Stabilized 111In-Labeled sCCK8 Analogues for Targeting CCK2-Receptor Positive Tumors: Synthesis and Evaluation

Susan Roosenburg,* Peter Laverman,* Lieke Joosten,* Annemarie Eek,* Wim J. G. Oyen,* Marion de Jong,* Floris P. J. Rutjes, Floris L. van Delft, and Otto C. Boerman*

Department of Nuclear Medicine, Radboud University Nijmegen Medical Center, The Netherlands, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands, and Department of Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands. Received October 25, 2009; Revised Manuscript Received January 15, 2010

Radiolabeled cholecystokinin-8 (CCK8) peptide analogues can be used for peptide receptor radionuclide imaging and therapy for tumors expressing CCK2/gastrin receptors. Earlier findings indicated that sulfated CCK8 (sCCK8, Asp-Tyr(OSO$_3$H)-Met-Gly-Trp-Met-Asp-Phe-NH$_2$) may have better characteristics for peptide receptor radionuclide therapy (PRRT) than gastrin analogues. However, sCCK8 contains an easily hydrolyzable sulfated tyrosine residue and two methionine residues which are prone to oxidation. Here, we describe the synthesis of stabilized sCCK8 analogues, resistant to hydrolysis and oxidation. Hydrolytic stability was achieved by replacement of the Tyr(OSO$_3$H) moiety by a robust isosteric sulfonate, Phe(p-CH_2SO$_3$H). Replacement of methionine by norleucine (Nle) or homopropargylglycine (HPG) avoided undesired oxidation side-reactions. The phenylalanine analogue Phe(p-CH_2SO$_3$H) of 1-tyrosine, synthesized by a modification of known synthetic routes, was incorporated in three peptides: sCCK8[Phe2(p-CH_2SO$_3$H),Met3], sCCK8[Phe2(p-CH_2SO$_3$H),Nle3], and sCCK8[Phe2(p-CH_2SO$_3$H),HPG3]. All peptides were N-terminally conjugated with the macrocyclic chelator DOTA (1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) and radiolabeled with In-111. In vitro binding assays on CCK2R-expressing HEK293 cells revealed that all three peptides showed specific binding and receptor-mediated internalization, with binding affinity values (IC$_{50}$) in the nanomolar range. In vivo oxidation studies demonstrated that peptides with Nle or HPG indeed were resistant to oxidation. In vivo targeting studies in mice with AR42J tumors showed that tumor uptake was highest for 111In-DOTA-sCCK8$^{9, 10}$ and 111In-DOTA-sCCK8[Phe2(p-CH_2SO$_3$H),Nle3] (4.78 ± 0.64 and 4.54 ± 1.15%ID/g, respectively, 2 h p.i.). The peptide with the methionine residues replaced by norleucine (111In-DOTA-sCCK8[Phe2(p-CH_2SO$_3$H),Nle3]) showed promising in vivo characteristics and will be further investigated for radionuclide imaging and therapy of CCK2R-expressing tumors.

INTRODUCTION

Cholecystokinin (CCK), a functional peptide hormone in the gastrointestinal tract and the brain, mediates a variety of hormonal and neuromodulatory functions mediated by two receptors, CCK1R and CCK2R (1). In addition, a splice variant of the CCK2R was identified, CCK248sVR (2). However, CCK248sVR is expressed at relatively low levels in human colorectal cancer and in pancreatic cancer, but not in normal tissue (2). All three receptors belong to the superfamily of G-protein coupled receptors. Several tumor types, such as small cell lung cancers (SCLC) and medullary thyroid carcinomas (MTC), abundantly express CCK2/gastrin receptors (CCK2R) (3).

