The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/87122

Please be advised that this information was generated on 2019-08-19 and may be subject to change.
An area of research at the interface of hydrology and urban morphology involves understanding the role of urban morphology in shaping urban form and function. The work of Benenson et al. (2010) is an example of this.}

![Map showing employment accessibility in a certain area.](image_url)

Benenson et al., 2010

- The map illustrates the variation in employment accessibility across different zones.
- Areas with higher employment accessibility are shaded in different colors.
- The legend indicates the range of accessibility values.

The authors use these data to analyze the impact of urban morphology on employment opportunities and accessibility.

The formula for calculating the accessibility index is:

$$AA_{OA}(r) = \sum_{OA}(D_{r, OA}) / D_{r, OA}$$

where $D_{r, OA}$ represents the distance to the nearest employment center and $O_{r, OA}$ represents the population of the center.

The authors also consider the role of land use and population density in shaping employment accessibility.

The study highlights the importance of understanding the interplay between urban morphology and accessibility in planning and policy-making.
In 2011-2012, the accessibility of public transport was evaluated along 60,000 streets in Tel Aviv-Yafo.

A computerized model was developed to calculate the accessibility of land-use transport scenarios. The model is based on a database of public transport stations in the city.

The results showed that the accessibility of public transport in the city is relatively high, but there is still room for improvement.

The model can be used to predict the impact of changes in the land-use transport scenario on accessibility.