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Abstract. We give a characterization of Drinfeld centers of fusion categories as non-
degenerate braided fusion categories containing a Lagrangian algebra. Further we study
the quotient of the monoid of non-degenerate braided fusion categories modulo the sub-
monoid of the Drinfeld centers and show that its formal properties are similar to those of
the classical Witt group.

1. Introduction

Tensor categories are ubiquitous in many areas of mathematics and it seems worth-
while to study them deeper. The simplest class of tensor categories is formed by so called
fusion categories ([ENO1], see Section 2.1 below for a definition). It is known ([ENO1])
that over an algebraically closed field k of characteristic zero there are only countably
many equivalence classes of fusion categories and that the classification of these equiv-
alence classes is essentially independent from the field k (namely, an embedding of fields
kH k 0 induces a bijection between the sets of equivalence classes of fusion categories
over k and over k 0). Thus the classification of fusion categories seems to be a natural and
interesting problem. This problem is very far from its solution at the moment.

An interesting additional structure that one might impose on a tensor category is a
braiding ([JS2]). For a fusion category A, its Drinfeld center ZðAÞ is a braided fusion cate-
gory, see Section 2.3. Our first main result addresses the following question: when is a
braided fusion category C equivalent to the Drinfeld center of some fusion category? The
answer we give is as follows: C should be non-degenerate in the sense of [DGNO] and C
should contain a Lagrangian algebra, that is, a connected étale algebra of maximal possible
size, see Section 4. More precisely, we show that the 2-groupoid of fusion categories is
equivalent to the 2-groupoid of quantum Manin pairs, where a quantum Manin pair
consists of a non-degenerate braided fusion category and a Lagrangian algebra in this

The work of the third author was partially supported by the NSF grant DMS-0800545. The work of the

fourth author was partially supported by the NSF grant DMS-0602263.



category. This result can be considered as (a step in) a reduction of the classification of all
fusion categories to the classification of braided fusion categories.

The problem of classification of all braided fusion categories (even of non-degenerate
ones) seems to be very interesting but is almost as inaccessible as a classification of all
fusion categories. The second main result of this paper is an observation that there is an
interesting algebraic structure in this classification. Namely, we prove that the quotient
of the monoid of non-degenerate braided fusion categories by the submonoid of Drinfeld
centers has formal properties similar to those of the classical Witt group of the quadratic
forms over a field. Moreover, we show that the Witt group of finite abelian groups en-
dowed with a non-degenerate quadratic form embeds naturally into this quotient. Thus
we call it the Witt group of non-degenerate braided fusion categories and consider its com-
putation as a fundamental problem in the study of fusion categories. Further we show that
each Witt equivalence class contains a unique representative which is completely anisotropic

(Theorem 5.13); this result is a counterpart of the statement that in the classical Witt group
each Witt class contains a unique anisotropic quadratic form.

An interesting subgroup of the Witt group is the unitary Witt group (see Defini-
tion 5.24) consisting of the classes of pseudounitary braided fusion categories. A well-
known source of examples of pseudounitary braided fusion categories is the representation
theory of a‰ne Lie algebras, see e.g. [BK], Chapter 7. Namely, for any simple finite dimen-
sional Lie algebra g and a positive integer k one constructs a pseudounitary non-degenerate
braided fusion category Cðg; kÞ consisting of integrable highest weight modules of level k

over the a‰nization of g. We do not know any elements of the unitary Witt group that are
not in the subgroup generated by the classes ½Cðg; kÞ�. It would be very interesting to find
out whether such elements exist. The relations between the classes ½Cðg; kÞ� (or, more gen-
erally, between the classes of known braided fusion categories) are of great interest. By
Corollary 5.9, any such relation produces at least one fusion category; one can hope to con-
struct new examples of fusion categories in this way (see [CMS], Appendix, for an example
of this kind). In Section 6 we give examples of such relations using the theory of conformal

embeddings and coset models of central charge c < 1. It would be interesting to see whether
other relations exist. At this moment even all relations between the classes

�
C
�
slð2Þ; k

��
are

not completely known (see Section 6.4).
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2. Preliminaries

Throughout this paper our base field k is an algebraically closed field of characteristic
zero.

2.1. Fusion categories. By definition (see [ENO1]), a multi-fusion category over k

is a k-linear semisimple rigid tensor category with finitely many simple objects and finite
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dimensional spaces of morphisms. A multi-fusion category is called a fusion category if
its unit object 1 is simple. By a fusion subcategory of a fusion category we always mean a
full tensor subcategory that is itself fusion (i.e., in particular rigid and semisimple.) Let Vec
denote the fusion category of finite dimensional vector spaces over k. Any fusion cate-
gory A contains a trivial fusion subcategory consisting of multiples of 1. We will identify
this subcategory with Vec. A fusion category A is called simple if Vec is the only proper
fusion subcategory of A.

A fusion category is called pointed if all its simple objects are invertible. For a fusion
category A we denote Apt the maximal pointed fusion subcategory of A. We say that A is
unpointed if Apt ¼ Vec.

We will denote by AnB the tensor product of fusion categories A and B. (Cf.
[De], Section 5. Under the assumptions of this paper, where k is algebraically closed and
A, B semisimple, AnB can be obtained as the completion of the k-linear direct product
A

N
k

B under direct sums and subobjects.)

For a fusion category A we denote by OðAÞ the set of isomorphism classes of simple
objects in A.

Let A be a fusion category and let KðAÞ be its Grothendieck ring. There exists
a unique ring homomorphism FPdim : KðAÞ ! R such that FPdimðXÞ > 0 for any
03X A A, see [ENO1], Section 8.1. (See also [ENO1], Section 9 for the observation that
the results used below are independent of the ground field.) For a fusion category A one
defines (see [ENO1], Section 8.2) its Frobenius–Perron dimension:

FPdimðAÞ ¼
P

X AOðAÞ
FPdimðXÞ2:ð1Þ

For any object X in A let ½X � denote the corresponding element of the Grothendieck
ring KðAÞ. One defines the (virtual) regular object of A by

RA ¼
P

X AOðAÞ
FPdimðXÞ½X � A KðAÞnZ R;ð2Þ

see e.g. [ENO1], Section 8.2. The regular object RA has the following properties (see
loc. cit.):

(1) FPdimðRAÞ ¼ FPdimðAÞ.

(2) ½X �RA ¼ FPdimðXÞRA for any X A A.

(The first is obvious. The second is a restatement of the fact that the positive vec-
tor

�
FPdimðXiÞ

�
i

is the (unique up to a scalar) common FP eigenvector, with respect to
the canonical basis ½Xj�, of the commuting operators ½X � acting on KðAÞnZ R by
multiplication. The proof only uses multiplicativity of the FP dimension. This also shows
that RA is actually characterized by the properties (1) and (2).)

Let A1, A2 be fusion categories such that FPdimðA1Þ ¼ FPdimðA2Þ. By [EO], Prop-
osition 2.19, any fully faithful tensor functor F : A1 !A2 is an equivalence.
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There is another notion of dimension A, the categorical (or global ) dimension defined
as follows (see [Mu2]). For each simple object X in A pick an isomorphism aX : X !@ X ��

and set

dimðAÞ ¼
P

X AOðAÞ
jX j2;ð3Þ

where jX j2 ¼ TrX ðaX ÞTrX �
�
ða�1

X Þ
��. By [ENO1], Theorem 2.3, dimðAÞ is a non-zero ele-

ment in k.

A fusion category A over k ¼ C is called pseudo-unitary if dimðAÞ ¼ FPdimðAÞ, see
[ENO1], Section 8.4. A pseudo-unitary fusion category A has a unique spherical structure
such that the categorical dimension dimðX Þ of any object X in A equals FPdimðXÞ, see
[ENO1], Proposition 8.23. It is easy to see that if A1 and A2 are pseudo-unitary, then so
is A1 nA2.

2.2. Braided fusion categories. A braided fusion category is a fusion category C
endowed with a braiding cX ;Y : X nY !@ Y nX , see [JS2]. For a braided fusion category
its reverse Crev is the same fusion category with a new braiding ~ccX ;Y ¼ c�1

Y ;X . A braided
fusion category is symmetric if ~cc ¼ c.

Recall from [Mu4] that objects X and Y of a braided fusion category C are said to
centralize each other if

cY ;X � cX ;Y ¼ idXnY :ð4Þ

The centralizer D 0 of a fusion subcategory DHC is defined to be the full subcategory of
objects of C that centralize each object of D. It is easy to see that D 0 is a fusion subcategory
of C. Clearly, D is symmetric if and only if DHD 0.

Definition 2.1 (see [DGNO], Definition 2.28 and Proposition 3.7). We will say that a
braided fusion category C is non-degenerate if C 0 ¼ Vec.

A non-degenerate braided fusion category C3Vec is prime if it has no proper non-
degenerate braided fusion subcategories other than Vec. Clearly, a non-trivial simple
braided fusion category is prime.

For a fusion subcategory D of a non-degenerate braided fusion category C one has
the following properties, cf. [DGNO], Theorems 3.10, 3.14:

D 00 ¼ D;

FPdimðDÞFPdimðD 0Þ ¼ FPdimðCÞ:

A pre-modular category is a braided fusion category equipped with a spherical struc-
ture. A pre-modular category C is modular (i.e., its S-matrix is invertible) if and only if C is
non-degenerate [DGNO], Proposition 3.7. (Cf. also [Mu4].)

The following statement is well known. We include its proof for the reader’s conve-
nience.
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Proposition 2.2. Let C3Vec be a non-degenerate braided fusion category. Then

C ¼ C1 n � � �nCn;ð5Þ

where C1; . . . ;Cn are prime non-degenerate subcategories of C. Furthermore, if C is un-

pointed, then its decomposition (5) into a tensor product of prime non-degenerate subcatego-

ries is unique up to a permutation of factors.

Proof. Existence of the decomposition (5) is established in [Mu4], Theorems 4.2,
4.5, for modular categories. Up to one argument that requires generalization, given by
[DGNO], Theorem 3.13, the same proof works for non-degenerate fusion categories.

It remains to prove uniqueness. If DHC is a fusion subcategory, let Di HCi be
the fusion subcategory generated by all simple objects Xi A Ci such that there is a simple
X ¼ X1 n � � �nXi n � � �nXn A D. Clearly we have DHD1 n � � �nDn, but the converse
need not hold. If it does, we say that D factorizes. Denoting by Dad the fusion subcate-
gory of D generated by X nX �, where X runs through simple objects of D, the fact that
X nX � ¼ ðX1 nX �1 Þn � � �n ðXn nX �n Þ has 1n � � �n 1n ðXi nX �i Þn 1n � � �n 1 as
direct summand for each i implies that Dad I ðDadÞi, thus Dad factorizes. Let DHC be a
non-degenerate fusion subcategory. Since C is unpointed, i.e., Cpt ¼ Vec, D is unpointed
and by [DGNO], Corollary 3.27, we have Dad ¼ ðDptÞ0XD ¼ D. Thus D factorizes, i.e.,
D ¼ D1 n � � �nDn, where each Di is non-degenerate. Since Ci is prime, we must have
either Di ¼ Vec or Di ¼ Ci for each i ¼ 1; . . . ; n. In particular, every prime non-degenerate
fusion subcategory DHC coincides with some Ci. Hence, (5) is unique up to a permutation
of factors. r

Remark 2.3. The proof actually also shows the following stronger result: If DHC is
an unpointed and non-degenerate fusion subcategory, then D ¼ D1 n � � �nDn, where each
Di is either Di ¼ Vec or Di ¼ Ci. This means that the prime factors Ci that are unpointed
appear in every prime factorization of C, whether or not C itself is unpointed.

2.3. Drinfeld center of a fusion category. For any fusion category A its Drinfeld

center ZðAÞ is defined as the category whose objects are pairs ðX ; gX Þ, where X is an
object of A and gX : V nX FX nV , V A A, is a natural family of isomorphisms, satis-
fying a certain compatibility condition, see [JS1], Definition 3, or [K], Definition XIII.4.1.
It is known that ZðAÞ is a non-degenerate braided fusion category and that

dim
�
ZðCÞ

�
¼ dimðCÞ2; FPdim

�
ZðCÞ

�
¼ FPdimðCÞ2:ð6Þ

(See [Mu3], Theorems 3.16, 4.14, Proposition 5.10, for C semisimple spherical and [ENO1],
Theorem 2.15, Proposition 8.12, [DGNO], Corollary 3.9, for C fusion.)