Since both gastrin and CCK8 display a high affinity for these receptors (3), radiolabeled analogues of these peptides may be considered for peptide receptor imaging and peptide receptor radionuclide therapy (PRRT). We have previously shown that sCCK8 (Asp-Tyr(OSO$_3$H)-Met-Gly-Trp-Met-Asp-Phe-NH$_2$) has good characteristics for PRRT compared to gastrin analogues (4). Sulfated CCK8 has affinity for both the CCK1 and CCK2 receptor, and shows better CCK2 targeting characteristics as compared to nonsulfated CCK8 (nsCCK8). Behr et al. found that minigastrin analogues showed extremely high kidney uptake, whereas CCK8 exhibited low kidney uptake (5). The high kidney uptake was shown to be related to the pentaglutamate sequence of minigastrin, and was found to be reduced by coinjection of poly-Glu-containing peptides (6, 7). Unlike gastrin, sCCK8 includes a sulfated tyrosine (Tyr) residue that is easily hydrolyzable. Moreover, an Fmoc-Tyr(SO$_3$H)-OH building block is difficult to use in solid-phase peptide synthesis (SPPS), as it is acid labile (8). Another pitfall of sCCK8 is the presence of two methionines (Met) that are prone to oxidation to sulfoxides during radiolabeling and potentially also in vivo, leading to loss of receptor binding (9, 10). Therefore, we aimed to develop new and stabilized sCCK8 analogues, resistant to both hydrolysis and oxidation. To this end, we envisaged replacement of the Tyr sulfate moiety by a robust isosteric sulfonate. Since sulfonate isosteres of tyrosine sulfate are not commercially available, synthetic preparation of the phenylalanine analogue Phe(p-CH_2SO$_3$H) from 1-tyrosine was required, to afford a Phe(p-CH_2SO$_3$H) building block that can be incorporated in peptide sequences under normal coupling conditions in SPSS without additional side chain protection (11). Second, to prevent oxidation, two sCCK8 analogues were designed with the Met residues replaced by norleucine (Nle) or homopropargylglycine (HPG) (12, 13). All peptides were N-terminally conjugated with the macrocyclic chelator DOTA (1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) to allow radiola-
beling. Finally, the three sCCK8 analogues were characterized both in vitro and in vivo and compared to DOTA-sCCK8.

EXPERIMENTAL PROCEDURES

Synthesis of Fmoc-Phe(p-CH$_2$SO$_3$Na)-OH. General Methods. Solvents were distilled from appropriate drying agents prior to use and stored under nitrogen. Chemicals were purchased from Sigma-Aldrich and used as received, unless stated otherwise. Reactions were carried out under inert atmosphere of dry nitrogen or argon. Standard syringe techniques were applied for the transfer of dry solvents and air- or moisture-sensitive reagents. Reactions were followed, and R_F values were obtained using thin-layer chromatography (TLC) on silica gel-coated plates (Merck 60 F254) with the indicated solvent mixture. Detection was performed with UV-light. NMR spectra were recorded on a Bruker DMX 300 (300 MHz) spectrometer in CDCl$_3$ solutions (unless otherwise reported). Chemical shifts are given in ppm with respect to tetramethylsilane (TMS) as internal standard. Coupling constants are reported as J-values in Hz. Mass was determined by LCQ spectrometer in CDCl$_3$ solutions (unless otherwise reported).

N-tBuButyloxy carbonyl-t-tyrosine Methyl Ester (1). 30.0 g (165.55 mmol) t-tyrosine was dissolved in 1.1 L MeOH and cooled on an ice bath. 15.65 mL (215.24 mmol, 1.3 equiv) SOCl$_2$ was added dropwise and the reaction mixture was refluxed at 75 °C overnight. The solvent was evaporated, and the crude product (38.2 g white solid) was used in the next step.

Compound 2. 4.26 g (13.96 mmol) in 60 mL MeOH was dissolved in water and was washed with ethyl acetate before refluxing 2 h. Dioxane was added, and the organic layers were dried on MgSO$_4$ and concentrated in vacuo. The crude product was dissolved in 500 mL dioxane/Heptane 1/1. 34.65 g (412.55 mmol, 3 equiv) NaHCO$_3$ and 43.21 g (198 mmol, 1.2 equiv) Boc$_2$O was added and the mixture was stirred at RT for 2 h. Dioxane was removed in vacuo and EtOAc was added. The organic layer was washed with water and brine, dried on MgSO$_4$, filtered, and concentrated to yield an orange oil, that crystallized overnight, yielding 44.52 g (150.7 mmol, 91% over 2 steps) of white crystals. The crude product was purified by flash column chromatography (CH$_2$Cl$_2$/EtOAc/heptane 2/3/→ EtOAc 100%). Yield: 8.18 g (26.5 mmol, 50.4% over 2 steps, 74%) of white/yellow crystals. R_F (EtOAc/heptane 1/1) 0.31; mp 81 °C; 1H NMR (CDCl$_3$) δ 9.08 (s, 1H, Ar-CH$_2$-CH), 3.71 (s, 3H, -OC$_3$H$_7$), 4.97 (m, 1H, -N(C(CH$_3$)$_3$)), 7.28 (d, 2H, Ar-CH$_2$-CH), 3.72 (s, 3H, -OC$_3$H$_7$), 4.57 (m, 1H, Ar-CH_2-CH), 4.67 (m, 1H, Ar-CH_2-CH), 4.97 (m, 1H, Ar-CH_2-CH), 7.12 (m, 4H, Ar-CH_2-CH), 7.47 (m, 4H, Ar-CH_2-CH).

