and Bullier, 1985; Barone et al., 
2000; Batardiere et al., 2002), and permits a richer representation 
of hierarchical distance and the assignment of refi ned ranges 
(compare to Reid et al., 2009). As in Reid et al. (2009) we use 
the notation A+ for strongly ascending, A for ascending, L for 
lateral, D for descending and D+ for strongly descending projec-
tions. To investigate the effect of range sizes upon the resulting 
optimal hierarchies, ranges were varied from disjoint intervals 
with clear gaps between the fi ve connection types to intervals 
that overlap so that the connection types are merging into one 
another. To implement this ranges were systematically expanded 
by 0.1 at each limit, resulting in 10 range sets, as presented in 
Table 1. The outer bounds for these hierarchies were chosen as 
32, which is the total number of regions; this ensures that no 
individual projection can have a hierarchical distance greater 
than the total number of regions.

We employed two different optimization meth-
ods: For the fi rst we minimized the objective 1,000·sum
Δ

(u,v)
 + sumB

(u,v)
. For the second we minimized the objective 

1,000,000·sumΔ
(u,v)

 + 1,000Δ
max

 + sumB
(u,v)

.

Table 1 | The borders of the ranges for the different constraint sets.

 D+ D L A A+

 From To From To From To From To From To

Set 0 −32 −2.0 −1.0 −1.−0   0.0 0.0 1.0 1.0 2.0 32

Set 1 −32 −1.9 −1.1 −0.9 −0.1 0.1 0.9 1.1 1.9 32

Set 2 −32 −1.8 −1.2 −0.8 −0.2 0.2 0.8 1.2 1.8 32

Set 3 −32 −1.7 −1.3 −0.7 −0.3 0.3 0.7 1.3 1.7 32

Set 4 −32 −1.6 −1.4 −0.6 −0.4 0.4 0.6 1.4 1.6 32

Set 5 −32 −1.5 −1.5 −0.5 −0.5 0.5 0.5 1.5 1.5 32

Set 6 −32 −1.4 −1.6 −0.4 −0.6 0.6 0.4 1.6 1.4 32

Set 7 −32 −1.3 −1.7 −0.3 −0.7 0.7 0.3 1.7 1.3 32

Set 8 −32 −1.2 −1.8 −0.2 −0.8 0.8 0.2 1.8 1.2 32

Set 9 −32 −1.1 −1.9 −0.1 −0.9 0.9 0.1 1.9 1.1 32
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RESULTS
The two optimization methods produced similar, but not identi-
cal results. Table 2 shows the values for the sum of deviations, the 
maximal deviation and the number of violations for the optimal 
hierarchies. For comparison the values from Reid et al. (2009) are 
also included. There only the sum of deviations was minimized and 
the optimization was performed using the QS-Opt Linear Problem 
Solver2. Note that the sum of deviations is the same for each set for 
all optimizations, since this was always the fi rst objective.

With the exception of number of violations for set 0 the opti-
mized values are getting smaller when the size of the constraining 
intervals is getting bigger. The sum of deviations goes down from 
60.0 for set 0 to 8.8 for set 9, the maximal deviation is reduced 
from 3.0 for set 0 to 0.7 for set 9 with optimization method 2, the 
number of violations decreases from 49 for set 1 to 13 for set 9 with 
optimization method 1 and from 50 for set 1 to 17 for set 9 with 
optimization method 2.

For three sets (0, 5 and 6) we get exactly the same optimal values 
for both optimization methods, but only for one of these sets (set 0) 
are the calculated hierarchies identical. For set 5 and set 6 the two 
calculated hierarchies are not identical. However, for each set both 
hierarchies have the same number of violations and maximal devia-

tions, which means that they are both optimal hierarchies for both 
optimization methods. The corresponding hierarchies from Reid et al. 
(2009) all have the same maximal deviation but larger numbers of 
violations, so regarding the number of violations these hierarchies are 
not optimal. In general the number of violations for the hierarchies 
from Reid et al. (2009) are higher than for the new optimization meth-
ods, but since the violations were not minimized before this is not 
surprising. However the maximal deviations tend to be small, often 
minimal (as seen in comparison with optimization methods 2), for 
these hierarchies, even though they were not minimized.

For all other sets than 0, 5 and 6, we see differences in values 
between the two new optimization methods, therefore there is a 
trade-off between the number of violations and the maximal devia-
tions. Therefore these values cannot both be at their minimum for 
7 of the 10 sets.