For a braided fusion category C there are two braided functors

C!ZðCÞ : X 7! ðX ; c�;X Þ;ð7Þ

Crev !ZðCÞ : X 7! ðX ; ~cc�;X Þ:ð8Þ
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These functors are fully faithful and so we can identify C and Crev with their images in
ZðCÞ. These images centralize each other, i.e., C 0 ¼ Crev. (Cf. [Mu3], Proposition 7.3.)
This allows us to define a braided tensor functor

G : CnCrev !ZðCÞ:ð9Þ

It was shown in [Mu3], Theorem 7.10, and [DGNO], Proposition 3.7, that G is a braided
equivalence if and only if C is non-degenerate.

Let C be a braided fusion category and let A be a fusion category.

Definition 2.4. If F : C!A is a tensor functor, a structure of a central functor on F

is a braided tensor functor F 0 : C!ZðAÞ whose composition with the forgetful functor
ZðAÞ !A equals F .

Equivalently, a structure of central functor on F is a natural family of isomorphisms
Y nFðX Þ !@ FðXÞnY , X A C, Y A A, satisfying certain compatibility conditions, see
[B], Section 2.1.

2.4. Separable algebras. Let A be a fusion category. In this paper an algebra A A A
is an associative algebra with unit, see e.g. [O], Definition 3.1.

Definition 2.5. An algebra A A A is said to be separable if the multiplication mor-
phism m : AnA! A splits as a morphism of A-bimodules.

Remark 2.6. (i) The morphism m is surjective (due to the existence of unit in A),
so the definition makes sense.

(ii) Observe that if F : A! B is a tensor functor, then FðAÞ A B is a separable alge-
bra for a separable algebra A A A.

For an algebra A A A let AA, AA, AAA denote, respectively, abelian categories of
right A-modules, left A-modules, A-bimodules, see e.g. [O], Definition 3.1.

Proposition 2.7. For an algebra A A A the following conditions are equivalent:

(i) A is separable.

(ii) The category AA is semisimple.

(iii) The category AA is semisimple.

(iv) The category AAA is semisimple.

Proof. Assume that A is separable. Note that A considered as a bimodule over itself
is a direct summand of the A-bimodule AnA. Thus any M ¼M nA A A AA is a direct
summand of M nA AnA ¼M nA. The object M nA A AA is projective (see e.g. [O],
Section 3.1). Thus any M A AA is projective and we have the implication (i)) (ii). The
implication (i)) (iii) is proved similarly.
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The implications (ii)) (iv) and (iii)) (iv) follow from [ENO1], Theorem 2.16, and
[O], Remark 4.2. Finally, the implication (iv)) (i) is obvious. r

Let C be a braided fusion category. Recall that an algebra A in C is called com-

mutative if m � cA;A ¼ m, where m : AnA! A is the multiplication of A, see e.g. [KiO],
Definition 1.1.

Example 2.8. Let G be a finite group and let A ¼ RepðGÞ be the fusion category
of finite dimensional representations of G. Let A ¼ FunðGÞ be the algebra of k-valued
functions on G. The group G acts on A via left translations, so A can be considered as a
commutative algebra in A. The algebra A is called the regular algebra of the category
A ¼ RepðGÞ. Associating to f A A the function mð f Þ : G � G ! k, ðg; hÞ 7! dg;h f ðgÞ, easy
computations show that m : A! AnA is a splitting of m : AnA! A and a bimodule
map. Thus A is separable. (Cf. [Br], p. 227, for a similar argument.)

More generally we say that a braided fusion category E is Tannakian ([De]) if there is
a braided equivalence F : EFRepðGÞ; in this case the algebra F �1ðAÞ (with A A RepðGÞ
as above) is called a regular algebra AE of E. It is known that the algebra AE is unique up
to isomorphism. (Such an isomorphism is non-unique, in particular Aut AEGG.) See e.g.
[DGNO], Section 2.13.

2.5. Equivariantization and de-equivariantization. Let A be a fusion category with
an action of a finite group G. In this case one can define the fusion category AG of
G-equivariant objects in A. Objects of this category are objects X of A equipped with an
isomorphism ug : gðX Þ ! X for all g A G such that

ugh � gg;h ¼ ug � gðuhÞ;

where gg;h : g
�
hðX Þ

�
! ghðX Þ is the natural isomorphism associated to the action.

Morphisms and tensor product of equivariant objects are defined in an obvious way. This
category is called the G-equivariantization of A. One has FPdimðAGÞ ¼ jGjFPdimðAÞ.
See [Br], [Mu5] and [DGNO], Section 4, for details.

Example 2.9. Let H be a normal subgroup of G. Then there is a natural action of
G=H on AH and ðAHÞG=H GAG.

There is a procedure opposite to equivariantization, called the de-equivariantization.
Namely, let A be a fusion category and let E ¼ RepðGÞHZðAÞ be a Tannakian subcate-
gory which embeds into A via the forgetful functor ZðAÞ !A. Let A ¼ FunðGÞ be the
regular algebra of E. It is a separable commutative algebra in ZðAÞ and so the cate-
gory AG of left A-modules in A is a fusion category with the tensor product nA, called
de-equivariantization of A. One has FPdimðAGÞ ¼ FPdimðAÞ=jGj.

The above constructions are canonically inverse to each other, i.e., there are canoni-
cal equivalences ðAGÞG GA and ðAGÞG GA, see [DGNO], Section 4.2.

2.6. Module categories over fusion categories. Let A be a fusion category. A left
A-module category is a finite semisimple Abelian k-linear category M together with a
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bifunctor n : A�M!M and a natural family of isomorphisms

ðX nY ÞnM !@ X n ðY nMÞ and 1nM !@ M

for X ;Y A A, M A M, satisfying certain coherence conditions. See [O] for details and for
the definitions of A-module functors and their natural transformations. A typical example
of a left A-module category is the category AA of right modules over a separable algebra A

in A ([O]). An A-module category is called indecomposable if it is not equivalent to a direct
sum of two non-trivial A-module categories.

The category of A-module endofunctors of a right A-module category M will be
denoted by A�

M. It is known that A�
M is a multi-fusion category, see [ENO1], Theorem 2.18

(it is a fusion category if and only if M is indecomposable).

Let M be an indecomposable right A-module category. We can regard M as an
ðA�

M;AÞ-bimodule category. Its ðA�
M;AÞ-bimodule endofunctors can be identified, on the

one hand, with functors of left multiplication by objects of ZðA�
MÞ, and on the other hand,

with functors of right multiplication by objects of ZðAÞ. Combined, these identifications
yield a canonical equivalence of braided categories

ZðAÞ !@ ZðA�
MÞ:ð10Þ

This result is due to Schauenburg, see [S].

3. Étale algebras and central functors

3.1. Étale algebras in braided fusion categories.

Definition 3.1. An algebra A A C is said to be étale if it is both commutative and
separable. We say that an étale algebra A A C is connected if dimk HomCð1;AÞ ¼ 1.

Remark 3.2. (i) The terminology of Definition 3.1 is justified by the fact that étale
algebras in the usual sense can be characterized by the property from Definition 3.1.

(ii) Any étale algebra canonically decomposes as a direct sum of connected ones.

Example 3.3. (i) Let EHC be a Tannakian subcategory. Then a regular algebra
AE A C (see Example 2.8) is connected étale.

(ii) Let C be a pre-modular category. Let A be a commutative algebra in C such that
dimk HomCð1;AÞ ¼ 1, the pairing AnA!m A!! 1 is non-degenerate, yA ¼ idA, and
dimðAÞ3 0. It is proved in [KiO], Theorem 3.3, that such an A is connected étale.

Remark 3.4. In general if A A C is a connected étale algebra and A!! 1 is a nonzero
homomorphism (it is unique up to a scalar), then the pairing AnA!m A!! 1 is non-
degenerate. Indeed the kernel of this pairing would be a non-trivial ideal of A (¼ non-trivial
subobject in the category CA); but the category CA is semisimple and

dimk HomCA
ðA;AÞ ¼ dimk HomCð1;AÞ ¼ 1:
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In particular, this implies that any étale algebra is a self-dual object of C (use Remark 3.2 (ii)
for disconnected étale algebras).

3.2. From central functors to étale algebras.

Lemma 3.5. Let C be a braided fusion category, let A be a fusion category, and let

F : C!A be a central functor. Let I : A! C be the right adjoint functor of F . Then the

object A ¼ Ið1Þ A C has a canonical structure of connected étale algebra.

The category of right A-modules in C is monoidally equivalent to the image of F , i.e.,
the smallest fusion subcategory of A containing FðCÞ.

Proof. Let f : C! Vec be the contravariant representable functor corresponding
to A, that is, fðXÞ ¼ HomCðX ;AÞGHomA

�
FðXÞ; 1

�
. The linear map

HomA

�
FðX1Þ; 1

�
nk HomA

�
FðX2Þ; 1

�
! HomA

�
FðX1ÞnFðX2Þ; 1n 1

�
GHomA

�
FðX1 nX2Þ; 1

�
defines a natural family

nX1;X2
: fðX1Þnk fðX2Þ ! fðX1 nX2Þð11Þ

such that the compositions

fðX1Þn fðX2Þn fðX3Þ ! fðX1 nX2Þn fðX3Þ ! fðX1 nX2 nX3Þ;

fðX1Þn fðX2Þn fðX3Þ ! fðX1Þn fðX2 nX3Þ ! fðX1 nX2 nX3Þ
ð12Þ

are equal. We claim that a morphism (11) is the same thing as an associative
multiplication m : AnA! A. Namely, we define m A HomðAnA;AÞ ¼ fðAnAÞ by
m :¼ nA;AðidA n idAÞ, where idA is considered as an element of fðAÞ. Now by naturality
of n one has

nX1;X2
ð f n gÞ ¼ m � ð f n gÞ;

and associativity of m follows from (12).

By definition, HomCð1;AÞ ¼ HomA

�
Fð1Þ; 1

�
¼ HomAð1; 1Þ ¼ k. It is easy to see

that the image of 1 A k in HomCð1;AÞ is a unit of the algebra A.

Next we want to prove the commutativity of m. By its definition, m is the image of
a certain morphism ~mm A HomA

�
FðAnAÞ; 1

�
under the bijection

HomA

�
FðAnAÞ; 1

�
GHomCðAnA;AÞ:

By naturality of the adjunction bijections, m � cA;A corresponds to

~mm � FðcA;AÞ A HomA

�
FðAnAÞ; 1

�
:
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The equality ~mm ¼ ~mm � FðcA;AÞ follows from commutativity of the following diagram, where
F 0 is the central structure, i.e., a braided tensor functor F 0 : C!ZðAÞ lifting F : C!A:

F 0ðAnAÞ ���!@ F 0ðAÞnF 0ðAÞ ���!lnl
1n 1 ���!@ 1

F 0ðcA;AÞ

???y cF 0ðAÞ; F 0 ðAÞ

???y
???yc1; 1 id1

???y
F 0ðAnAÞ ���!@ F 0ðAÞnF 0ðAÞ ���!lnl

1n 1 ���!@ 1:

Here l A HomC

�
FðAÞ; 1

�
is the image of idA under HomCðA;AÞGHomA

�
FðAÞ; 1

�
. The

left square commutes since F 0 is a braided functor, and the right one since c1;1 ¼ id. That
the middle square commutes is more subtle, since l : FðAÞ ! 1 only is a morphism in A
but not in ZðAÞ. It commutes nevertheless since the braiding of ZðAÞ is natural for
such morphisms w.r.t. the second argument. (Since cðX ; eX Þ; ðY ; eY Þ ¼ eX ðYÞ and the half-
braiding, Y 7! eX ðYÞ is natural w.r.t. all morphisms Y ! Y 0 in A.)

That the category of right A-modules in C identifies with the image of F in A follows
from [EO], Theorem 3.17 (cf. also [O], Theorem 3.1). Thus CA is semisimple. By Prop-
osition 2.7 semisimplicity of the category of A-modules implies the semisimplicity of the
category of A-bimodules. In particular, the morphism of A-bimodules m : AnA! A,
thus A is separable. r

Example 3.6. (i) Let C ¼ RepðGÞ and let F : C! Vec be the forgetful functor.
Then the étale algebra A from Lemma 3.5 is the regular algebra, see Example 2.8.

(ii) Let Veco
G be the fusion category of finite dimensional G-graded vector spaces with

the associativity constraint twisted by a 3-cocycle o A Z3ðG; k�Þ. Let C ¼ZðVeco
GÞ and let

F : C! Veco
G be the forgetful functor. Then the étale algebra A from Lemma 3.5 is the

regular algebra of RepðGÞHC.