**N-tBuButyloxy carbonyl-p-trifluoromethylsulfonyl-t-tyrosine Methyl Ester (2). (14, 15) 1.0 g (3.39 mmol) of compound 1 was dissolved in 40 mL CH$_2$Cl$_2$ and cooled on an ice bath. Then, 720 mL (4.23 mmol, 1.25 equiv) DIPEDA and 1.45 g (4.23 mmol, 1.25 equiv) phenyltrifluoromethylidene were added, before stirring the mixture at RT overnight. Solvent was evaporated, and the remaining colorless oil was dissolved in 40 mL EtOAc. The solution was washed with H$_2$O, 0.1 M HCl, and brine, dried on MgSO$_4$, and concentrated. The crude product was purified by flash column chromatography (EtOAc/heptane 15/85). Yield: 1.095 g (2.56 mmol, 79%) white crystals (after drying in vacuo). R_F (EtOAc/heptane 1/1) 0.65; mp 48 °C (lit.48–49 °C); 1H NMR (CDCl$_3$) δ 1.41 (s, 9H, -C(CH$_3$)$_3$), 3.00–3.20 (dq, 2H, Ar-CH_2-CH), 3.71 (s, 3H, -OC$_3$H$_7$), 4.61 (m, 1H, Ar-CH), 5.00 (m, 1H, -N(CH$_3$)$_2$), 7.22 (s, 4H, Ar-CH_2-CH). MS(ESI-TOF): 332.2 (M$^+$Na$^{+}$), calcld 332.16 (M$^+$H$^+$).

**p-Chloromethyl(1)-phenylalanine Methyl Ester (5). (16) Compound 4 (10.03 g) was dissolved in 350 mL of CH$_2$Cl$_2$ and SOCl$_2$ (25–30 equiv) was added dropwise, before refluxing overnight. After evaporation to dryness, the remaining solid was rinsed twice with Et$_2$O and dried. The product was used in the next step without further purification. Yield: 4.59 g (62%) of an off-white solid. R_F (CH$_2$Cl$_2$/MeOH/AcOH 9/1/0.1) 0.34; mp 178 °C (lit. 180 °C); 1H NMR (MeOD) δ 3.15–3.32 (dq, 2H, Ar-CH_2-CH), 3.81 (s, 3H, -OC$_3$H$_7$), 4.33 (m, 1H, Ar-CH), 4.65 (m, 2H, Ar-CH_2), 7.28 (m, 2H, Ar-CH_2), 7.43 (d, 2H, Ar-CH). MS(ESI-TOF): 228.0 (M$^+$H$^+$), calcld 228.07 (M$^+$H$^+$).

**p-Sulfonylmethyl(6)-phenylalanine (6). (11, 16) Compound 5 (4.59 g, 20.2 mmol) was dissolved in 200 mL H$_2$O and 20.3 g (161.6 mmol, 8 equiv) Na$_2$SO$_3$ was added. The solution was refluxed at 100 °C for 3 h. The solvent was removed in vacuo and the crude product was washed with EtOH, yielding 32.25 g of a white solid after drying in vacuo. The crude product was used in the next step. 1H NMR (D$_2$O) δ 3.08–3.12 (dq, 2H, Ar-CH_2-CH), 3.97 (m, 1H, Ar-CH), 4.20 (s, 2H, -CH$_2$SO$_3$Na), 7.33 (d, 2H, Ar-CH), 7.43 (d, 2H, H). MS(ESI-TOF): 280.3 (M$^+$H$^+$), calcld 280.3 (M$^+$H$^+$).