When we look at the violated constraints we fi nd only a total 
number of 54 of the 386 constraints being violated by either of the 
two optimization methods. Of those nine constraints were violated 
by every set for both methods (see Table 3). Note that everything is 
counted as a constraint violation that does not exactly fi t the clas-
sifi cation of a connection. For example, if a  connection is classifi ed 
as ascending (A) but ends up being strongly ascending (A+) in the 
calculated hierarchy this counts as a violation. Also note that for all 
the connections listed in Table 3 there are reciprocal connections 

Table 3 | The 9 constraints that are violated by all 10 sets for both objectives. The number 1 means the corresponding connection is classifi ed as D+, D, L, 

A or A+.

Origin V4 AITd STPp STPp V2 V2 PO PO FST

Termination V1 7a FEF FST V3 VP MSTd LIP TF

D+ – – – 1 – – – – –

D 1 1 1 – – – – – –

L – 1 – – – – – – 1

A – 1 – – – – – – –

A+ – – – – 1 1 1 1 –

Table 2 | The results of the optimization.

Set Sum of deviations Optimization  Optimization  Data from Reid

 (1st obj.)  method 1 method 2 et al. (2009)

  Number of  Maximal  Number of  Maximal  Number of  Maximal 

  violations deviation violations deviation violations deviation

  (2nd obj.) (not opt.) (3rd obj.) (2nd obj.) (not opt.) (not opt.)

0 60.0 42 3.0 42 3.0 49 3.0

1 51.8 49 2.7 50 2.6 57 2.6

2 43.8 42 2.4 45 2.2 54 2.2

3 36.2 42 2.1 45 1.8 53 1.8

4 29.2 38 1.8 40 1.6 42 1.6

5 22.5 25 1.5 25 1.5 27 1.5

6 18.0 26 1.4 26 1.4 27 1.4

7 14.4 19 1.3 20 1.2 22 1.3

8 11.6 13 1.4 18 0.9 20 1.0

9 8.8 13 1.1 17 0.7 19 1.0

2http://www.isye.gatech.edu/∼wcook/qsopt/
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that were not consistently violated. This means that the classifi ca-
tion of these reciprocal  connections is not complementary. For 
example the connection V2 to V3 is classifi ed A+, but the connec-
tion V3 to V2 is classifi ed D (not D+).

The two optimization methods generally violated the same con-
straints: For the fi rst optimization method 53 and for the second 
optimization method 52 different constraints (of 386) were violated 
over the 10 sets and of those 51 constraints were violated by both 
methods. In addition constraint V1 to V3 (A+), was violated by the 
second optimization in four sets and constraints LIP to V4 (D), and 46 
to TH (L), were each violated by the fi rst optimization in one set.

For comparison between sets we normalized the resulting hier-
archies: by defi nition V1 always had the hierarchical value 0, the 
region with the highest hierarchical level was assigned the value 1, 
the hierarchical levels of the other areas were transformed accord-
ingly. Figure 6 shows the average hierarchical levels over the 10 sets 
for the fi rst optimization method. The equivalent fi gure for the 
second optimization method looks very similar and is therefore 
not included here.

DISCUSSION
While the parameters for the hierarchies do show some differ-
ences between the optimization methods, the resulting hierarchies 
were remarkably similar. This does not mean that all hierarchies 
that are optimal for the two optimizations are similar: since we 
only have one possible solution per optimization method per set 
there might also be solutions that differ substantially. What it does 

mean is that there are examples for optimal hierarchies for the 
two optimization methods for which the differences between the 
optimized values seem to be accomplished through minor changes 
within the hierarchies.

The boundaries chosen for the optimization constraints (set 
0 to 9) seem to have a big infl uence on the optimization results. 
All optimized values for set 0 are several times as big as the 
corresponding values for set 9. The “looser” the boundaries are 
(i.e., the larger the defi ning intervals) the smaller the optimized 
values. This is because in the bigger intervals for the connec-
tion classes more values can be assumed in the optimization 
without violating the constrains. For example, if an ascending 
connection is assigned the value 1.5, this is a violation in sets 0 
through 4, but not in sets 5 through 9. Therefore there are fewer 
violations and, as a result, smaller optimized values for sets that 
use bigger intervals for connection classes. However in Reid et al. 
(2009) we found that the resulting hierarchies are very compa-
rable across sets after normalization. There were only minimal 
changes in the order of the areas in the calculated hierarchies 
for the different conditions.