(iii) Let C ¼Z
�
RepðGÞ

�
GZðVecGÞ and let F : C! RepðGÞ be the forgetful func-

tor. Then the étale algebra A from Lemma 3.5 is the group algebra of G considered as an
algebra in C. Notice that in this case the algebra FðAÞ in the symmetric tensor category
RepðGÞ is non-commutative unless G is commutative.

Remark 3.7. Lemma 3.5 fails over fields of characteristic p > 0. Namely the algebra
A ¼ Ið1Þ is still commutative (with the same proof), but it can fail to be separable. Here is
a counter-example. Let G be a finite abelian group of order divisible by p. Take C ¼ VecG,
i.e., C is the category of finite dimensional G-graded vector spaces with the obvious sym-
metric braided structure. Let D ¼ Vec and let F : C! D be the functor of forgetting the
grading. Then A is the group algebra of G, which is not étale. In this example the category
of A-bimodules identifies with RepðGÞ and is not semisimple.

3.3. The tensor category CA corresponding to an étale algebra A. Let C be a braided
fusion category and let A A C be a connected étale algebra. Let CA be the category of right
A-modules and let

FA : C! CA : X 7! X nAð13Þ

be the free module functor. The category CA is semisimple by Proposition 2.7.
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Using the braiding we can define two left A-module structures on a right A-module
M by

AnM �!
cA;M

M nA!M or by AnM �!
c�1

M;A

M nA!M:ð14Þ

Both structures make M an A-bimodule, and we will denote the results by Mþ and
M�, respectively. Clearly, the functors M 7!MG are sections of the forgetful functor

ACA ! CA.

Since the category ACA of A-bimodules in C is a tensor category, we obtain in this
way two tensor structures nG on CA which are opposite to each other. For definiteness,
when we consider CA as a tensor category, the tensor structure n� is understood. By defi-
nition, we have tensor functors CA ! ACA and Crev

A ! ACA.

Now the functor FA : C! CA has an obvious structure of tensor functor. The cate-
gory CA is rigid since any object M in CA is a direct summand of the rigid object

FAðMÞ ¼M nA ¼M nA ðAnAÞ:

The unit object of CA is A ¼ FAð1Þ and the connectedness of A implies that A A CA is
simple. Thus, CA is a fusion category. Alternatively, this follows from the fact that ACA is
fusion, cf. e.g. [O], and the fact that the functors M 7!MG from CA and Crev

A to ACA are
tensor embeddings.

Example 3.8. Let C be a braided fusion category and let EHC be a Tannakian
subcategory. Let A A E be the regular algebra (which is connected étale by Example 3.3 (i)).
In the terminology of [DGNO], Section 4.2, the fusion category CA introduced above is the
de-equivariantization of C (cf. Section 2.5) viewed as a fusion category over E.

3.4. The central functor C! CA. Observe that the free module functor (13) admits a
natural structure of a central functor, see Definition 2.4. Indeed, we have FAðX Þ ¼ X nA,
and, hence, FAðXÞ

N
A

Y ¼ X nY . Similarly, Y
N
A

FAðXÞ ¼ Y nX . These two objects

are isomorphic via the braiding of C (using the commutativity of A, one can check that
the braiding gives an isomorphism of A-modules) and, hence, FA lifts to a braided tensor
functor

F 0A : C!ZðCAÞð15Þ

whose composition with the forgetful functor ZðCAÞ ! CA equals FA. This construction is
in a sense converse to Lemma 3.5:

Lemma 3.9. Let A A C be a connected étale algebra and let FA : C! CA be the cen-

tral functor as above. Then the algebra object AFA
¼ Ið1Þ obtained from FA according to

Lemma 3.5 is isomorphic to A.

Proof. The adjoint of the functor FA : C! CA is given by the forgetful functor
I : CA ! C. The unit of CA being ðA;mÞ, we have Ið1CA

Þ ¼ A. It is straightforward to see
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that the construction of the algebra structure on A ¼ Ið1CA
Þ defined in (the proof of)

Lemma 3.5 recovers the original algebra structure. r

Let A1, A2 be fusion categories. We will say that a tensor functor F : A1 !A2 is
surjective if any object in A2 is a subobject of some FðXÞ, X A A1.

Remark 3.10. Some authors use the term dominant functor for what we call a surjec-
tive functor, see [Br], [BN].

Lemma 3.11. For a connected étale algebra A in a braided fusion category C we have

FPdimðCAÞ ¼
FPdimðCÞ
FPdimðAÞ :ð16Þ

Proof. The functor (13) is surjective. Considering the multiplicity of the unit object
on both sides of the identity proven in [ENO1], Proposition 8.8, we obtain

FPdimðCÞ
FPdimðCAÞ

¼
P

X AOðCÞ
FPdimðX Þ½FAðXÞ : 1� ¼ FPdim

�
Ið1Þ

�
;

where OðCÞ denotes the set of simple objects of C and I is the right adjoint of FA. Since
A ¼ Ið1Þ, the result follows. r

3.5. Subcategory C0
A HCA of dyslectic modules. Let C be a braided fusion category

and let A A C be a connected étale algebra and recall the discussion of the tensor functors
M 7!MG from CA and Crev

A to ACA in Section 3.3.

Definition 3.12. A module M A CA is dyslectic (or local, in alternative terminology)
if the identity map idM is an isomorphism of A-bimodules MþFM�.

Equivalently, a module M A CA is dyslectic if the diagram

M nA �����!cA;M�cM;A

M nA

M

ð17Þ
 ���

�� �����!r r

commutes. Here r : M nA!M denotes the action of A on M.

The notion of dyslectic module was introduced by Pareigis in [P]. See also [KiO].

Remark 3.13. Note that a simple M A CA is dyslectic if and only if MþFM� as
A-bimodules. Indeed, since the functors M 7!MG from CA to ACA are embeddings, for
any simple M A CA any isomorphism between A-bimodules Mþ and M� must be a multiple
of idM .

Dyslectic modules form a full subcategory of CA which will be denoted by C0
A . It is

known (see [P], Section 2, and [KiO]) that C0
A is closed under nA and that the braiding

in C induces a natural braided structure in C0
A. Thus, C0

A is a braided fusion category.
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Example 3.14. Let EHC be a Tannakian subcategory and let A A E be a regular
algebra, see Example 2.8. Then [DGNO], Proposition 4.56 (i), says that C0

A is equivalent
to the de-equivariantization of E 0, cf. Section 2.5.

Lemma 3.15. Let C be a braided fusion category, let A be an étale algebra in C,
and let X be an object of C. Then the free module X nA is dyslectic if and only if X cen-

tralizes A.

Proof. Consider the following diagram, where we omit identity maps and associa-
tivity constraints:

ð18Þ AnX nA

X nAnA ��!
cA;A

X nAnA X nAnA ��!
cA;A

X nAnA

X nA:

������������
���!
������!  �����

�
 ������������

���

 ������������
����

 �����
�

 �����
�

 ������������
����

cXnA;A

cX ;A cA;X

cA;XnA

mA

mA mA

mA

The two upper triangles commute by the hexagon axioms and the two lower triangles com-
mute since A is commutative. Therefore,

ðidX nmAÞ � ðcA;X � cX ;A n idAÞ ¼ ðidX nmAÞ � cA;XnA � cXnA;A � ðidX n c�1
A;AÞ;

which means that X nA is dyslectic if and only if

ðidX nmAÞ � ðcA;X � cX ;A n idAÞ ¼ idX nmA:ð19Þ

In other words, commutativity of the perimeter of the above diagram is equivalent to com-
mutativity of the diamond in the middle. Let uA : 1! A denote the unit of A. Suppose that
(19) holds. We have

cA;X � cX ;A ¼ ðidX nmAÞ � ðidXnA n uAÞ � cA;X � cX ;A

¼ ðidX nmAÞ � ðcA;X � cX ;A n idAÞ � ðidXnA n uAÞ

¼ ðidX nmAÞ � ðidXnA n uAÞ ¼ idXnA;

where the third equality holds by (19). Thus, (19) is equivalent to cA;X � cX ;A ¼ idXnA.
Combining the above equivalences, we get the result. r

3.6. Étale algebras in C0
A and étale algebras over A. Let C be a braided fusion cate-

gory and let A A C be a connected étale algebra. An algebra B A C equipped with a unital
homomorphism f : A! B is called algebra over A if the following diagram commutes:

AnB ���!fnid
BnB ���!mB

B

c�1
B;A

???y
BnA ���!idn f

BnB:
�����

�!
mB
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In the language of [O], Section 5.4, we require that the morphism f lands in the right center
of B; in particular for a commutative algebra B this diagram commutes automatically.
Notice that the morphism f is automatically injective since the algebra A has no nontrivial
right ideals.

Observe that an algebra B over A has an obvious structure of right A-module, that is
B A CA. Moreover, any right B-module has an obvious structure of right A-module. The
following statements are tautological:

(a) An algebra over A is the same as an algebra in CA.

(b) Let B be an algebra over A. Then right B-module in CA (with B considered as an
algebra in CA) is the same as right B-module in C. In particular, the categories ðCAÞB and
CB are equivalent.

(c) Commutative algebra over A is the same as commutative algebra in C0
A HCA.

Proposition 3.16 (cf. [FFRS], Lemma 4.13, and [D1], Proposition 2.3.3). A commu-

tative algebra over A is étale if and only if the corresponding algebra in C0
A is étale. Under this

bijection connected algebras correspond to connected ones.

Proof. The first statement follows from the tautologies above combined with Prop-
osition 2.7. The second statement is implied by the fact that a simple A-module M with
HomCð1;MÞ3 0 is isomorphic to A, see e.g. [O], Lemma 3.2. r

3.7. The category RepA(A) and its center. Let A be a fusion category and let

F : ZðAÞ !A

be the forgetful functor. Let A A ZðAÞ be a connected étale algebra. Observe that any right
FðAÞ-module M A A has a natural structure of left FðAÞ-module defined as

FðAÞnM !@ M nFðAÞ !M:

It is easy to verify that in this way M acquires a structure of FðAÞ-bimodule.

Definition 3.17. The category RepAðAÞ is the tensor category of right FðAÞ-modules
in A with tensor product nFðAÞ.

Remark 3.18. (i) Assume that C is a braided fusion category and A A C is a con-
nected étale algebra. Then A can be considered as a connected étale algebra in ZðCÞ via
the braided functor C!ZðCÞ given in (7). In this case the categories CA and RepCðAÞ
are identical. Nevertheless the tensor structures on CA and RepCðAÞ are opposite to each
other.

(ii) The category RepCðAÞ is equivalent to the category of left FðAÞ-modules.

Arguments similar to those in Section 3.3 show that RepAðAÞ is a semisimple rigid
tensor category. Its unit object FðAÞ may be reducible, so in general RepAðAÞ is not a
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fusion category. In general RepAðAÞ is an example of a multi-fusion category, see Sec-
tion 2.1.

Remark 3.19. Given an étale algebra A A ZðAÞ there is a surjective tensor functor

A! RepAðAÞ : X 7! X nFðAÞ:

Conversely, let G : A! B be a tensor functor and let I : B!A be its right adjoint. Then
the object Ið1Þ A A has a natural lift to ZðAÞ. Moreover, it has a natural structure of an
étale algebra in ZðAÞ. The algebra Ið1Þ A ZðAÞ is connected if and only if the functor G is
not decomposable into a non-trivial direct sum of tensor functors. Similarly to Section 3.4
these two constructions are inverse to each other. See [BN] for details.

It is easy to see that the forgetful functor ZðAÞ0A ,!ZðAÞA ! RepAðAÞ has a
canonical structure of central functor. Thus, it lifts to a braided tensor functor

ZðAÞ0A !Z
�
RepAðAÞ

�
:ð20Þ

The following result was proved by Schauenburg (see [S], Corollary 4.5) under much
weaker assumptions on the category A and commutative algebra A A ZðAÞ than ours.

Theorem 3.20. The functor (20) is a braided equivalence ZðAÞ0A GZ
�
RepAðAÞ

�
.