N-Fluorenyl-9-methoxycarbonyl-(p-sulfomethyl)-L-phenylalanine Methyl Ester (6). (11) Ozone was bubbled through a solution of the vinyl compound 3 (4.26 g, 13.96 mmol) in 60 mL MeOH at −60 °C until the solution turned blue. The mixture was stirred under N$_2$ for 10 min at −60 °C and 10.3 mL (139.6 mmol, 10 equiv) of Me$_2$S was added. The mixture was stirred for 1 h at −60 °C. Then, NaBH$_4$ (2.64 g, 69.8 mmol, 5 equiv) was added. The mixture was stirred at −60 °C for 10 min, then allowed to warm to 0 °C and stirred for an additional 45 min. Saturated NH$_4$Cl (60 mL) was added, and the product was extracted with EtOAc (2 × 100 mL). The organic layers were dried on MgSO$_4$, filtered, and concentrated to yield a yellow/brown oil. The crude product was purified by flash column chromatography (EtOAc/heptane 2/3 → EtOAc 100%). Yield: 8.18 g (26.5 mmol, 50.4% over 2 steps, 74%) of white/yellow crystals. R_F (EtOAc/heptane 1/1) 0.31; mp 81 °C; 1H NMR (CDCl$_3$) δ 1.42 (s, 9H, -C(CH$_3$)$_3$), 3.08 (dd, J = 10.36, 2H, Ar-CH_2-CH), 3.72 (s, 3H, -OC$_3$H$_7$), 4.57 (m, 1H, Ar-CH_2-CH), 4.67 (m, 1H, Ar-CH_2-CH), 4.97 (m, 1H, -N(H$_3$)$_2$), 7.11 (d, J = 8.02, 2H, Ar-CH), 7.29 (d, J = 8.02, 2H, Ar-H). MS(ESI-TOF): 332.2 (M$^+$Na$^{+}$), calcld 332.16 (M$^+$H$^+$).
tography (MeCN/H2O 9/1), yielding 1.04 g of white solid (2.07 mmol, 41.4% over 2 steps). Rg (ACN/H2O 9/1) 0.24; mp 185 °C (lit. 184 °C); 1H NMR (MeOD) δ 2.93–3.18 (dq, 2H, Ar-CH2-CH2), 3.99 (m, 1H, α-CH), 4.20 (s, 2H, -CH2SO3H-Na), 7.15–7.41 (m, 8H, Ar-H (Fmoc)), 7.61 (d, 2H, Ar-H), 7.78 (d, 2H, Ar-H); MS(ESI-TOF): 480.1 (M-H+), calcd 480.11 (M-H+).

Synthesis of DOTA—Peptides. Peptides were synthesized on a peptide synthesizer (Peptide Synthesizer SP 4000-LAB, Labotec AG) by applying the Fmoc-strategy. In all coupling steps, DIPCDI and HOBT were used, except for coupling of Fmoc-Phe(p-CH2SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2), DOTA-sCCK8 was prepared as described before (17). Peptide-containing fractions (detected by UV-light) were lyophilized and analyzed by HPLC and mass spectrometry. Peptides were analyzed by analytical HPLC (Alltima C18 5 μm, 3.2 × 150 mm, Alltech, USA) with 5–75% ACN 0.1% TFA in H2O 0.1% TFA as an eluent. DOTA-sCCK8[5H] and DOTA-sCCK8[5H] were further purified by SP RP-HPLC (ReproSil 100 C18 250 mm × 10 mm, Dr. A. Maisch HPLC-GmbH, Germany), using ACN 0.1% TFA (5–75% over 30 min) in H2O 0.1% TFA as an eluent. Peptide-containing fractions (detected by UV-light) were lyophilized and analyzed by HPLC and mass spectrometry. DOTA-sCCK8[5H] was 1525.7 (M-H+), calcd = 1526.55. DOTA-sCCK8[5H] was 1489.8 (M-H+) calcld = 1490.64. DOTA-sCCK8[5H] was 1481.8 (M-H+) calcd = 1482.58. DOTA-sCCK8 was prepared as described before (17).

Radiolabeling. The DOTA-conjugated peptides were radiolabeled with 111InCl3 (Covidien, Petten, The Netherlands) in 0.25 M ammonium acetate buffer, pH 5.0, for 30 min at 95 °C. Labeling efficiency and radiochemical purity were checked by HPLC (1100 series LC system, Agilent Technologies, Palo Alto, CA, USA, RP-C18 column 5 μm, 4.6 × 250 mm) with a gradient of H2O containing 0.1% TFA and ACN containing 0.1% TFA, and ITLC on ITLC-SG strips (Pall Life Sciences, Milford, MA, USA) with 0.1 M NH4OAc/0.1 M EDTA (1/1 v/v) (Rf labeled peptide = 0, Rf unbound 111In = 1), as well as MeOH/3.5% NH3 (1/1 v/v) (Rf colloid = 0, Rf unbound 111In or labeled peptide >0.8) as eluents. The radiochemical purities of peptides used in the studies described here were always above 95%. Maximum specific activity was 5.5 GBq/mmol.

