Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC

The ATLAS Collaboration
(Dated: September 6, 2010)

A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the Large Hadron Collider (LHC) and correspond to an integrated luminosity of 315 nb$^{-1}$ collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q^*) production as a function of q^* mass. These exclude at the 95% CL the q^* mass interval $0.30 < m_{q^*} < 1.26$ TeV, extending the reach of previous experiments.

PACS numbers: 13.85.Rm, 12.60.Re, 13.87.C'e, 14.80.-j

Two-jet (dijet) events in high-energy proton-proton (pp) collisions are usually described in the Standard Model (SM) by applying quantum chromodynamics (QCD) to the scattering of beam-constituent quarks and gluons. Several extensions beyond the SM predict new heavy particles, accessible at LHC energies, that decay into two energetic partons. Such new states may include an excited composite quark q^*, exemplifying quark substructure [1-3]; an axigluon predicted by chiral color models [4, 5]; a flavour-universal color-octet coloron [6, 7]; or a color-octet techni-ρ meson predicted by models of extended technicolor and topcolor-assisted technicolor [8-11].

Particularly sensitive to such new objects is the dijet invariant mass observable, defined as $m^{jj} = \sqrt{(E_{j1} + E_{j2})^2 - (p_{t1} + p_{t2})^2}$, where E and p_t are the jet energy and momentum, respectively. Several experiments have examined m^{jj} distributions in search of new resonances [12-17]; recently, 1.13 fb$^{-1}$ of pp collision data at the Fermilab Tevatron collider have excluded the existence of excited quarks q^* with mass 260 $< m_{q^*} < 870$ GeV [16]. This Letter reports the first search by the ATLAS experiment [18] at the LHC for such massive particles in pp collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV, based on a data sample corresponding to an integrated luminosity of 315 nb$^{-1}$. The analysis presented here focused on a search for excited quarks because of the accessible predicted cross section [2, 3] for such particles and the benchmark nature of the model that allows limits on acceptance times cross section to be set for resonant states with intrinsic widths narrower than the experimental resolution.

The analysis technique consisted of a model-independent search for a dijet mass resonance on top of a smooth and rapidly falling spectrum and relied on the measured m^{jj} distribution to estimate the background level to this new possible signal. In the absence of an observed new physics signal, upper limits were determined on products of cross section (σ) and signal acceptance (A) for several q^* test masses for a standard set of model parameters.

The ATLAS detector [18] is a multipurpose particle physics apparatus with a forward-backward symmetric cylindrical geometry and near 4π coverage in solid angle [19]. The overall layout of the detector is dominated by its four superconducting magnet systems, which comprise a thin solenoid surrounding inner tracking detectors and three large toroids with an eightfold azimuthal symmetry.

The calorimeters, which are surrounded by an extensive muon system, are of particular importance to this analysis. In the pseudorapidity region $|\eta| < 3.2$, high-granularity liquid-argon (LAr) electromagnetic sampling calorimeters are used. An iron-scintillator tile calorimeter provides hadronic coverage in the range $|\eta| < 1.7$. The end-cap and forward regions, spanning $1.5 < |\eta| < 4.9$, are instrumented with LAr calorimetry for both electromagnetic and hadronic measurements.

The data sample was collected during stable periods of 7 TeV pp collisions using a trigger configuration requiring the lowest-level hardware-based calorimeter jet trigger to satisfy a nominal transverse energy threshold of 15 GeV [20]. This trigger had an efficiency greater than 99% for events with at least one jet with transverse energy higher than 80 GeV.

Jets were reconstructed using the anti-k_T jet clustering algorithm [21] with a radius parameter $R = 0.6$. The inputs to this algorithm were clusters of calorimeter cells seeded by cells with energy significantly above the measured noise. Jet four-vectors were constructed by performing a four-vector sum over these cell clusters, treating each as an (E, \vec{p}) four-vector with zero mass. These were corrected for the effects of calorimeter non-compensation and inhomogeneities by using transverse-momentum (p_T) and η-dependent calibration factors based on Monte Carlo (MC) corrections and validated with extensive test-beam and collision-data studies [20, 22]. The m^{jj} observable was computed without unfolding jets to hadrons or partons.