Sketch of proof. We just sketch a construction of an inverse functor. Let

M A Z
�
RepAðAÞ

�
:

For any X A A consider X nFðAÞ A RepAðAÞ. Then

�
X nFðAÞ

�
nFðAÞM ¼ X nM and M nFðAÞ

�
X nFðAÞ

�
¼M nX :

It is easy to see now that the central structure of M as FðAÞ-module defines a central struc-
ture of M as an object of A. Moreover one verifies directly that FðAÞ-module structure on
M gives A-module structure on this lift of M to ZðAÞ; the resulting object of ZðAÞA lies
in ZðAÞ0A. Finally, this assignment has a natural structure of tensor functor. r

Remark 3.21. Theorem 3.20 above implies that the unit object of the fusion cate-
gory Z

�
RepAðAÞ

�
is indecomposable (recall that the algebra A is connected). It follows

that the multi-fusion category RepAðAÞ is indecomposable in the sense of [ENO1], Sec-
tion 2.4.

3.8. Properties of braided tensor functors.

Proposition 3.22. Let C, D be braided fusion categories and let F : C! D be a

surjective braided tensor functor. Let I : D! C be the right adjoint functor of F and let

A :¼ Ið1Þ be the canonical connected étale algebra constructed in Lemma 3.5. Then A A C 0.

Proof. Since F is a central functor, D identifies with the category CA of A-modules
in C, cf. Section 3.4. We claim that every A-module is dyslectic, i.e., that CA ¼ C0

A . Indeed,
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the fusion category ACA identifies with the category of C-module endofunctors of D, see [O]
(the action of C on D is defined via F : C! D). Under this identification, for every simple
object M A D the bimodules MG correspond to endofunctors of left and right multiplica-
tion by M. But these endofunctors are isomorphic via the braiding of D, i.e., M is dyslectic.

In particular, for every X A C the free A-module X nA is dyslectic. Hence,
Lemma 3.15 implies that every X A C centralizes A, i.e., A A C 0. r

Remark 3.23. Note that the étale algebra A from Proposition 3.22 is a commutative
algebra in a symmetric fusion category C 0. Therefore, A belongs to the maximal Tannakian
subcategory E ¼ RepðGÞHC 0. As is well known, every étale algebra A A RepðGÞ is
isomorphic to the algebra FunðG=HÞ of functions on G invariant under translations by
elements of H for a uniquely determined subgroup H HG, the module category RepðGÞA
is equivalent to RepðHÞ and the functor FA identifies with the restriction functor
RepðGÞ ! RepðHÞ. In view of A A E, the restriction F : E! FðEÞ of F to E identifies
with the restriction functor RepðGÞ ! RepðHÞ.

Corollary 3.24. Let F : C1 ! C2 be a surjective braided tensor functor between

braided fusion categories. There exists a braided fusion category C with an action of a finite

group G, a subgroup H HG, and braided tensor equivalences C1 GCG, C2 GCH such that

the diagram

C1 ���!F C2???yo
???yo

CG ���!Forg
CH

ð21Þ

commutes. Here Forg : CG ! CH is the functor of ‘‘partially forgetting equivariance’’.

Proof. By Proposition 3.22 there is an étale algebra A in C 01 such that C2 G ðC1ÞA.
Let E ¼ RepðGÞ be the maximal Tannakian subcategory of C 01 and let C ¼ ðC1ÞG.
Since equivariantization and de-equivariantization are mutually inverse constructions (see
[DGNO], Theorem 4.4, and Section 2.5), we have C1 GCG.

By Remark 3.23 there is a subgroup H HG such that A ¼ FunðG=HÞ. Note that
a FunðG=HÞ-module in C1 is the same thing as an H-equivariant FunðGÞ-module, which
implies ðC1ÞA G

�
ðC1ÞG

�H ¼ CH . Furthermore, the forgetful functor CG ! CH identifies
with the given functor F : C1 ! C2 G ðC1ÞA since both of them correspond to the same
étale algebra A ¼ FunðG=HÞ. r

Definition 3.25. A braided fusion category C is called almost non-degenerate if
the symmetric category C 0 is either trivial or is equivalent to the category of super vector
spaces.

In other words, C is almost non-degenerate if C 0 does not contain any non-trivial
Tannakian subcategories.

Corollary 3.26. Any braided tensor functor F : C! D between braided fusion cate-

gories with C almost non-degenerate is fully faithful.
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Remark 3.27. Using [EO], Theorem 2.5, and [De], Proposition 2.14, one can relax
the assumptions of Corollary 3.26 on the category D: it is enough to assume that D is a
abelian rigid braided tensor category with finite dimensional Hom spaces and finite lengths
of all objects.

Let C be a braided fusion category, A A C be a connected étale algebra and
FA : C! CA be the functor (13) with the central structure F 0A (15). The functor

TA : CA nCrev
A ! ACA : M nN 7!MþnA N�ð22Þ

has a natural structure of tensor functor.

Corollary 3.28. Assume C is almost non-degenerate. Then the functor F 0A in (15) is

fully faithful and the functor TA : CA nCrev
A ! ACA defined in (22) is surjective.

Proof. The first assertion is Corollary 3.26. To prove the second assertion, observe
that F 0A is dual to TA (in the sense of [ENO1], Section 5.7) with respect to the module
category CA. Indeed, an object M nN of CA nCrev

A corresponds to the ZðCAÞ-module
endofunctor M nA�nA N of CA. The functor dual to F 0A restricts this endofunctor to
the C-module endofunctor of CA by means of F 0A : C!ZðCAÞ. This is precisely what
TAðM nNÞ does. So the result follows from [ENO1], Proposition 5.3. r

3.9. Tensor complements. Let C be a non-degenerate braided fusion category, see
Definition 2.1. Let A A C be a connected étale algebra. Then A can be considered as a
connected étale algebra in Crev and in ZðCÞ via the embedding

Crev ¼ VecnCrev ,! CnCrev GZðCÞ;

see (9).

Lemma 3.29. Under the identification ZðCÞFCnCrev we have

ZðCÞA ¼ CnCrev
A and ZðCÞ0A ¼ Cn ðCrevÞ0A:

Proof. The first statement is obvious and the second one is an immediate conse-
quence. r

Corollary 3.30. For a non-degenerate C and a connected étale algebra A A C there is

a braided equivalence ZðCAÞFCn ðC0
AÞ

rev
. In particular the category C0

A is non-degenerate.

Proof. Combine Theorem 3.20 and Lemma 3.29. r

Remark 3.31. (i) One can show that the embedding functor

C ¼ CnVec ,! Cn ðC0
AÞ

rev GZðCAÞ

is naturally isomorphic to the functor F 0A from (15), providing an alternative proof of the
injectivity of that functor, as asserted in Corollary 3.28.
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(ii) If we assume in addition that C is modular and A is as in Example 3.3 (ii), then
C0

A has a natural spherical structure, see e.g. [KiO]. In this case Corollary 3.30 gives an
alternative proof of [KiO], Theorem 4.5.

Corollary 3.32. For a non-degenerate C and a connected étale algebra A A C we have

FPdimðC0
AÞ ¼

FPdimðCÞ
FPdimðAÞ2

:ð23Þ

Proof. This follows immediately from Corollary 3.30 and equations (6) and (16).
r

4. Quantum Manin pairs

4.1. Definition of a quantum Manin pair. We start with the following consequence
of Corollary 3.28.

Corollary 4.1. Let C be a non-degenerate braided fusion category and let A A C be a

connected étale algebra in C. Assume that FPdimðAÞ2 ¼ FPdimðCÞ. Then:

(i) The functor F 0A : C!ZðCAÞ defined in (15) is a braided tensor equivalence.

(ii) The functor TA : CA nCrev
A ! ACA defined in (22) is a tensor equivalence.

Proof. By Lemma 3.11,

FPdimðCAÞ ¼
FPdimðCÞ
FPdimðAÞ :

Hence,

FPdim
�
ZðCAÞ

�
¼ FPdimðCÞ2

FPdimðAÞ2
¼ FPdimðCÞ;

see (6). Since by Corollary 3.28, F 0A is a fully faithful functor between categories of equal
Frobenius–Perron dimension, it is necessarily an equivalence by [EO], Proposition 2.19.
Hence the dual functor TA is also an equivalence. r

Definition 4.2. A quantum Manin pair ðC;AÞ consists of a non-degenerate braided
fusion category C and a connected étale algebra A A C such that FPdimðAÞ2 ¼ FPdimðCÞ.

Remark 4.3. Observe that by (23) the condition FPdimðAÞ2 ¼ FPdimðCÞ is equiv-
alent to the condition C0

A ¼ Vec.

Quantum Manin pairs form a 2-groupoid QM: a 1-morphism between two such pairs
ðC1;A1Þ and ðC2;A2Þ is defined to be a pair ðF; fÞ, where F : C1 FC2 is a braided equiv-
alence and f : FðA1Þ !@ A2 is an isomorphism of algebras; a 2-morphism between pairs
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ðF; fÞ and ðF 0; f 0Þ is a natural isomorphism of tensor functors m : F!@ F 0 such that the
following diagram commutes:

FðA1Þ �����!m
F 0ðA1Þ

A2:

ð24Þ
 ���

�� �����!f f 0

On the other hand, we have the 2-groupoid FC of fusion categories: objects are fusion cat-
egories, 1-morphisms are tensor equivalences, and 2-morphisms are isomorphisms of tensor
functors. We have a 2-functor QM! FC defined by ðC;AÞ 7! CA.

Proposition 4.4. This 2-functor QM! FC is a 2-equivalence.

Proof. Let A A FC. The forgetful functor F : ZðAÞ !A has an obvious structure
of central functor. Let I : A!ZðAÞ be its right adjoint. By Lemma 3.5, Ið1Þ is a con-
nected étale algebra. It is known that FPdim

�
Ið1Þ

�
¼ FPdimðCÞ, see e.g. [EO], Lemma

3.41. So (6) implies that
�
ZðAÞ; Ið1Þ

�
A QM. Thus we get a 2-functor FC! QM. Using

Corollary 4.1 and the results from Section 3.4 we see that it is quasi-inverse to the 2-functor
QM! FC. r

Remark 4.5. Proposition 4.4 can be viewed as a categorical analogue of the follow-
ing reconstruction of the double of a quasi-Lie bialgebra from a Manin pair (i.e., a pair
consisting of a metric Lie algebra and its Lagrangian subalgebra) in the theory of quantum
groups [Dr], Section 2:

Let g be a finite dimensional metric Lie algebra (i.e., a Lie algebra on which a non-
degenerate invariant symmetric bilinear form is given). Let l be a Lagrangian subalgebra
of g. Then l has a structure of a quasi-Lie bialgebra and there is an isomorphism between
g and the double DðlÞ of l. The correspondence between Lagrangian subalgebras of g and
doubles isomorphic to g is bijective, see [Dr], Section 2, for details.

4.2. Lagrangian algebras and module categories.

Definition 4.6. Let C be a non-degenerate braided fusion category. A connected
étale algebra in C will be called Lagrangian if FPdimðAÞ2 ¼ FPdimðCÞ.

Thus, A is Lagrangian if and only if ðC;AÞ is a quantum Manin pair.

Remark 4.7. Let EHC be a Lagrangian subcategory of C, i.e., a Tannakian sub-
category such that E 0 ¼ E, see [DGNO], Definition 4.57. Then the regular algebra A of E
is a Lagrangian algebra in C. Indeed, Example 3.14 says that C0

A ¼ Vec and the statement
follows from Remark 4.3.

Proposition 4.8. Let A be a fusion category and let C ¼ZðAÞ. There is a bijection

between the sets of Lagrangian algebras in C and indecomposable A-module categories.

Proof. By Corollary 4.1 every Lagrangian algebra B A C determines a braided
equivalence CGZðBÞ, where B :¼ CB. Conversely, any braided equivalence between C
and ZðBÞ determines a surjective central functor C! B and, hence, a connected étale
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algebra A A C, see Lemma 3.5. Combining Lemma 3.11 and equation (6), we see that the
algebra A is Lagrangian. As we observed in Section 3.4 these two constructions are inverses
of each other.

Thus it su‰ces to prove that the set of braided equivalences between ZðAÞ and
centers of fusion categories is in bijection with indecomposable A-module categories. This
is done in [ENO3], Theorem 3.1, and [ENO2], Theorem 1.1. Namely, the bijection is pro-
vided by assigning to an A-module category M braided equivalence (10). r

Remark 4.9. (i) It follows from the proof that the bijection in Proposition 4.8 has
the following property: for a Lagrangian algebra B A C the fusion category CB is equivalent
to the dual category A�

M where M is the module category corresponding to B.

(ii) Note that the bijection in Proposition 4.8 is given by the so-called full centre con-
struction. In particular, Ið1Þ is the full centre of A as a module category over itself. In the
case when A is modular, the statement of the proposition was verified in [KR], Theorem
3.22. Note also that in this case the bijection can be lifted to an equivalence of groupoids
(module categories with module equivalences by one side and Lagrangian algebras and
isomorphisms by the other) [DKR].