Determination of Partition Coefficient (log P). To determine the lipophilicity of the radiolabeled peptides, approximately 60 000 dpm 111In-DOTA-peptide was diluted in 3 mL PBS. An equal volume of 1-octanol was added to obtain a binary system. The system was vortexed for 10 s and mixed more gently for another 4 min. The two layers were separated by centrifugation (3000 g, 5 min). Three samples of 250 μL were taken of both layers and the radioactivity was determined in a 3" well-type gamma-counter (Wallac 1480-Wizard 3, Perkin-Elmer, Boston, MA, USA). The log P value was calculated with the following formula:

\[
\text{Log } P_{\text{octanol/water}} = \log(\text{cpm}_{\text{octanol}}/\text{cpm}_{\text{water}})
\]

Oxidation Experiments. To study the susceptibility of the peptide analogues to oxidation, the 111In-labeled peptides were incubated with oxidation buffer (H2O2/acetic acid/NH4OAc 1/3/36) for 10 min at RT. Before and after incubation, the peptides were analyzed by RP-HPLC.

Stability Experiments. To study the stability of the peptide analogues, the 111In-labeled peptides were incubated in human serum for 4 h at 37 °C. The samples were centrifuged at 3000 g for 5 min. The plasma was removed and mixed with acetonitrile. Before and after incubation, the peptides were analyzed using RP-HPLC.

Internalization Experiments. The internalization of the radiolabeled DOTA—peptides was investigated using HEK293-CCK2R cells (obtained from M. Hellmich, Univ. of Texas Medical Branch, Galveston, USA). Cells were cultured in Dulbecco’s Modified Eagle’s medium (DMEM) and supplemented with 10% fetal calf serum (FCS) and G418 (400 μg/mL). Cells were grown in a humidified atmosphere with 5% CO2 at 37 °C. Cells were grown to confluency in 6-well plates. Radiolabeled peptide was added at a concentration of 4.4 × 10-3 nM (12 000 dpm/well). Cells were incubated for 0.5–2 h at either 0 or 37 °C, medium was removed, and cells were washed with ice-cold binding buffer (DMEM supplemented with 0.5% w/v bovine serum albumin (BSA)). To remove receptor-bound radiolabeled peptide, cells were incubated with acid buffer (0.1 M acetic acid, 154 mM NaCl, pH 2.0) for 10 min at 0 °C. After washing the cells twice with ice-cold PBS, the internalized fraction was determined by counting the cells in a gamma counter. The receptor-bound activity was also determined by counting the acid wash fractions.

Determination of IC50 Values. The 50% inhibitory concentration (IC50) of the peptides for binding the CCK2R was determined on HEK293-CCK2R cells in a competitive binding assay. Cells were grown to confluency in 6-well plates. Cells were washed with binding buffer and incubated at RT for 10 min in binding buffer. Subsequently, unlabeled peptide was added in the range 0.1–100 nM together with a trace amount of 111In-DOTA-sCCK8[5H] (12 000 dpm). After incubation at RT for 1 h, binding buffer was removed and cells were washed twice with binding buffer. Cell-associated radioactivity was determined. The IC50 was defined as the peptide concentration at which 50% of binding without competitor was reached. IC50 values (including standard deviations) were calculated using GraphPad Prism software (version 4.00 for Windows, GraphPad Software, San Diego, CA, USA).

Biodistribution Studies. The in vivo tumor targeting potential of the 111In-DOTA-peptides was investigated in female athymic BALB/c mice. Subcutaneous tumors were induced by inoculation with CCK2R expressing AR421 cells (rat tumor of the exocrine pancreas). Cells were cultured in DMEM with 4500 mg/L d-glucose (Gibco, Invitrogen, Breda, The Netherlands), supplemented with 10% FCS and 1% penicillin/streptomycin. Mice were inoculated s.c. with 4 × 106 AR421 cells (200 μL) in the left flank. When tumors had reached a weight of 0.2 g, mice were divided in groups of 5 mice each and 370 kBq 111In-DOTA-peptide (0.1 μg) was injected intravenously. Specificity was studied in groups (n = 5) which received a 1000-fold molar excess of unlabeled sCCK8. Mice were killed 2 h postinjection (p.i.), a blood sample was drawn, and tissues of interest were dissected, weighed, and counted in a gamma-counter along with a standard of the injected activity to allow calculation of the injected dose per gram tissue (% ID/g). Animal experiments...
were approved by the local animal welfare committee and carried out according to national regulations.