In order to suppress cosmic-ray and beam-related backgrounds, events were required to contain at least one primary collision vertex, defined by at least five reconstructed charged-particle tracks, each with a position, extrapolated to the beamline, of $|z| < 10$ cm.
Events with at least two jets were retained if the highest \(p_T \) jet (the "leading" jet) satisfied \(p_T^1 > 80 \) GeV and the next-to-leading jet satisfied \(p_T^2 > 30 \) GeV; this ensured that the data sample had high and unbiased trigger and jet reconstruction efficiencies. Those events containing a poorly measured jet with \(p_T > 15 \) GeV were vetoed to prevent cases where a jet was incorrectly identified as one of the two leading jets [23]; this affected the event selection by less than 0.5%. The two leading jets were required to satisfy several quality criteria [23] and to lie outside detector regions where the jet energy was not yet measured in an optimal way, such as the interval \(1.3 < \eta^{\text{jet}} < 1.8 \). Finally, both jets were required to be in the pseudorapidity region \(|\eta^{\text{jet}}| < 2.5 \), and their pseudorapidity difference was required to satisfy \(|\eta^1 - \eta^2| < 1.3 \). These cuts, which suppress high-mass SM multijet background, were determined by performing an optimization of the potential signal from \(q^* \) decays (using a \(q^* \) mass of 1 TeV) compared with the SM background. There were 132,433 candidates that satisfied these requirements.

The final event sample was selected by requiring the dijet invariant mass to satisfy \(m^{jj} > 200 \) GeV in order to eliminate any potential kinematic bias in the \(m^{jj} \) distributions from the selection requirements on the jet candidates. There were 37,805 events in this sample, which formed the \(m^{jj} \) distribution shown in Fig. 1.

MC signal events were generated using the excited-quark (\(qg \rightarrow q^* \)) production model [2, 3]. The excited quark \(q^* \) was assumed to have spin 1/2 and quark-like couplings, relative to those of the SM SU(2), U(1), and \(SU(3) \) gauge groups, of \(f = f' = f_s = 1 \), respectively. The compositeness scale (\(\Lambda \)) was set to the \(q^* \) mass. Signal events were generated using PYTHIA [24] 6.4.21, a leading-order parton-shower MC generator, with the modified leading-order MRST2007 [25] parton distribution functions (PDFs) and with the renormalization and factorization scales set to the mean \(p_T \) of the two leading jets. PYTHIA was also used to decay the excited quarks to all possible SM final states, which were dominantly \(qg \) but also \(qW, qZ, \) and \(qY \). The MC samples were produced [26] using the ATLAS MC09 parameter tune [27] and a GEANT4-based detector simulation [28].

Figure 1 shows the predicted signals for \(q^* \) masses of 500, 800, and 1200 GeV, after all selection cuts. The signal acceptance (\(A \)), which included reconstruction and trigger efficiencies near 100%, was found to range from \(\sim 31\% \) at \(m_{q^*} = 300 \) GeV to \(\sim 48\% \) for \(m_{q^*} = 1.7 \) TeV [29]. The choice of dijet mass binning was motivated by the dijet mass resolution of the signal. The predicted experimental width ranged from \(\sigma_{m^{jj}}/m^{jj} \sim 11\% \) at \(m_{q^*} = 300 \) GeV to \(\sigma_{m^{jj}}/m^{jj} \sim 7\% \) at \(m_{q^*} = 1.7 \) TeV and was dominated by the detector energy resolution.