4.3. Lattice of subcategories. Let A be a fusion category and let ðC;AÞ be the
corresponding Manin pair. Here C ¼ZðAÞ and A ¼ Ið1Þ, where I : A!ZðAÞ is the
induction functor.

Let LðAÞ denote the lattice of fusion subcategories of A and let LðAÞ denote the
lattice of étale subalgebras of A.

Theorem 4.10. There is a canonical anti-isomorphism of lattices LðAÞFLðAÞ.
If BHA is the subalgebra corresponding to the subcategory BHA under this anti-

isomorphism, then FPdimðBÞFPdimðBÞ ¼ FPdimðAÞ.

Proof. We will construct mutually inverse order-reversing bijections

a : LðAÞ ! LðAÞ and b : LðAÞ ! LðAÞ:

Let BHA be a fusion subcategory. Define the relative center ZBðAÞ to be
the tensor category whose objects are pairs ðX ; gX Þ, where X is an object of A and
gX : V nX FX nV , V A B is a natural family of isomorphisms, satisfying the same
compatibility condition as in the definition of ZðAÞ. The forgetful functor ZðAÞ !A
has a factorization

ZðAÞ !FB
ZBðAÞ !

~FFB
A

where FB and ~FFB are the obvious forgetful functors. Let IB and ~IIB be the right adjoint
functors of FB and ~FFB. The embedding 1H ~IIBð1Þ corresponding to the identity map
under the isomorphism Hom

�
1; ~IIBð1Þ

�
¼ Hom

�
~FFBð1Þ; 1

�
induces an embedding of alge-

bras IBð1ÞH IB � ~IIBð1Þ ¼ Ið1Þ ¼ A. The algebra IBð1Þ is separable (and hence étale), see
Remark 3.19. We define

aðBÞ ¼ IBð1ÞHA:ð25Þ
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An inclusion of subcategories B1 HB2 HA induces a factorization

ZðAÞ �!
FB2

ZB2
ðAÞ !ZB1

ðAÞ

of the functor FB1
. This, in turn, yields an inclusion of subalgebras IB2

ð1ÞH IB1
ð1ÞHA.

Thus the map a is order-reversing.

The functor FB is surjective by [DGNO], Section 3.6. Hence we have

FPdim
�
aðBÞ

�
¼ FPdimðAÞ

FPdimðBÞ

by (the proof of) [ENO1], Corollary 8.11.

In the opposite direction, given an étale subalgebra BHA we have a tensor functor
?nB A : CB ! CA inducing A-modules from B-modules. Let bðBÞ be the full image in
CA ¼A of the subcategory C0

B HCB under this functor. Observe that A considered as a
B-module is dyslectic. It follows that the objects of bðBÞ are precisely A-modules which
are dyslectic as B-modules. This implies that the map b is order-reversing. Observe that
the right adjoint functor of ?nB A is isomorphic to the forgetful functor CA ! CB and
sends the unit object of CA to A A C0

B HCB. Using again the proof of [ENO1], Corol-
lary 8.11, we see that

FPdim
�
bðBÞ

�
¼ FPdimðAÞ

FPdimðBÞ :ð26Þ

By construction, CaðBÞ ¼ZBðAÞ. We claim that the subcategory C0
aðBÞHCaðBÞ

identifies with ZðBÞHZBðAÞ. Indeed, by Corollary 3.30 the category ðC0
aðBÞÞ

rev identi-
fies with the centralizer of C in ZðCaðBÞÞ. On the other hand it is explained in [DGNO],
Section 3.6, that ZBðAÞ ¼ ðAnBopÞ�A (see Section 2.6 for the notation), so equation
(10) implies Z

�
ZBðAÞ

�
¼ZðAÞnZðBÞrev. The central functor

ZðAÞ ¼ZðAÞn 1HZðAÞnZðBÞrev ¼Z
�
ZBðAÞ

�
!ZBðAÞ

identifies with FB with obvious central structure. Hence the subcategories

ZðAÞ ¼ZðAÞn 1HZ
�
ZBðAÞ

�
and CHZðCaðBÞÞ

coincide and so do their centralizers in Z
�
ZBðAÞ

�
and their images in ZBðAÞ ¼ CaðBÞ.

Our claim follows.

The induction functor

CaðBÞ ! CA ¼Að27Þ

identifies with the forgetful functor ZBðAÞ !A and so maps surjectively ZðBÞ ¼ C0
aðBÞ

to B. Thus, b
�
aðBÞ

�
¼ B.
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Conversely, we claim that there is an equivalence ZbðBÞðAÞ !@ CB such that the for-
getful functor FbðBÞ : ZðAÞ !ZbðBÞðAÞ identifies with the free module functor C! CB.
This immediately implies that a

�
bðBÞ

�
¼ B. To prove this claim, note that the braid-

ing of C allows to equip any A-module induced from CB with a morphism permut-
ing it with the objects of bðBÞHCA (notice that for M A CB and N A bðBÞ we have
ðM nB AÞnA N ¼M nB N and N nA ðM nB AÞ ¼ N nB M). This gives rise to a tensor
functor

F 00A : CB !ZbðBÞðCAÞ; M 7!M nB A:ð28Þ

Recall the equivalence F 0A from Corollary 4.1 (i). It follows from the above definition that
the diagram

C
F 0

A
ZðCAÞ

?nB

???y
???yFbðBÞ

CB ���!F 00
A

ZbðBÞðCAÞ

ð29Þ
����!

commutes. In particular, the induction functor (28) is surjective. Using [DGNO], equation
(56), and equation (26), we get

FPdim
�
ZbðBÞðAÞ

�
¼ FPdim

�
bðBÞ

�
FPdimðAÞ ¼ FPdimðAÞ2

FPdimðBÞ ¼ FPdimðCBÞ:

Thus functor (28) is an equivalence by [EO], Proposition 2.20. This completes our proof.
r

Example 4.11. Let us illustrate Theorem 4.10. Let G be a finite group.

(i) Let A ¼ RepðGÞ be the fusion category of representations of G. Its fusion sub-
categories are of the form RepðG=NÞ where N ranges over the set of all normal subgroups
of G. The étale algebra in Z

�
RepðGÞ

�
corresponding to the subcategory RepðG=NÞ is

the group algebra kN. As an object of Z
�
RepðGÞ

�
it has the following description. It

is a G-graded algebra with non-zero graded components labelled by elements of N, the
G-action on kN is the conjugation action (see [D1], where étale algebras in Z

�
RepðGÞ

�
were classified).

(ii) Let A ¼ Veco
G be the fusion category of G-graded vector spaces with the associa-

tivity constraint twisted by a 3-cocycle o A Z3ðG; k�Þ. Fusion subcategories of A corre-
spond to subgroups H HG. A typical such subcategory is Vec

ojH
H . The corresponding étale

algebra in ZðVeco
G Þ is the algebra of k-valued functions on G invariant under translations

by elements of H.

Remark 4.12. Let C be a non-degenerate braided fusion category and let A A C be
a connected étale algebra. Recall that ZðCAÞFCn ðCrevÞ0A (see Corollary 3.30) and
the functor C ¼ Cn 1HZðCAÞ ! CA is isomorphic to the free module functor FA, see
Remark 3.31 (i). It follows that A ¼ An 1 A ZðCAÞ is a subalgebra of the Lagrangian
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algebra Ið1Þ. It is easy to see that the corresponding subcategory of CA is precisely C0
A .

Thus Theorem 4.10 implies the following statement: the lattice of subalgebras of A is anti-
isomorphic to the lattice of subcategories of CA containing C0

A. Notice that Theorem 4.10 is
a special case of this statement, see Remark 4.3.

4.4. Quantum Manin triples. Recall that a Manin triple consists of a metric Lie
algebra g along with Lagrangian Lie subalgebras gþ, g� such that g ¼ gþl g� as a vector
space. It was shown by Drinfeld in [Dr], Section 2, that Manin triples are in bijection with
pairs of dual Lie bialgebras (cf. Remark 4.5).

Below we extend this result to the ‘‘quantum’’ setting.

Definition 4.13. A quantum Manin triple ðC;A;BÞ consists of a non-degenerate
braided fusion category C along with connected étale algebras A, B in C such that both
ðC;AÞ and ðC;BÞ are quantum Manin pairs and the category of ðA;BÞ-bimodules in C is
equivalent to Vec.

Example 4.14. Let H be a semisimple Hopf algebra and let RepðHÞ denote the cat-
egory of finite dimensional representations of H. Let C :¼Z

�
RepðHÞ

�
. It is well known

that C is equivalent, as a braided fusion category, to Rep
�
DðHÞ

�
where DðHÞ is the

Drinfeld double of H. There is a canonical Hopf algebra isomorphism DðHÞGD
�
ðH �Þop�,

where H � denotes the dual Hopf algebra and op stands for the opposite multiplication.
We thus have two central functors, to wit the forgetful functors,

C! RepðHÞ and C! Rep
�
ðH �Þop�:

Let A and B denote the étale algebras in C corresponding to these functors constructed as
in Section 3.2.

We claim that ðC;A;BÞ is a quantum Manin triple. The only thing that needs to
be checked is that the category of ðA;BÞ-bimodules in C is trivial. Note that A ¼ ðH �Þop

and B ¼ H as DðHÞ-module algebras (i.e., algebras in C ¼ Rep
�
DðHÞ

�
). The category of

ðH �Þop nH-bimodules in Rep
�
DðHÞ

�
is nothing but the category of DðHÞ-Hopf modules

which is equivalent to Vec by the Fundamental Theorem of Hopf modules (see [M] for the
definition of a Hopf module and the Fundamental Theorem).

We explain now that any quantum Manin triple arises from the construction in
Example 4.14. Let ðC;A;BÞ be a quantum Manin triple. Then Vec identified with ðA;BÞ-
bimodules has a structure of a CA-module category via nA. Equivalently, CA has a fiber
functor, i.e., a tensor functor to Vec, see [O], Proposition 4.1. Thus CA GRepðHÞ for a
semisimple Hopf algebra H, see [Ul]. The dual category ðCAÞ�Vec is equivalent to CB (see
Remark 4.9 (i)) and so CB GRep

�
ðH �Þop�, see [O], Theorem 4.2.

Quantum Manin triples form a 2-groupoid G1: a 1-morphism between triples
ðC1;A1;B1Þ and ðC2;A2;B2Þ is defined to be a triple ðF; f;cÞ, where F : C1 FC2 is a
braided equivalence and f : FðA1Þ !@ A2, c : FðB1Þ !@ B2 are isomorphisms of algebras;
a 2-morphism between triples ðF; f;cÞ and ðF 0; f 0;c 0Þ is a natural isomorphism of tensor
functors m : FFF 0 such that f ¼ f 0mA1

and c ¼ c 0mB1
(cf. diagram (24)).
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Let G2 denote the 2-groupoid whose objects are pairs ðA;FÞ where A is a fusion
category and F : A! Vec is a fiber functor; 1-morphisms between ðA;FÞ and ðA 0;F 0Þ
are pairs ði; nÞ where i : A!@ A 0 is a tensor equivalence and n : F !@ F 0i is an isomorphism
of tensor functors; 2-morphisms between ði1; n1Þ and ði2; n2Þ are natural isomorphisms of
tensor functors m : i1 !@ i2 such that n2 ¼ ðF 0mÞ � n1.

As we explained above a quantum Manin triple ðC;A;BÞ gives rise to a fusion cate-
gory CA equipped with a fiber functor F : CA ! Vec. This construction can be upgraded to
a 2-functor G1 ! G2. Similarly, the construction from Example 4.14 can be upgraded to a
2-functor G2 ! G1 (we recall that by [Ul] a pair ðA;FÞ A G2 is isomorphic to the pair�
RepðHÞ;FH

�
where H is a semisimple Hopf algebra and FH : RepðHÞ ! Vec is the for-

getful functor).

Proposition 4.15. The 2-functors above are mutually inverse 2-equivalences between

G1 and G2.

The proof of Proposition 4.15 is similar to that of Proposition 4.4 and amounts to
showing that the above constructions are inverses of each other. In fact, 2-groupoids G1

and G2 are also equivalent to the third 2-groupoid G3 which is defined in linear algebra
terms: objects of G3 are semisimple Hopf algebras, 1-morphisms are twisted isomorphisms
of Hopf algebras (defined in [D]), and 2-morphisms are gauge equivalences of twists.
Details of these equivalences will be given elsewhere.