Statistical Analysis. All mean values are expressed as mean ± standard deviation (SD). Statistical analysis was performed using one-way analysis of variance using GraphPad InStat software (version 3.10, Graphpad software). The level of significance was set at \(p < 0.05 \).

RESULTS

Synthesis of Phe(p-CH_2SO_3H) and Peptides. Since sulfonate building blocks are not commercially available, Fmoc-Phe(p-CH_2SO_3H)-OH was synthesized starting from L-tyrosine, by modification of known routes (Scheme 1). First, the amino group and the acid functionality were protected by a Boc- and tert-butyl group, respectively. The hydroxy group of Phe(p-CH_2SO_3H), obtained from alcohol 4 by refluxing in water in the presence of hydrogen peroxide and acetic acid, was converted into the sulfonate methylated compound 5. The chloromethyl derivative 6, obtained from alcohol 4 by treatment with thionyl chloride, was converted into the sulfonate 6 by refluxing in water in the presence of hydrogen peroxide and acetic acid. The reaction, thereby obviating a separate deprotection step. The final step in the synthesis of the sulfonate building block was Fmoc-protection of the amine under basic conditions (Scheme 1). The overall yield of the synthesis starting from L-tyrosine was 9% (19).

Having the phenylalanine sulfonate building block 7 at hand, we investigated the synthesis of sCCK8 analogues by solid-phase peptide synthesis. Initial application of standard coupling conditions (HOBt, DIPCDI) to Fmoc-Phe(p-CH_2SO_3H)-OH failed to afford incorporation of Phe(p-CH_2SO_3H)-OH in the peptide. Fortunately, switching of reagents to HBTU and DIPEA led to the desired octapeptide uneventfully. To obtain other more stable sCCK8 peptide analogues not susceptible to oxidation, methionine residues were replaced by either norleucine (Nle) or homopropargylglycine (HPG) residues. After incorporation of the final amino acid, the macrocyclic chelator DOTA was coupled on the resin as tri-tert-butyl protected derivative. The latter coupling reaction was found to proceed optimally under the action of HBTU and DIPEA. After cleavage from the resin with TFA/H_2O (92.5/2.5, v/v) in the presence of ethanedithiol (EDT) and trisopropyl silane (TIS), with simultaneous protective group removal, the peptides were purified by RP-HPLC. Molecular structures of the peptides are depicted in Figure 1.

Partition Coefficient. For 111\(^{\text{In}}\)-DOTA-sCCK8[Phe\(^2\)(p-CH_2SO_3H),Nle\(^3,6\)] and 111\(^{\text{In}}\)-DOTA-sCCK8[Phe\(^2\)(p-CH_2SO_3H),HPG\(^3,6\)], the log \(P \) values were \(-2.97 \pm 0.02\) and \(-2.93 \pm 0.13\), respectively. The log \(P \) value for 111\(^{\text{In}}\)-DOTA-sCCK8[Phe\(^2\)(p-CH_2SO_3H),Nle\(^3,6\)] was \(-2.86 \pm 0.14\). These values were comparable to that of the lead compound, 111\(^{\text{In}}\)-DOTA-sCCK8: \(-2.91 \pm 0.20\). All compounds were relatively hydrophilic, and the molecular changes did not affect the hydrophilicity of the peptide significantly.

Oxidation Experiments. After 10 min incubation in oxidation buffer (containing hydrogen peroxide and acetic acid), about 66% of the 111\(^{\text{In}}\)-labeled DOTA-sCCK8[Phe\(^2\)(p-CH_2SO_3H), Met\(^{16}\)] was oxidized, as judged by RP-HPLC. Both 111\(^{\text{In}}\)-DOTA-sCCK8[Phe\(^2\)(p-CH_2SO_3H),Nle\(^3,6\)] and 111\(^{\text{In}}\)-DOTA-sCCK8[Phe\(^2\)(p-CH_2SO_3H),HPG\(^3,6\)] did not show any oxidation.

Stability Experiments. In vivo, the peptide analogues should remain intact long enough to target the gastrin/CCK2 receptors. After 4 h incubation in human serum at 37 °C, peptides remained intact. Of the 111\(^{\text{In}}\)-labeled DOTA-sCCK8[Phe\(^2\)(p-CH_2SO_3H), Met\(^{16}\)] 2.3% was oxidized after incubation in the serum.