The background shape was determined by fitting the observed spectrum with the function [16]

\[
f(x) = p_1(1-x)p_2x^{p_3+p_4\ln x},
\]

where \(x = m^{jj}/\sqrt{s} \) such that \(f(1) = 0 \) and \(f(0) \rightarrow +\infty \), and \(p_{1,2,3,4} \) are free parameters. The \(x^{p_4+\ln x} \) factor was included to describe the high-\(m^{jj} \) part of the spectrum. The function in Eqn. 1 has been shown to fit the \(m^{jj} \) observable well in PYTHIA, HERWIG, and next-to-leading-order (NLO) perturbative QCD predictions for pp collisions at \(\sqrt{s} = 1.96 \) TeV [16]. Studies using PYTHIA and the ATLAS GEANT4-based detector simulation were performed to demonstrate that the smooth and monotonic form of Eqn. 1 describes QCD-predicted dijet mass distributions in pp collisions at \(\sqrt{s} = 7 \) TeV. There is good agreement between the MC prediction and the fitted parametrization in Eqn. 1, as evidenced by a \(\chi^2 \) per degree of freedom of 27/22 over the dijet mass range \(200 < m^{jj} < 1900 \) GeV.

The results of fitting the data with Eqn. 1 are shown in Fig. 1. The presence or absence of detectable \(m^{jj} \) resonances in this distribution was determined by performing several statistical tests of the background-only hypothesis. A suite of six tests was employed: the BumpHunter [30], the Jeffreys divergence [31], the Kolmogorov-Smirnov test, the likelihood, the Pearson \(\chi^2 \), and the TailHunter statistic [32]. The agreement of the data with the background-only hypothesis of a smoothly varying and monotonic distribution was determined for each statistic by calculating the \(p \)-value for the data using 10⁵ pseudo-spectra drawn from Poisson variations seeded by the results of the fit of Eqn. 1 to the data. The \(p \)-value of the background-only hypothesis is defined as the fraction of pseudo-experiments that result in a value of the statistic greater than the value of the same statistic found by the fit to the data. The results of all six tests were consistent with the conclusion that the fitted parametrization described the observed data distribution well, with \(p \)-values in excess of 51%. These observations supported the background-only hypothesis.

In the absence of any observed discrepancy with the zero-signal hypothesis, a Bayesian approach was used to set 95% credibility-level (CL) upper limits on \(\sigma \cdot A \) for hypothetical new particles decaying into dijets with \(|\eta^{\text{jet}}| < 2.5 \). For each of the test masses (indexed by \(\nu \)) corresponding to the excited-quark \(q^* \) predictions, a likelihood function \(L_{\nu} \) was defined as a product of Poisson factors computed for each bin \(i \) of the \(m^{jj} \) distribution:

\[
L_{\nu}(b_i, s) = \prod_i \left(\frac{b_i + s_i(\nu) d_i!}{d_i!} \right) e^{-b_i-s_i(\nu)},
\]

where \(d_i \) is the observed number of data events in bin \(i \), \(b_i \) is the background in bin \(i \) obtained as described below, and \(s_i(\nu) \) is the predicted signal added in bin \(i \) by the signal template; the latter was normalized to the total number of predicted signal events \(s = \sum_i s_i(\nu) \). For
For every q^* mass, Eqn. 1 was fitted using a binned background (B) distribution described by Eqn. 1 (histogram). The predicted q^* signals for excited-quark masses of 500, 800, and 1200 GeV are overlaid, and the bin-by-bin significance of the data-background difference is shown.

FIG. 1. The data (D) dijet mass distribution (filled points) fitted using a binned background (B) distribution described by Eqn. 1 (histogram). The predicted q^* signals for excited-quark masses of 500, 800, and 1200 GeV are overlaid, and the bin-by-bin significance of the data-background difference is shown.