Finally, we give an easy criterion which allows us to recognize a quantum Manin
triple. Let RC A KðCÞnZ R denote the regular object of C, see Section 2.1.

Proposition 4.16. Let C be a non-degenerate braided fusion category and let ðC;AÞ,
ðC;BÞ be quantum Manin pairs. The following conditions are equivalent:

(i) ðC;A;BÞ is a quantum Manin triple.

(ii) ½AnB� ¼ RC.

(iii) dimk HomCð1;AnBÞ ¼ 1.

(iv) dimk HomCðA;BÞ ¼ 1.

Proof. Let us prove the implication (i)) (ii). The category of ðA;BÞ-bimodules has
a unique up to isomorphism simple object M. For any X A C, the object AnX nB has
an obvious structure of ðA;BÞ-bimodule. Hence ½AnX nB� ¼ rX ½M� for some positive
integer rX . Consequently

½AnX nB� ¼ rX

r1

½AnB�:

Computing the Frobenius–Perron dimension of both sides, we get

½AnX nB� ¼ FPdimðX Þ½AnB�:
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Since the category C is braided, we have

½X �½AnB� ¼ ½AnX nB� ¼ FPdimðXÞ½AnB�:

Since FPdimðAÞ ¼ FPdimðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FPdimðCÞ

p
, we have FPdimðAnBÞ ¼ FPdimðCÞ. Hence

½AnB� ¼ RC, see Section 2.1.

The implication (ii)) (iii) is immediate and the equivalence (iii), (iv) follows from
Remark 3.4 since HomCðA;BÞ ¼ HomCð1;�AnBÞFHomCð1;AnBÞ.

Let us prove the implication (iii)) (i). By Corollary 4.1 (i), the central functor

FB : C! CB

is isomorphic to the forgetful functor ZðCBÞ ! CB (for a suitable choice of braided equiv-
alence CFZðCBÞ). Consider the category RepCB

ðAÞ (see Section 3.7). Notice that by
Remark 3.18 (ii), this category coincides with the category of ðA;BÞ-bimodules in C. Thus,
we need to prove that RepCB

ðAÞFVec. Recall from Section 3.7 that the category RepCB
ðAÞ

has a structure of multi-fusion category. On the other hand the unit object AnB of this
category is irreducible since HomA�BðAnB;AnBÞ ¼ HomCð1;AnBÞ. Thus, the multi-
fusion category RepCB

ðAÞ is in fact a fusion category. By Theorem 3.20 and Remark 4.3

we have Z
�
RepCB

ðAÞ
�
¼ C0

A ¼ Vec. Thus (6) implies that FPdim
�
RepCB

ðAÞ
�
¼ 1, whence

RepCB
ðAÞ ¼ Vec. r

5. Definition and properties of the Witt group

5.1. Definition of the Witt group.

Definition 5.1. Non-degenerate braided fusion categories C1 and C2 are Witt equiv-

alent if there exists a braided equivalence C1 nZðA1ÞFC2 nZðA2Þ, where A1, A2 are
fusion categories.

Remark 5.2. The equivalence relation in Definition 5.1 will not change if we allow
A1 and A2 to be non-zero multi-fusion categories. Indeed, assume that

C1 nZðA1ÞFC2 nZðA2Þ

where A1 and A2 are multi-fusion categories. We can assume that A1 and A2 are inde-
composable in the sense of [ENO1], Section 2.4 (replace A1 and A2 by suitable summands
otherwise). It follows from [EO], Lemma 3.24, Corollary 3.35, that for an indecompos-
able multi-fusion category A there exists a fusion category A 0 and a braided equivalence
ZðAÞFZðA 0Þ. Our statement follows.

It is easy to see that Witt equivalence is indeed an equivalence relation. For
example the transitivity holds since the conditions C1 nZðA1ÞFC2 nZðA2Þ and
C2 nZðA 0

2ÞFC3 nZðA3Þ imply

C1 nZðA1 nA 0
2ÞFC2 nZðA2 nA 0

2ÞFC2 nZðA 0
2 nA2ÞFC3 nZðA3 nA2Þ:
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We will denote the Witt equivalence class containing a category C by ½C�. The set of Witt
equivalence classes of non-degenerate braided fusion categories will be denoted W. Clearly
W is a commutative monoid with respect to the operation n. The unit of this monoid is
½Vec�.

Lemma 5.3. The monoid W is a group.

Proof. For a non-degenerate braided fusion category C we have ZðCÞFCnCrev,
see Section 2.3. Thus ½C��1 ¼ ½Crev�. r

Proposition 5.4. Let A A C be an étale connected algebra. Then ½C0
A � ¼ ½C� in W.

Proof. This is immediate from Definition 5.1, Lemma 5.3 and Corollary 3.30. r

Definition 5.5. The abelian group W defined above is called the Witt group of non-

degenerate braided fusion categories.

Remark 5.6. It is apparent from the definition that the group W depends on the
base field k and should be denoted WðkÞ. However it is known that any fusion category
(or braided fusion category) is defined over the field of algebraic numbers Q, see [ENO1],
Section 2.6. Thus an embedding QH k induces an isomorphism WðQÞFWðkÞ. In this
sense we can talk about the Witt group of non-degenerate braided fusion categories (with-
out mentioning the field k). Of course this implies that the group W carries a natural action
of the absolute Galois group GalðQ=QÞ and should be considered together with this action.

Remark 5.7. It follows from [ENO1], Theorems 2.28, 2.31, and Remark 2.33 that
there are countably many non-equivalent braided fusion categories. In particular, the group
W is at most countable. We will see later that W is infinite.

Proposition 5.8. Let C be a non-degenerate braided fusion category. Then C A ½Vec� if
and only if there exist a fusion category A and a braided equivalence CGZðAÞ.

Proof. By definition, C A ½Vec� if and only if CnZðB1ÞFZðB2Þ with fusion cate-
gories B1 and B2. By Proposition 4.4 there exists a connected étale algebra A A ZðB1Þ such
that

�
ZðB1Þ;A

�
is a quantum Manin pair, see Definition 4.2. By abuse of notation we will

denote by A A ZðB2Þ the image of 1nA under the equivalence CnZðB1ÞFZðB2Þ.
Consider the multi-fusion category A ¼ RepB2

ðAÞ, see Section 3.7. By Theorem 3.20 we
have ZðAÞGZðB2Þ0A. On the other hand we have an obvious injective braided tensor
functor

C!ZðB2Þ0A : X 7! ðX n 1ÞnA:ð30Þ

We have

FPdimðCÞ ¼
FPdim

�
ZðB2Þ

�
FPdim

�
ZðB1Þ

� ¼ FPdim
�
ZðB2Þ

�
FPdimðAÞ2

¼ FPdim
�
ZðB2Þ0A

�
;

i.e., (30) is a fully faithful tensor functor between fusion categories of equal Frobenius–
Perron dimension. Therefore, it is an equivalence by [EO], Proposition 2.19. The proposi-
tion follows, see Remarks 3.21 and 5.2. r
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Corollary 5.9. We have ½C� ¼ ½D� if and only if there exists a fusion category A and a

braided equivalence CnDrev FZðAÞ.

5.2. Completely anisotropic categories.

Definition 5.10. We say that a non-degenerate braided fusion category is completely

anisotropic if the only connected étale algebra A A C is A ¼ 1.

Remark 5.11. A completely anisotropic non-degenerate braided fusion category has
no Tannakian subcategories other than Vec, i.e., it is anisotropic in the sense of [DGNO],
Definition 5.16.

Lemma 5.12. Let C be a completely anisotropic category, let A be a fusion category,
and let F : C!A be a central functor. Then F is fully faithful.

Proof. Let I : A! C be the right adjoint of F . Since C is completely anisotropic,
Lemma 3.5 implies that Ið1Þ ¼ 1. Thus

HomCðX ;Y ÞGHomCðX n �Y ; 1Þ

GHomC

�
X n �Y ; Ið1Þ

�
GHomA

�
FðX n �Y Þ; 1

�
GHomA

�
FðXÞn �FðYÞ; 1

�
GHomA

�
FðXÞ;FðYÞ

�
:

The result follows. r

We will say that a connected étale algebra A in a braided fusion category C is maxi-

mal if it is not a proper subalgebra of another such algebra. For any C there exists at least
one maximal connected étale algebra since by (16) the Frobenius–Perron dimensions of
connected étale algebras are bounded by FPdimðCÞ.

Theorem 5.13. Each Witt equivalence class in W contains a completely anisotropic

category that is unique up to braided equivalence.

Proof. Let C be a non-degenerate braided fusion category. Let A A C be a maximal
connected étale algebra By Proposition 3.16 any connected étale algebra in C0

A can be
considered as a connected étale algebra in C, so maximality of A is equivalent to C0

A being
completely anisotropic. Thus, Proposition 5.4 implies that any Witt equivalence class con-
tains a completely anisotropic category.

Now let C and D be two completely anisotropic categories such that ½C� ¼ ½D�. By
Corollary 5.9 there exists a fusion category A and a braided equivalence

CnDrev FZðAÞ.

In particular we have central functors C!A and Drev !A. By Lemma 5.12 these
functors are fully faithful. Hence FPdimðCÞeFPdimðAÞ and FPdimðDÞeFPdimðAÞ.
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Combining this with (6) we see that FPdimðCÞ ¼ FPdimðDÞ ¼ FPdimðAÞ and the func-
tor C!A (and Drev !A) is an equivalence. In particular A acquires a structure (in
fact, two structures) of non-degenerate braided fusion category. Let C 0 be the centralizer
of C in CnDrev FZðAÞFZðCÞ. Then on one hand C 0 ¼ Drev and on the other hand
C 0 ¼ Crev, see Section 2.3. The result follows. r

Corollary 5.14. Let A and B be two maximal connected étale algebras in a non-

degenerate braided fusion category C. Then there exists a braided equivalence C0
A FC0

B . In

particular FPdimðAÞ ¼ FPdimðBÞ.

Proof. The first statement is immediate from Theorem 5.13. The second one follows
from (23). r

The following result shows that Witt equivalence can also be understood without
reference to the Drinfeld center:

Proposition 5.15. Let C1, C2 be non-degenerate braided fusion categories. Then the

following are equivalent:

(i) ½C1� ¼ ½C2�, i.e., C1 and C2 are Witt equivalent.

(ii) There exist a non-degenerate braided fusion category C, connected étale algebras

A1;A2 A C and braided equivalences C1 !F C0
A1

, C2 !F C0
A2

.

(iii) There exist connected étale algebras A1 A C1, A2 A C2 and a braided equivalence

ðC1Þ0A1
!F ðC2Þ0A2

.

Proof. The implications (ii)) (i) and (iii)) (i) are immediate by Proposition 5.4.

(i)) (ii) By Definition 5.1, we have a braided equivalence

F : C1 nZðA1ÞFC2 nZðA2Þ:

Thus we can define C to be C2 nZðA2Þ, the algebra A1 to be F
�
1n I1ð1Þ

�
and the alge-

bra A2 to be 1n I2ð1Þ. Here Ii : Ai !ZðAiÞ are right adjoints to the forgetful functors
ZðAiÞ !Ai. Finally we define the braided equivalence C1 ! C0

A1
as

C1 ! C1 nZðA1Þ0I1ð1Þ !
F �

C2 nZðA2Þ
�0

A1
¼ C0

A1

and the braided equivalence C2 ! C0
A2

as

C2 ! C2 nZðA2Þ0I2ð1Þ ¼ C0
A2
:

(i)) (iii) Choose étale algebras Ai A Ci such that the categories ðCiÞ0Ai
are completely

anisotropic. Now ½ðC1Þ0A1
� ¼ ½C1� ¼ ½C2� ¼ ½ðC2Þ0A2

� together with Theorem 5.13 implies the

existence of a braided equivalence ðC1Þ0A1
!F ðC2Þ0A2

. r
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Remark 5.16. (1) The proposition implies that Witt equivalence is the equivalence
relation @ on non-degenerate braided fusion categories generated by ordinary braided
equivalence F and the relations C@C0

A, where A A C is an étale algebra. But the prop-
osition is more precise in that it says that any two Witt equivalent categories can be
joined by just two invocations of C@C0

A and either one (part (iii)) or two (part (ii)) braided
equivalences.

(2) The proposition has applications to conformal field theory, cf. [Mu6].