Internalization Experiments. Internalization of the peptides by HEK293-CCK2R cells was investigated in vitro. After 2 h incubation at 37 °C, 35.2 ± 2.1% of the added 111\(^{\text{In}}\)-DOTA-sCCK8 was internalized by the cells, most of it during the first 30 min (Figure 2). Receptor bound fraction after 2 h was 11.6 ± 0.7%. Of both 111\(^{\text{In}}\)-DOTA-sCCK8[Phe\(^2\)(p-CH_2SO_3H)] and 111\(^{\text{In}}\)-DOTA-sCCK8[Phe\(^2\)(p-CH_2SO_3H),HPG\(^3,6\)], about 13% of the added radiolabeled compound was internalized by the CCK2R after 2 h at 37 °C, while 10–12% was still receptor-bound. The internalized fraction of 111\(^{\text{In}}\)-DOTA-sCCK8[Phe\(^2\)(p-CH_2SO_3H),Nle\(^3,6\)] after 2 h was 26.8 ± 1.4% with a receptor-bound fraction of 9.4 ± 0.6% (Figure 2). Internalization kinetics of 111\(^{\text{In}}\)-DOTA-sCCK8 and 111\(^{\text{In}}\)-DOTA-sCCK8[Phe\(^2\)(p-CH_2SO_3H),Nle\(^3,6\)] showed to be similar, although the percentage of internalized fraction was about 7% lower for the synthetic peptide \(P < 0.05 \). Similar data were found using AR42J cells (data not shown).
Determination of IC50 Values. The apparent IC50 values for binding CCK2R were determined for all peptides, using HEK293-CCK2R cells in a solid-phase competitive binding assay (Figure 3). All peptides showed an IC50 in the low nanomolar range, although the apparent IC50 values of the three synthesized peptides were approximately 10-fold higher than that of the lead compound. The apparent IC50 value for sCCK8 was 1.16 ± 0.06 nM, for DOTA-sCCK8[Phe2(p-CH2SO3H), Nle3,6] 27.2 ± 1.44 nM, for DOTA-sCCK8[Phe2(p-CH2SO3H), Nle1,6] 11.6 ± 1.06 nM, and for DOTA-sCCK8[Phe2(p-CH2SO3H), HPG3,6] 13.2 ± 1.12 nM.

Biodistribution. The potential of the radiolabeled DOTA-peptides for in vivo targeting of CCK2R expressing tumors was investigated in athymic mice with AR42J tumors. The biodistribution 2 h p.i. for each of the four 111In-labeled peptides is summarized in Figure 4.

Tumor uptake of 111In-DOTA-sCCK8 and 111In-DOTA-sCCK8[Phe2(p-CH2SO3H), Nle1,6] were comparable (4.78 ± 0.64 and 4.54 ± 1.15% ID/g, respectively). The radioactivity concentration of these peptides in the tumor was the highest of all tissues studied (P < 0.001). For both other compounds, the tumor uptake was significantly lower (2.18 ± 0.18% ID/g for 111In-DOTA-sCCK8[Phe2(p-CH2SO3H], P < 0.001) and 1.92 ± 0.31% ID/g for 111In-DOTA-sCCK8[Phe2(p-CH2SO3H, HPG3,6]], P < 0.001), and pancreatic concentration for these peptides was at the same level as the concentration in the tumor. Tumor uptake of all compounds could be blocked by coinjection of an excess of unlabeled sCCK8, indicating receptor-mediated uptake. For all compounds tested, the uptake in the normal tissues, such as the blood, lungs, muscle, spleen, and small intestine was low. Specific uptake was also found in the pancreas and, to a lesser extent, in the stomach. Most likely, this is due to relatively high CCK2R
expression in murine pancreatic tissue and stomach. Kidney uptake of all peptides was low (<1.5% ID/g).

DISCUSSION

In earlier studies, we as well as others have shown that radiolabeled CCK8 peptide analogues show promise for peptide receptor radionuclide targeting of small cell lung cancers and medullary thyroid carcinomas (4, 5, 8, 12). In particular, sCCK8 was found to possess better CCK-receptor targeting behavior (4). An important drawback of the peptides used to date, however, is the intrinsic hydrolytic instability of the tyrosine sulfate ester. Moreover, since CCK8 contains two methionine residues, radiolabeling inevitably leads to varying amounts of thioether oxidation, which negates the binding affinity of the peptide to CCKR. Having these drawbacks in mind, we aimed for sCCK8 peptide analogues with improved stability as compared to the lead compound sCCK8. This study describes the characterization of three DOTA-conjugated analogues of the sCCK8 peptide.