In conclusion, a model-independent search for new heavy particles manifested as mass resonances in dijet final states was conducted using a 315 nb$^{-1}$ sample of 7 TeV proton-proton collisions produced by the LHC and recorded by the ATLAS detector. No evidence of a resonance structure was found and upper limits at the 95% CL were set on the products of cross section and signal

situ information. The systematic uncertainty on the determination of the background was taken from the uncertainty on the parameters resulting from the fit of Eqn. 1 to the data sample. The uncertainty on $\sigma \cdot A$ due to integrated luminosity was estimated to be $\pm 11%$ [35]. The JER uncertainty was treated as uniform in p_T and y with a value of $\pm 14%$ on the fractional p_T resolution of each jet [36]. The effects of JES, background fit, integrated luminosity, and JER were incorporated as nuisance parameters into the likelihood function in Eqn. 2 and then marginalized by numerically integrating the product of this modified likelihood, the prior in s, and the priors corresponding to the nuisance parameters to arrive at a modified posterior probability distribution. In the course of applying this convolution technique, the JER was found to make a negligible contribution to the overall systematic uncertainty.

Figure 2 depicts the resulting 95% CL upper limits on $\sigma \cdot A$ as a function of the q^* resonance mass after incorporation of systematic uncertainties. Linear interpolations between test masses were used to determine where the experimental bound intersected with a theoretical prediction to yield a lower limit on allowed mass. The corresponding observed 95% CL excited-quark mass exclusion region was found to be $0.30 < m_{q^*} < 1.26$ TeV using MRST2007 PDFs in the ATLAS default MC09 tune. Table I shows the results obtained using CTEQ6L1 [37] and CTEQ5L [38] PDF sets. The variations in the observed limit associated with the error eigenvectors of a CTEQ PDF set were found to be smaller than the spread displayed in Table I. The excluded regions were ~ 30 GeV greater when only statistical uncertainties were taken into account. The expected limits corresponding to the data sample were computed using an analogous approach, but replacing the actual data with pseudo-data generated by random fluctuations around the smooth function described by fitting the data with Eqn. 1; these are shown in Fig. 2, with a resulting expected q^* mass exclusion region of $0.30 < m_{q^*} < 1.06$ TeV using MRST2007 PDFs. As indicated in Table I, the two other PDF sets yielded similar results, with expected exclusion regions extending to near 1 TeV. An indication of the dependence of the m_{q^*} limits on the theoretical prediction for the q^* signal was obtained by simultaneously varying both the renormalization and factorization scales by factors of 0.5 and 2, which was tantamount to modifying the predicted cross section by approximately $\pm 20%$; this changed the observed MRST2007 limit of 1.26 TeV to 1.32 TeV and 1.22 TeV, respectively.

In conclusion, a model-independent search for new heavy particles manifested as mass resonances in dijet final states was conducted using a 315 nb$^{-1}$ sample of 7 TeV proton-proton collisions produced by the LHC and recorded by the ATLAS detector. No evidence of a resonance structure was found and upper limits at the 95% CL were set on the products of cross section and signal
TABLE I. The 95% CL lower limits on the allowed q^* mass obtained using different PDF sets.

<table>
<thead>
<tr>
<th>MC Tune</th>
<th>PDF Set</th>
<th>Observed Mass Limit [TeV]</th>
<th>Expected Mass Limit [TeV]</th>
</tr>
</thead>
</table>

a The MC09' tune is identical to MC09 except for the PYTHIA [24] parameter PARP(82)= 2.1 and use of the CTEQ6L1 PDF set.