5.3. The Witt group of metric groups and pointed categories. Recall that a quadratic

form with values in k� on a finite abelian group A is a function q : A! k� such that

qð�xÞ ¼ qðxÞ and bðx; yÞ ¼ qðxþ yÞ
qðxÞqðyÞ is bilinear, see e.g. [DGNO], Section 2.11.1. The

pair ðA; qÞ consisting of finite abelian group and quadratic form q : A! k� is called a
pre-metric group, see [DGNO], Section 2.11.2. A pre-metric group ðA; qÞ is called metric

group if the form q is non-degenerate (i.e., the associated bimultiplicative form bðx; yÞ is
non-degenerate).

To a pre-metric group ðA; qÞ one assigns a unique up to a braided equivalence
pointed braided fusion category CðA; qÞ, where qðaÞ A k� equals the braiding on the
simple object Xa nXa where Xa is a representative of an isomorphism class a A A (see
e.g. [DGNO], Section 2.11.5). It was shown in [JS2] that this assignment is an equivalence
between the 1-categorical truncation of the 2-category of pre-metric groups and that of the
2-category of pointed braided fusion categories.

The category CðA; qÞ is non-degenerate if and only if ðA; qÞ is a metric group, see
[DGNO], Sections 2.11.5 and 2.8.2.

Let ðA; qÞ be a metric group and let H HA be an isotropic subgroup (that is,
qjH ¼ 1). Then H HH? where H? is the orthogonal complement of H in A with respect
to the bilinear form bðx; yÞ. Moreover, the restriction of q to H? is the pull-back of a non-
degenerate quadratic form ~qq : H?=H ! k�. We say that ðH?=H; ~qqÞ is an m-subquotient of
ðA; qÞ. Two metric groups are Witt equivalent if they have isomorphic m-subquotients (for
some choice of isotropic subgroups in each of them), cf. [DGNO], Appendix A.7.1. The set
of equivalence classes has a natural structure of abelian group (with addition induced by
the orthogonal direct sum) and is called the Witt group of metric groups, see loc. cit. We
will denote this group Wpt.

Proposition 5.17. The assignment

Wpt !W : ðA; qÞ 7! ½CðA; qÞ�ð31Þ

induces a well-defined injective homomorphism Wpt !W.

Proof. Let H HA be an isotropic subgroup. Then the corresponding subcategory
CðH; 1ÞHCðA; qÞ is Tannakian, see e.g. [DGNO], Example 2.48. Let B A CðH; 1Þ be the
corresponding regular algebra, see Example 2.8. Then the category CðA; qÞ0B identifies with
CðH?=H; ~qqÞ. In particular, ½CðA; qÞ� ¼ ½CðH?=H; ~qqÞ�. This implies that (31) is well defined.
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It is known (see [DGNO], Section A.7.1) that each class in Wpt has a representative
ðA; qÞ which is anisotropic, that is qðxÞ3 1 for A C x3 1. It is clear that the corresponding
category CðA; qÞ is completely anisotropic. Thus, (31) is injective by Theorem 5.13. r

In what follows we will identify the group Wpt with its image in W. The group Wpt

is explicitly known, see e.g. [DGNO], Appendix A.7. Namely,

Wpt ¼
L

p is prime

WptðpÞ;

where WptðpÞHWpt consists of the classes of metric p-groups.

The group Wptð2Þ is isomorphic to Z=8ZlZ=2Z; it is generated by two classes

½CðZ=2Z; q1Þ� and ½CðZ=4Z; q2Þ�;

where q1, q2 are any non-degenerate forms. For p1 3 ðmod 4Þ we have WptðpÞGZ=4Z and
the class ½CðZ=pZ; qÞ� is a generator for any non-degenerate form q. For p1 1 ðmod 4Þ the
group WptðpÞ is isomorphic to Z=2ZlZ=2Z; it is generated by the two classes ½CðZ=pZ; q 0Þ�
and ½CðZ=pZ; q 00Þ� with q 0ðlÞ ¼ z l 2

and q 00ðlÞ ¼ znl 2

, where z is a primitive pth root of unity
in k and n is any quadratic non-residue modulo p.

5.4. Property S. Let C be a non-degenerate braided fusion category.

Definition 5.18. We say that C has property S if the following conditions are
satisfied:

(S1) C is completely anisotropic.

(S2) C is simple (that is, C has no non-trivial fusion subcategories) and not pointed
(so in particular CYVec).

We will also say that a class w A W has property S if a completely anisotropic repre-
sentative of w has property S. In Section 6.4 we will give infinitely many examples of non-
degenerate braided fusion categories with property S.

Theorem 5.19. Let D ¼lD
i A I

Ci where Ci are braided fusion categories with property S.

Assume that D is a Drinfeld center of a fusion category. Then there is a fixed point free invo-

lution a : I ! I such that CaðiÞFCrev
i

Proof. Assume that D ¼ZðAÞ for some fusion category A. Let

F : D ¼ZðAÞ !A

be the forgetful functor. Choose a bijection I ¼ f1; . . . ; ng. For 1e ie n let Ai be the
image of C1 nC2 n � � �nCi under F (so Ai is a fusion subcategory of A).

Claim. There is a subset Ji H f1; . . . ; ig such that F restricted to lD
j A Ji

Cj HD is an

equivalence lD
j A Ji

Cj FAi.
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Proof of the Claim. We use induction on i. For i ¼ 1 we set J1 ¼ f1g; in this case the
claim follows from Lemma 5.12. Now consider the induction step. The subcategory Aiþ1

is clearly generated by Ai and (the image of) Ciþ1 HA (recall that by Lemma 5.12, the
functor F restricted to Ciþ1 is fully faithful). There are two possibilities:

(a) The subcategories Ai and Ciþ1 intersect non-trivially in A; then Ai contains Ciþ1

since by (S2), Ciþ1 has no non-trivial subcategories. In this case we set Jiþ1 ¼ Ji.

(b) Ai and Ciþ1 intersect trivially. Then we set Jiþ1 ¼ Ji W fi þ 1g. We claim that the
forgetful functor lD

j A Jiþ1

Cj !A is fully faithful. As in the proof of Lemma 5.12 it is su‰cient

to show that for any object Z A lD
j A Jiþ1

Cj we have HomA

�
FðZÞ; 1

�
¼ HomDðZ; 1Þ. Clearly,

we can restrict ourselves to the case when Z is simple. In this case Z ¼ X nY where
X A lD

j A Ji

Cj and Y A Ciþ1 are simple. Then FðZÞ ¼ FðXÞnFðY Þ where FðXÞ A Ai and

FðYÞ A FðCiþ1Þ are simple. Then HomA

�
FðZÞ; 1

�
¼ HomA

�
FðXÞ;FðYÞ�

�
¼ 0 unless

X ¼ 1 and Y ¼ 1. We are done in this case and the claim is proved. r

We apply now the Claim with i ¼ n; we see that A ¼ lD
j A Jn

Cj. Thus

ZðAÞ ¼ lD
j A Jn

ðCj nCrev
j Þ

(see Section 2.3). The category D does not contain non-trivial invertible objects. By
Proposition 2.2 it has a unique decomposition into a product of simple categories. The
result follows. r

Corollary 5.20. Let C be a category with property S. Then ½C� A W has order 2 if

CFCrev and otherwise ½C� A W has infinite order. r

More precisely we have the following result. Let S be the set of braided equivalence
classes of categories with property S. Let S2 HS be the subset consisting of categories C
such that CFCrev and let Sy ¼SnS2. It is clear that the set S is at most countable, see
Remark 5.7. It follows from (38) in Section 6.4 below that the set Sy (and hence S) is
infinite. Let S 0

y HSy be a maximal subset such that C A S 0
y implies Crev B S 0

y.

Corollary 5.21. Let WS HW be the subgroup generated by the categories with

property S. The map ðaiÞCi AS
7!

Q
Ci AS
½Ci�ai defines an isomorphism

L
S2

Z=2Zl
L
S 0
y

ZFWS: r

Remark 5.22. (1) It is clear that the set S2 is at most countable. However, we do not
know whether it is empty and we do not know whether it is finite.

(2) The description of the group WS above is non-canonical due to the choice of the
set S 0

y. A better description is as follows: the set S carries an involution s which sends C
to Crev. We extend s to the involution of the free abelian group Z½S� generated by S by
linearity. Then WS FZ½S�=Imageð1þ sÞ.

(3) An argument similar to the proof of Theorem 5.19 shows that WS XWpt ¼ f1g.
Thus the subgroup of W generated by WS and Wpt is isomorphic to WS �Wpt.

165Davydov, Müger, Nikshych and Ostrik, The Witt group of non-degenerate braided fusion categories



(4) Assume that Ci are braided fusion categories with property S and Crev
i WCj for

j 3 i. Corollary 5.21 implies that

�
lD
i A I

Ci

�
3 0. A stronger statement is true: the category

D ¼lD
i A I

Ci is completely anisotropic. Indeed, by Lemma 3.9 it is su‰cient to show that

any surjective central functor D!A is an equivalence. This is proved by an argument par-
allel to the proof of Theorem 5.19; notice that the case (a) in the proof of the Claim never
occurs since otherwise we would have a non-injective central functor Ci nCj !A; consid-
ering the image of this functor one shows that Crev

i FCj as in the proof of Theorem 5.13.

Corollary 5.23. The Q-vector space WnZ Q also has countable infinite dimension.

Proof. Since Sy is infinite, the Q-vector space WS nZ Q has countable infinite
dimension. The result follows since the functor ?nZ Q is exact. r

5.5. Central charge. From now on we will assume that k ¼ C. Recall that any
pseudo-unitary non-degenerate braided fusion category has a natural structure of modular
tensor category (see e.g. [DGNO], Section 2.8.2).

Definition 5.24. Let Wun HW be the subgroup consisting of Witt classes ½C� of
pseudo-unitary non-degenerate braided fusion categories C.

Remark 5.25. Note that Wun is not invariant under the Galois action from Re-
mark 5.6 (for example the class

�
C
�
slð2Þ; 3

�
þ
�
A Wun from Section 6.4 below has a Galois

conjugate not lying in Wun). In particular, Wun kW.

Now recall that for a modular tensor category C one defines the multiplicative central

charge xðCÞ A C, see [DGNO], Section 6.2. The following properties are well known, see
e.g. [BK], Section 3.1.

Lemma 5.26. (i) xðCÞ is a root of unity.

(ii) xðC1 nC2Þ ¼ xðC1ÞxðC2Þ.

(iii) xðCrevÞ ¼ xðCÞ�1
. r

The statement (i) (due to Anderson, Moore and Vafa, see [AM], [V]) allows us to con-
sider the additive central charge c ¼ cðCÞ A Q=8Z, which is related to xðCÞ by xðCÞ ¼ e2pic=8.

Lemma 5.27. Let C1 and C2 be two pseudo-unitary non-degenerate braided fusion cat-

egories considered as modular tensor categories. Assume that C1 and C2 are Witt equivalent.

Then xðC1Þ ¼ xðC2Þ.

Proof. By Corollary 5.9, C1 nCrev
2 FZðAÞ. Since the category C1 nCrev

2 is pseudo-
unitary, so is A (use (6)). Thus, the spherical structure on C1 nCrev

2 ¼ZðAÞ is induced by
the spherical structure on A. In this situation [Mu3], Theorem 1.2, says that x

�
ZðAÞ

�
¼ 1.

The result follows from Lemma 5.26. r

Now for any class w A Wun we define xðwÞ ¼ xðCÞ where C is a pseudo-unitary repre-
sentative of the class w; according to Lemma 5.27 this is well defined. Similarly, we set
cðwÞ ¼ cðCÞ.
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Corollary 5.28. The assignment w 7! cðwÞ is a homomorphism Wun ! Q=8Z.

Proof. This is immediate from Lemma 5.26. r

Remark 5.29. A non-degenerate pointed category CðA; qÞ has a canonical pseudo-
unitary structure (characterized by the condition that dimensions of all simple objects are
1). The ribbon twist of the corresponding modular structure on CðA; qÞ is yXa

¼ qðaÞ1Xa
,

where Xa is a simple object corresponding to a A A. The multiplicative central charge of
CðA; qÞ is given by [DGNO], Section 6.1,

x
�
CðA; qÞ

�
¼ 1ffiffiffiffiffiffiffi

jAj
p P

a AA

qðaÞ:

In particular, for a metric cyclic group of order 2 with the value of the quadratic form
on the generator qð1Þ ¼ i A k (with i2 ¼ �1) we have

x
�
CðZ=2Z; qÞ

�
¼ 1þ iffiffiffi

2
p

so that the additive central charge is

c
�
CðZ=2Z; qÞ

�
¼ 1 A Q=8Z:ð32Þ

6. Finite extensions of vertex algebras

6.1. Extensions of VOAs. Let V be a rational vertex algebra, that is, a vertex alge-
bra satisfying conditions 1–3 from [H], Section 1. It is proved in loc. cit. that the category
RepðVÞ of V -modules of finite length has a natural structure of modular tensor category; in
particular RepðVÞ is a non-degenerate braided fusion category.