The similarity in the violated constraints across methods sug-
gest that these constraints may be erroneous. In particular, of the 
nine constraints that are violated in this study by all constraint 
sets, and for both objectives, eight were violated in the calculations 
of Reid et al. (2009) for all constraint sets as well. [The last of the 
nine constraints, PO to LIP (A+), was violated by eight sets in 
Reid et al. (2009)]. While it is possible that a solution exists where 

FIGURE 6 | Geometrical distribution of hierarchy levels in the FV91 visual 

network of the macaque, both as three-dimensional cortical surface 

renderings (left), and as a two-dimensional “fl at map” representation of 

the cortical sheet (right). Regions are coloured by their mean normalized 
hierarchical position, obtained by the fi rst optimization method over the 10 

constraint sets described in Table 1. Directed edges in the fl at map illustration 
represent interregional connections, and are coloured according to projection 
class: A+ (purple, opaque), A (purple, transparent), L (black), D (green, 
transparent), and D+ (green, opaque). Compare this representation to 
Figures 2 and 4 in Felleman and Van Essen (1991).
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none of these constraints are violated, this consistency suggests a 
pattern which is worth further investigation. The fact that all of 
these connections have reciprocal connections whose constraints 
are not consistently violated seems to suggest that the classifi cation 
of the reciprocal connections fi ts an optimal hierarchy better than 
the classifi cation of the nine violated connections. Since the clas-
sifi cation of the reciprocal connections is not complementary at 
most one of the classifi cations (the one for the connection or the 
one for the reciprocal connection) can be correct. This does not 
necessarily mean that the classifi cation is better for the reciprocal 
connection since in some cases this classifi cation is very broad, 
spanning several of our fi ve classes.

The classical optimization problem of minimizing the number 
of violations [as done by Felleman and Van Essen (1991) as well 
as Hilgetag et al. (1996)] can theoretically be solved by the method 
presented here, where it was only used as an secondary objective. 
In practical terms, solving for number of violations as a primary 
objective has proven too computationally expensive, whereas using 
it only as a secondary objective made the calculation easier, since the 
solutions were already limited by the minimal sum of deviations. 
However, we were able to minimize just the number of violations for 
sets 8 and 9, which produced the smallest optimal values for all the 
other optimization methods. The results (12 violated constraints 
with a sum of deviation of 13.4 for set 8, and 11 violated constraints 
with a sum of deviations of 10.7 for set 9) are only slightly below 
the number of violated constraints for optimization method 1.

The hierarchies calculated here are of course also solutions for the 
original optimization problem from Reid et al. (2009), since they have 
the same minimal sum of deviations. Additionally, however, they also 
have either a minimal number of violations or a minimal maximum 
deviation, and in some cases even both. This added optimality does 
not seem to be especially advantageous, however, given that the result-
ing hierarchies remained for the most part unchanged, which suggests 
that they are not highly sensitive to the addition of these criteria. 
Other objectives are also conceivable, of course, which may result in 
more strongly altered hierarchies than we report here. For instance, 
it is conceivable that further knowledge about the reliability of the 
anatomical data underlying our constraints may yield more informa-
tive objective criteria, that would allow a Bayesian approach to this 
problem. Another option is not to allow any deviation for connections 

that are classifi ed with a great certainty, ensuring that the connection 
appears as classifi ed in the hierarchy. However, this cannot be done 
for all connections since the resulting constraints are not consistent 
and some deviation needs to be allowed to fi nd an hierarchy.

In the choice of the optimization method the data quality should 
be considered. If we expect that most of the connections are cor-
rectly classifi ed but there might be some classifi cations that are 
erroneous then minimizing the number of violations is the better 
option. Most of the distance information of the classifi cation should 
then be preserved in the hierarchy. Assuming that the wrongly 
 classifi ed connections are the ones that do not fi t the hierarchy 
these would be the ones that are disregarded. They would be “taken 
out” of the hierarchy. If on the other hand, we expect all the clas-
sifi cations to be equally correct or faulty (or just an approximation 
of the true value), then we want to consider all the information to 
the same degree. This can imply changing many classifi cations a 
little to “squeeze” the information into a hierarchy, such that, ideally, 
none of the information is disregarded completely, while many of 
the classifi cations might be “corrected” a little.

Since our results produced highly similar hierarchies across 
a variety of constraint sets for the two optimization methods 
presented here, both appear equally suited for the calculation of 
optimal hierarchies. It is thus a matter of personal preferences 
which one to employ, and this choice is one that can conceivably 
be expanded to accommodate alternative defi nitions of optimal-
ity. This leads us to conclude that there is no unique optimal 
hierarchy, not only because of the quality of the empirical data 
and the freedom to choose boundaries for the defi ning intervals, 
but also because there is more than one way to defi ne optimality. 
While the method described does not provide a unique optimal 
hierarchy, it can produce hierarchies that are optimal in more 
than one way.
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