We acknowledge the support of ANPCyT, Argentina; Yerevan Physics Institute, Armenia; ARC and DEST, Australia; Bundesministerium für Wissenschaft und Forschung, Austria; National Academy of Sciences of Azerbaijan; State Committee on Science & Technologies of the Republic of Belarus; CNPq and FINEP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONCYT, Chile; NSFC, China; COLCIENCIAS, Colombia; Ministry of Education, Youth and Sports of the Czech Republic, Ministry of Industry and Trade of the Czech Republic, and Committee for Collaboration of the Czech Republic with CERN; Danish Natural Science Research Council and the Lundbeck Foundation; European Commission, through the ARTEMIS Research Training Network; IN2P3-CNRS and CEA-DSM/IRFU, France; Georgian Academy of Sciences; BMBF, DFG, HGF and MPG, Germany; Ministry of Education and Religion, through the EPEAEK program PYTHAGORAS II and GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; CNRST, Morocco; FOM and NWO, Netherlands; The Research Council of Norway; Ministry of Science and Higher Education, Poland; GRCES and FCT, Portugal; Ministry of Education and Research, Romania; Ministry of Education and Science of the Russian Federation and State Atomic Energy Corporation ROSATOM; JINR; Ministry of Science, Serbia; Department of International Science and Technology Cooperation, Ministry of Education of the Slovak Republic; Slovenian Research Agency; Ministry of Higher Education, Science and Technology, Slovenia; Ministerio de Educación y Ciencia, Spain; The Swedish Research Council, The Knut and Alice Wallenberg Foundation, Sweden; State Secretariat for Education and Science, Swiss National Science Foundation, and Cantons of Bern and Geneva, Switzerland; National Science Council, Taiwan; TAEK, Turkey; The Science and Technology Facilities Council and The Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.
The ATLAS Collaboration