A promising method to avoid the instability of the sulfate ester is the replacement of the sulfated tyrosine by a phenylalanine sulfonate isostere, featuring a covalent C–S bond that is fully resistant to water. However, lack of commercial availability of such an unnatural amino acid necessitated a suitable synthetic preparation.

Synthesis started with a tyrosine triflate derivative (2), which is readily available from the corresponding protected tyrosine by reaction with phenyl triflimide. For the synthesis of the hydroxymethylphenylalanines, we investigated different routes: the palladium-catalyzed coupling of the tyrosine triflate with tert-butyl acrylate (Heck reaction) and the coupling of the tyrosine triflate to vinyltributylstannane in the presence of metallic palladium and lithium chloride (Stille reaction), leading to styrene derivative 3. The latter reaction was found to give the best results, which is similar to the published data (14, 18). Both Tilley et al. and the group of Larsen described this reaction with slightly different tyrosine derivatives and they could obtain the allylated compounds in good yields (65–82%) after purification (14, 18). We found that careful workup and immediate ozonolysis and reduction were essential to obtain the hydroxymethylated product 4 in acceptable yields. We also attempted to follow the four-step synthesis route described by Miranda et al. (16), but the chloromethylation of phenylalanine, the first step in this route, also failed to succeed in our hands, as reported earlier (19). In addition, a third attempt involved synthesis of the hydroxymethylphenylalanine directly by a Stille reaction with (tributylstannyl)methanol (20). Several palladium complexes and solvents were investigated, but the desired compound could not be produced.

The chloromethyl derivative 5 was obtained from the alcohol 4 by treatment with thionyl chloride. We found that during this reaction...
reaction the Boc-protective group was conveniently removed as well, probably due to the formation of HCl in this reaction. The next step, conversion to the sulfonate, was also accompanied by an unintended but useful side reaction, i.e., hydrolysis of the methyl ester, thereby saving another deprotection step.

In the pancreas can be explained by the fact that in rodents the peripheral tissue retention are prerequisites for receptor-targeted imaging and therapeutic agents. The observed specific uptake of radiolabeled sCCK8 analogues, which display a very high kidney uptake, 111In-labeled peptides, the radiometal is retained intracellularly as well, probably due to the formation of HCl in this reaction.

In the lysozomes. The peptides in this study all showed time-dependent internalization. About 27% of 111In-DOTA-sCCK8 showed 35% internalization after 2 h, where 111In-DOTA-sCCK8 showed 35% internalization (P < 0.05).

The peptides in this study showed very low kidney retention (1.5% ID/g, 2 h p.i.) and display also low uptake in the main peripheral tissue. This is in contrast with 111In-labeled minigastrin analogues, which display a very high kidney uptake, 40–60% ID/g (5). Derivatives of minigastrin, lacking the pentaglutamate sequence, showed a comparably low kidney uptake compared to CCK8 analogues (23). Low kidney and peripheral tissue retention are prerequisites for receptor-targeted imaging and therapeutic agents. The observed specific uptake in the pancreas can be explained by the fact that in rodents the pancreas expresses the CCK-receptor, whereas in human pancreatic tissue, the CCK2 receptor is not expressed. Therefore, in a clinical setting, pancreatic uptake of radiolabeled sCCK8 analogues is not expected.

In summary, DOTA-sCCK8[Phε(2-p-CH3SO3H), Nle3,8] is a peptide with receptor affinity and tumor uptake comparable to sCCK8, but with an increased stability and therefore is a promising peptide for use in PRRT.

CONCLUSION

A successful synthetic route was developed to a tyrosine isostere that is not susceptible to hydrolysis of the sulfate ester linkage and therefore is a valuable building block for the preparation of medicinally relevant peptides. A series of radiolabeled sCCK8 analogues with increased stability over the natural peptide was successfully synthesized by solid-phase peptide synthesis. The peptide with methionine residues replaced by norleucine (DOTA-sCCK8[Phε(2-p-CH3SO3H), Nle10]) showed promising characteristics for CCK2R targeting and will be further investigated for its potency in imaging and therapy.

Supporting Information Available: NMR-spectra, HPLC-spectra, biodistribution studies. This material is available free of charge via the Internet at http://pubs.acs.org.

ACKNOWLEDGMENT

Bianca Lemmers is kindly acknowledged for her assistance with the animal experiments. The study was financially supported by the Dutch Cancer Society grant KUN 2006-3575.

LITERATURE CITED