Shandong University, High Energy Physics Group(d), Jinan, CN - Shandong 250100, China
33 Laboratoire de Physique Corpusculaire, Clermont Université, Université Blaise Pascal, CNRS/IN2P3, FR - 63177 Aubiere Cedex, France
34 Columbia University, Nevis Laboratory, 136 So. Broadway, Irvington, NY 10533, United States of America
35 University of Copenhagen, Niels Bohr Institute, Blegdamsvej 17, DK - 2100 Kobenhavn 0, Denmark
36 INFN Gruppo Collegato di Cosenza(a); Università della Calabria, Dipartimento di Fisica(b), IT-87036 Arcavacata di Rende, Italy
37 Faculty of Physics and Applied Computer Science of the AGH-University of Science and Technology, (FPACS, AGH-UST), al. Mickiewicza 30, PL-30059 Cracow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL - 31342 Krakow, Poland
39 Southern Methodist University, Physics Department, 106 Fondren Science Building, Dallas, TX 75275-0175, United States of America
40 University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, United States of America
41 DESY, Notkestr. 85, D-22603 Hamburg and Platanenallee 6, D-15738 Zeuthen, Germany
42 TU Dortmund, Experimentelle Physik IV, DE - 44221 Dortmund, Germany
43 Technical University Dresden, Institut für Kern- und Teilchenphysik, Zellescher Weg 19, D-01069 Dresden, Germany
44 Duke University, Department of Physics, Durham, NC 27708, United States of America
45 University of Edinburgh, School of Physics & Astronomy, James Clerk Maxwell Building, The Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
46 Fachhochschule Wiener Neustadt; Johannes Gutenbergstrasse 3 AT - 2700 Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, via Enrico Fermi 40, IT-00044 Frascati, Italy
48 Albert-Ludwigs-Universität, Fakultät für Mathematik und Physik, Hermann-Herder Str. 3, D - 79104 Freiburg i.Br., Germany
49 Université de Genève, Section de Physique, 24 rue Ernest Ansermet, CH - 1211 Geneve 4, Switzerland
50 INFN Sezione di Genova(a); Università di Genova, Dipartimento di Fisica(b), via Dodecaneso 33, IT - 16146 Genova, Italy
51 Institute of Physics of the Georgian Academy of Sciences, 6 Tamarashvili St., GE - 380077 Tbilisi; Tbilisi State University, HEP Institute, University St. 9, GE - 380086 Tbilisi, Georgia
52 Justus-Liebig-Universität Giessen, II Physikalisches Institut, Heinrich-Buff Ring 16, D-35392 Giessen, Germany
53 University of Glasgow, Department of Physics and Astronomy, Glasgow G12 9QX, United Kingdom
54 Georg-August-Universität, II. Physikalisches Institut, Friedrich-Hund Platz 1, D-37077 Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3, Université Joseph Fourier, INPG, 53 avenue des Martyrs, FR - 38026 Grenoble Cedex, France
56 Hampton University, Department of Physics, Hampton, VA 23668, United States of America
57 Harvard University, Laboratory for Particle Physics and Cosmology, 18 Hammond Street, Cambridge, MA 02138, United States of America
58 Ruprecht-Karls-Universität Heidelberg; Kirchhoff-Institut für Physik(a), Im Neuenheimer Feld 227, D-69120 Heidelberg; Physikalisches Institut(b), Philosophenweg 12, D-69120 Heidelberg; ZITI Ruprecht-Karls-University Heidelberg(c), Lehrstuhl für Informatik V, B6, 23-29, DE - 68131 Mannheim, Germany
59 Hiroshima University, Faculty of Science, 1-3-1 Kagamiyama, Higashihiroshima-shi, JP - Hiroshima 739-8526, Japan
60 Hiroshima Institute of Technology, Faculty of Applied Information Science, 2-1-1 Miyake Saeki-ku, Hiroshima-shi, JP - Hiroshima 731-5193, Japan
61 Indiana University, Department of Physics, Swain Hall West 117, Bloomington, IN 47405-7105, United States of America
62 Instituut für Astro- und Teilchenphysik, Technikerstrasse 25, A - 6020 Innsbruck, Austria
63 University of Iowa, 203 Van Allen Hall, Iowa City, IA 52242-1479, United States of America
64 Iowa State University, Department of Physics and Astronomy, Ames High Energy Physics Group, Ames, IA 50011-3160, United States of America
65 Joint Institute for Nuclear Research, JINR Dubna, RU - 141 980 Moscow Region, Russia
66 KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801, Japan
67 Kobe University, Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, JP Kobe 657-8501, Japan
68 Kyoto University, Faculty of Science, Oiwake-cho, Kitashirakawa, Sakyō-ku, Kyoto-shi, JP - Kyoto 606-8502, Japan
105 Nikhef National Institute for Subatomic Physics, and University of Amsterdam, Science Park 105, 1098 XG Amsterdam, Netherlands
106 Department of Physics, Northern Illinois University, LaTourette Hall Normal Road, DeKalb, IL 60115, United States of America
107 Budker Institute of Nuclear Physics (BINP), RU - Novosibirsk 630 090, Russia
108 New York University, Department of Physics, 4 Washington Place, New York NY 10003, USA, United States of America
109 Ohio State University, 191 West Woodruff Ave, Columbus, OH 43210-1117, United States of America
110 Okayama University, Faculty of Science, Tsushimaarak 3-1-1, Okayama 700-8530, Japan
111 University of Oklahoma, Homer L. Dodge Department of Physics and Astronomy, 440 West Brooks, Room 100, Norman, OK 73019-0225, United States of America
112 Oklahoma State University, Department of Physics, 145 Physical Sciences Building, Stillwater, OK 74078-3072, United States of America
113 Palacký University, 17.listopadu 50a, 772 07 Olomouc, Czech Republic
114 University of Oregon, Center for High Energy Physics, Eugene, OR 97403-1274, United States of America
115 LAL, Univ. Paris-Sud, IN2P3/CNRS, Orsay, France
116 Osaka University, Graduate School of Science, Machikaneyama-machi 1-1, Toyonaka, Osaka 560-0043, Japan
117 University of Oslo, Department of Physics, P.O. Box 1048, Blindern, NO - 0316 Oslo 3, Norway
118 Oxford University, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom
119 INFN Sezione di Pavia(a); Università di Pavia, Dipartimento di Fisica Nucleare e Teorica(b), Via Bassi 6, IT-27100 Pavia, Italy
120 University of Pennsylvania, Department of Physics, High Energy Physics Group, 209 S. 33rd Street, Philadelphia, PA 19104, United States of America
121 Petersburg Nuclear Physics Institute, RU - 188 300 Gatchina, Russia
122 INFN Sezione di Pisa(a); Università di Pisa, Dipartimento di Fisica E. Fermi(b), Largo B. Pontecorvo 3, IT - 56127 Pisa, Italy
123 University of Pittsburgh, Department of Physics and Astronomy, 3941 O'Hara Street, Pittsburgh, PA 15260, United States of America
124 Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP(a), Avenida Elias Garcia 14-1, PT - 1000-149 Lisboa, Portugal; Universidad de Granada, Departamento de Fisica Teorica y del Cosmos and CAFPE(b), E-18071 Granada, Spain
125 Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ - 18221 Praha 8, Czech Republic
126 Charles University in Prague, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, V Holesovickach 2, CZ - 18000 Praha 8, Czech Republic
127 Czech Technical University in Prague, Zikova 4, CZ - 166 35 Praha 6, Czech Republic
128 State Research Center Institute for High Energy Physics, Moscow Region, 142281, Protvino, Pobeda street, 1, Russia
129 Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
130 University of Regina, Physics Department, Canada
131 Ritsumeikan University, Noji Higashi 1 chome 1-1, JP - Kusatsu, Shiga 525-8577, Japan
132 INFN Sezione di Roma I(a); Università La Sapienza, Dipartimento di Fisica(b), Piazzale A. Moro 2, IT- 00185 Roma, Italy
133 INFN Sezione di Roma Tor Vergata(a); Università di Roma Tor Vergata, Dipartimento di Fisica(b), via della Ricerca Scientifica, IT-00133 Roma, Italy
134 INFN Sezione di Roma Tre(a); Università Roma Tre, Dipartimento di Fisica(b), via della Vasca Navale 84, IT-00146 Roma, Italy
135 Réseau Universitaire de Physique des Hautes Energies (RUPHE): Université Hassan II, Faculté des Sciences Ain Chock(a), B.P. 5366, MA - Casablanca; Centre National de l’Energie des Sciences Techniques Nucleaires (CNESTEN)(b), B.P. 1382 R.P. 10001 Rabat 10001; Université Mohamed Premier(c), LPTPM, Faculté des Sciences, B.P.717. Bd. Mohamed VI, 60000, Oujda ; Université Mohammed V, Faculté des Sciences(d) 4 Avenue Ibn Battouta, BP 1014 RP, 10000 Rabat, Morocco
136 CEA, DSM/IRFU, Centre d’Etudes de Saclay, FR - 91191 Gif-sur-Yvette, France
137 University of California Santa Cruz, Santa Cruz Institute for Particle Physics (SCIPP), Santa Cruz, CA 95064,
United States of America
138 University of Washington, Seattle, Department of Physics, Box 351560, Seattle, WA 98195-1560, United States of America
139 University of Sheffield, Department of Physics & Astronomy, Hounsfield Road, Sheffield S3 7RH, United Kingdom
140 Shinshu University, Department of Physics, Faculty of Science, 3-1-1 Asahi, Matsumoto-shi, JP - Nagano 390-8621, Japan
141 Universit"at Siegen, Fachbereich Physik, D 57068 Siegen, Germany
142 Simon Fraser University, Department of Physics, 8888 University Drive, CA - Burnaby, BC V5A 1S6, Canada
143 SLAC National Accelerator Laboratory, Stanford, California 94309, United States of America
144 Comenius University, Faculty of Mathematics, Physics & Informatics\(^{(a)}\), Mlynska dolina F2, SK - 84248 Bratislava; Institute of Experimental Physics of the Slovak Academy of Sciences, Dept. of Subnuclear Physics\(^{(b)}\), Watsonova 47, SK - 04353 Kosice, Slovak Republic
145 \(^{(a)}\)University of Johannesburg, Department of Physics, PO Box 524, Auckland Park, Johannesburg 2006; \(^{(b)}\)School of Physics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa, South Africa
146 Stockholm University: Department of Physics\(^{(a)}\); The Oskar Klein Centre\(^{(b)}\), AlbaNova, SE - 106 91 Stockholm, Sweden
147 Royal Institute of Technology (KTH), Physics Department, SE - 106 91 Stockholm, Sweden
148 Stony Brook University, Department of Physics and Astronomy, Nicolls Road, Stony Brook, NY 11794-3800, United States of America
149 University of Sussex, Department of Physics and Astronomy Pevensey 2 Building, Falmer, Brighton BN1 9QH, United Kingdom
150 University of Sydney, School of Physics, AU - Sydney NSW 2006, Australia
151 Institute of Physics, Academia Sinica, TW - Taipei 11529, Taiwan
152 Technion, Israel Inst. of Technology, Department of Physics, Technion City, IL - Haifa 32000, Israel
153 Tel Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Ramat Aviv, IL - Tel Aviv 69978, Israel
154 Aristotle University of Thessaloniki, Faculty of Science, Department of Physics, Division of Nuclear & Particle Physics, University Campus, GR - 54124, Thessaloniki, Greece
155 The University of Tokyo, International Center for Elementary Particle Physics and Department of Physics, 7-3-1 Hongo, Bunkyo-ku, JP - Tokyo 113-0033, Japan
156 Tokyo Metropolitan University, Graduate School of Science and Technology, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
157 Tokyo Institute of Technology, 2-12-1-H-34 O-Okayama, Meguro, Tokyo 152-8551, Japan
158 University of Toronto, Department of Physics, 60 Saint George Street, Toronto M5S 1A7, Ontario, Canada
159 TRIUMF\(^{(a)}\), 4004 Wesbrook Mall, Vancouver, B.C. V6T 2A3; \(^{(b)}\)York University, Department of Physics and Astronomy, 4700 Keele St., Toronto, Ontario, M3J 1P3, Canada
150 University of Tsukuba, Institute of Pure and Applied Sciences, 1-1-1 Tennoudai, Tsukuba-shi, JP - Ibaraki 305-8571, Japan
151 Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA 02155, United States of America
152 Universidad Antonio Narino, Centro de Investigaciones, Cra 3 Este No.47A-15, Bogota, Colombia
153 University of California, Irvine, Department of Physics & Astronomy, CA 92697-4575, United States of America
154 INFN Gruppo Collegato di Udine\(^{(a)}\); ICTP\(^{(b)}\), Strada Costiera 11, IT-34014, Trieste; Università di Udine, Dipartimento di Fisica\(^{(c)}\), via delle Scienze 208, IT - 33100 Udine, Italy
155 University of Illinois, Department of Physics, 1110 West Green Street, Urbana, Illinois 61801, United States of America
156 University of Uppsala, Department of Physics and Astronomy, P.O. Box 516, SE -751 20 Uppsala, Sweden
157 Instituto de Física Corpuscular (IFIC) Centro Mixto UVEG-CSIC, Apdo. 22085 ES-46071 Valencia, Dept. Física At. Mol. y Nuclear; Dept. Ing. Electrónica; Univ. de Valencia, and Inst. de Microelectrónica de Barcelona (IMB-CNM-CSIC) 08193 Bellaterra, Spain
158 University of British Columbia, Department of Physics, 6224 Agricultural Road, CA - Vancouver, B.C. V6T 1Z1, Canada
159 University of Victoria, Department of Physics and Astronomy, P.O. Box 3055, Victoria B.C., V8W 3P6, Canada
160 Waseda University, WISE, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
161 The Weizmann Institute of Science, Department of Particle Physics, P.O. Box 26, IL - 76100 Rehovot, Israel