Note that a rational vertex algebra has to be simple (i.e., has no non-trivial ideals).
This, in particular, means that VOA maps between rational vertex algebras are mono-
morphisms.

The category of modules RepðV nUÞ of the tensor product of two (rational) vertex
algebras is ribbon equivalent to the tensor product RepðVÞnRepðUÞ of the categories of
modules (see, for example [FHL]).

The following relation between the central charge cV of a (unitary) rational VOA V

and the central charge of the category of its modules RepðVÞ is well known to specialists
(although we could not find a reference)1):

x
�
RepðVÞ

�
¼ e

2picV
8 :

1) This relation can be verified directly for all the examples we consider later.
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Now consider a finite extension of vertex algebras V HW , that is, V is a vertex
subalgebra of W (with the same Virasoro vector) and W viewed as a V -module decom-
poses into a finite direct sum of irreducible V -modules2). Then W considered as an object
A A RepðVÞ has a natural structure of commutative algebra; moreover this algebra sat-
isfies the conditions from Example 3.3 (ii) and hence is étale, see [KiO], Theorem 5.23).
Furthermore, the restriction functor RepðWÞ ! RepðVÞ induces a braided tensor equiv-
alence RepðWÞFRepðVÞ0A. Thus, Proposition 5.4 implies that in this situation we have
½RepðVÞ� ¼ ½RepðWÞ�. We can use this in order to construct examples of interesting rela-
tions in the group W.

Example 6.1 (Chiral orbifolds). Let G be a finite group of automorphisms of a
rational vertex algebra V . The sub-VOA of invariants V G is called the chiral orbifold of V .
In the case when the vertex subalgebra of invariants V G is rational, we have a Witt equiv-
alence between categories of modules RepðVÞ, RepðV GÞ.

6.2. A‰ne Lie algebras and conformal embeddings. Let g be a finite dimensional
simple Lie algebra and let ĝg be the corresponding a‰ne Lie algebra. For any k A Z>0 let
Cðg; kÞ be the category of highest weight integrable ĝg-modules of level k, see e.g. [BK],
Section 7.1, where this category is denoted O int

k . The category Cðg; kÞ can be identified
with the category Rep

�
Vðg; kÞ

�
where Vðg; kÞ is the simple vertex algebra associated with

the vacuum ĝg-module of level k. In particular the category Cðg; kÞ has a structure of
modular tensor category, see [HL], [BK], Chapter 7.

Example 6.2. The category C
�
slðnÞ; 1

�
is pointed. It identifies with CðZ=nZ; qÞ,

where qðlÞ ¼ epil 2n�1
n , l A Z=nZ. More generally, Cðg; 1Þ (with g simply laced) is pointed

[FK].

It is known ([BK]) that the categories Cðg; kÞ are pseudo-unitary. In particular, we
have Witt classes ½Cðg; kÞ� A Wun HW. The following formula for the central charge is
very useful, see e.g. [BK], 7.4.5:

c
�
Cðg; kÞ

�
¼ k dim g

k þ h4
;ð33Þ

where h4 is the dual Coxeter number of the Lie algebra g.

One can construct examples of relations between the classes ½Cðg; kÞ� using the
theory of conformal embeddings, see [BB], [SW], [KW]. Let

L
i

g i H g 0 be an embedding

(here g i and g 0 are finite dimensional simple Lie algebras). We will symbolically write

2) Note that finiteness is automatic if we assume that L0-eigenspaces are finite dimensional (which is

standard and true e.g. for a‰ne VOAs). Indeed, as a module over a rational vertex algebra V , W is completely

reducible, i.e., is a sum of simple V -modules. Since V has only a finite number of non-isomorphic simple modules

the only way for W not to be finite is to have infinite multiplicities (in decomposition into simple V -modules).

That will contradict finite dimensiality of L0-eigenspaces.

3) The proof of this result in [KiO] is not complete. However for examples we are going to consider in this

section the arguments from [KiO], Section 5.5, are su‰cient.
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L
i

ðg iÞki
H g 0k 0 if the restriction of a ĝg 0-module of level k 0 to ĝg i has level ki (in this

case the numbers ki are multiples of k 0). Such an embedding defines an embedding of
vertex algebras

N
i

Vðg i; kiÞHVðg 0; k 0Þ; but in general this embedding does not preserve

the Virasoro vector. In the case when it does the embedding
L

i

ðg iÞki
H g 0k 0 is called

conformal embedding; it is known that in this case the extension of vertex algebrasN
i

Vðg i; kiÞHVðg 0; k 0Þ is finite4). Thus in view of Section 6.1, we get a relation

Q
i

½Cðg i; kiÞ� ¼ ½Cðg 0; k 0Þ�:ð34Þ

The complete classification of the conformal embeddings was done in [BB], [SW] (see also
[KW]) and is reproduced in the Appendix.

6.3. Cosets. Let U LV be an embedding of rational vertex algebras, which does
not preserve conformal vectors oU , oV (only operator products are preserved). The central-

izer CV ðUÞ is a vertex algebra with the conformal vector oV � oU , see [GKO]. Moreover
the tensor product U nCV ðUÞ is mapped naturally to V and this map is a map of vertex
algebras. In the case when V , U and CV ðUÞ are rational we have a Witt equivalence of
categories of modules

RepðUÞnRep
�
CV ðUÞ

�
FRep

�
U nCV ðUÞ

�
and RepðVÞ.

Let
L

i

ðh iÞki
H

L
j

ðg jÞk 0
j

be an embedding of vertex algebras non necessarily pre-

serving the Virasoro vector as in Section 6.2. Let
N

i

Vðh i; kiÞH
N

j

Vðg j; k 0j Þ be the

corresponding embedding of the vertex algebras. The centralizer

CN
j

Vðg j ;k 0
j
Þ

	N
i

Vðh i; kiÞ



is called the coset model and is denoted

D
j
ðg jÞk 0

j

D
i
ðh iÞki

.

Sometimes coset models defined by di¤erent embeddings of semisimple Lie algebras
are isomorphic. An example of such isomorphism was found by Goddard, Kent and Olive
[GKO]. They observed that the coset models5)

A1;m � A1;1

A1;mþ1
;

Cmþ1;1

Cm;1 � C1;1

4) This follows from the fact that L0-eigenspaces of Vðg; kÞ are finite dimensional.

5) Here and in the Appendix the notation Xi; k refers to the Lie algebra of type Xi at level k.
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are isomorphic, since they are both isomorphic to the same rational Virasoro vertex algebra
Vircm

with the central charge

cm ¼ 1� 6

ðmþ 2Þðmþ 3Þ :ð35Þ

We can use coset models in order to construct new relations in the Witt group as

follows. Assume that the central charge c of a coset model vertex algebra

D
j
ðg jÞk 0

j

D
i
ðh iÞki

is

positive6) but less than 17). It is known that in this case c ¼ cm for some positive integer m

and the vertex algebra in question contains a rational vertex subalgebra Vircm
, see [GKO].

This implies that the rational vertex algebra
N

j

Vðg j; k 0j Þ is a finite extension of rational

vertex algebra
N

i

Vðh i; kiÞnVircm
. Thus according to the results of Section 6.1 we get a

relation in the Witt group	Q
i

½Cðh i; kiÞ�


� ½Vircm

� ¼
Q

j

½Cðg j; k 0j Þ�:ð36Þ

A special case of this relation corresponding to the coset model
A1;m � A1;1

A1;mþ1
reads

½Vircm
� ¼

�
C
�
slð2Þ;m

���
C
�
slð2Þ; 1

���
C
�
slð2Þ;mþ 1

���1
:ð37Þ

Thus combining (36) and (37), we obtain relations between the classes ½Cðg; kÞ�.

6.4. Examples for gF sl(2). We give here some examples of relations (or absence
thereof) between the classes

�
C
�
slð2Þ; k

��
. We refer the reader to [KiO], Section 6, for

more details on the categories C
�
slð2Þ; k

�
. Note that all étale algebras in these categories

were classified in [KiO], Theorem 6.1.

(1) The category C
�
slð2Þ; 1

�
is pointed, moreover C

�
slð2Þ; 1

�
FCðZ=2Z; qþÞ where

qþð1Þ ¼ i. In particular, the class
�
C
�
slð2Þ; 1

��
A W has order 8.

(2) For any odd k, we have C
�
slð2Þ; k

�
FC

�
slð2Þ; k

�
þnCðZ=2Z; qGÞ where

C
�
slð2Þ; k

�
þ is the subcategory of ‘‘integer spin’’ representations and qGð1Þ ¼Gi (see e.g.

[KiO], Lemma 6.6). The category C
�
slð2Þ; k

�
þ for an odd k f 3 has property S. Using

(33) and (32), we get

c
�
C
�
slð2Þ; k

�
þ
�
¼ 3k

k þ 2
þ ð�1Þðkþ1Þ=2:

In particular, 2c
�
C
�
slð2Þ; k

�
þ
�
3 0 A Q=8Z, so

C
�
slð2Þ; k

�
þYC

�
slð2Þ; k

�rev

þ :ð38Þ

This shows that the set Sy from Section 5.4 is infinite.

6) It is known (see [GKO]) that cf 0. The case c ¼ 0 corresponds exactly to the conformal embeddings

discussed in Section 6.2.

7) The list of cosets with such central charge was given in [BG] and is reproduced in the Appendix.
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Consider the category C
�
slð2Þ; 3

�
þ. The class

�
C
�
slð2Þ; 3

�
þ
�
A W is a simplest exam-

ple of element of W of infinite order. We will say that a braided fusion category C is
a Fibonacci category if the Grothendieck ring KðCÞ is isomorphic to K

�
C
�
slð2Þ; 3

�
þ
�

as a
based ring. It is known that a pseudo-unitary Fibonacci category is equivalent to either
C
�
slð2Þ; 3

�
þ or C

�
slð2Þ; 3

�rev

þ .

(3) The category C
�
slð2Þ; 2

�
is an example of Ising braided category, see [DGNO],

Appendix B. In particular, it follows from [DGNO], Lemma B.24, that

�
C
�
slð2Þ; 2

��2 ¼ ½CðZ=4Z; qÞ�; where qðlÞ ¼ e3pil 2=4:

Thus, the order of
�
C
�
slð2Þ; 2

��
A W is 16.

Using [DGNO], Lemma B.24, it is easy to see that for an odd l we have

�
C
�
slð2Þ; 2

�� l ¼ ½C�;

where C is an Ising braided category. Since there are precisely eight equivalence classes of
Ising braided categories (see [DGNO], Corollary B.16), we get that for any Ising braided
category C there is a unique odd number l, 1e l e 15, such that ½C� ¼

�
C
�
slð2Þ; 2

�� l
. The

number l is easy to compute from cðCÞ using c
�
C
�
slð2Þ; 2

��
¼ 3

2
.

(4) There exists a conformal embedding slð2Þ4 H slð3Þ1. Thus

�
C
�
slð2Þ; 4

��
¼

�
C
�
slð3Þ; 1

��
¼ ½CðZ=3Z; qÞ�; where qðlÞ ¼ e2pil 2=3:

In particular, the order of
�
C
�
slð2Þ; 4

��
A W is 4.

(5) There exists a conformal embedding slð2Þ6 l slð2Þ6 H soð9Þ1. Thus

�
C
�
slð2Þ; 6

��2 ¼
�
C
�
soð9Þ; 1

��
:

Notice that C
�
soð9Þ; 1

�
is also an example of Ising braided category. Using the central

charge one computes that �
C
�
slð2Þ; 6

��2 ¼
�
C
�
slð2Þ; 2

��3
:

In particular,
�
C
�
slð2Þ; 6

��
A W has order 32.

(6) The category C
�
slð2Þ; 8

�
is known to contain an étale algebra A such that

C
�
slð2Þ; 8

�0

A
is equivalent to the product of two Fibonacci categories, see e.g. [MPS],

Theorem 4.1. Using the central charge one computes that

�
C
�
slð2Þ; 8

��
¼

�
C
�
slð2Þ; 3

�
þ
��2

:

(7) There exists a conformal embedding slð2Þ10 H spð4Þ1. Thus,

�
C
�
slð2Þ; 10

��
¼

�
C
�
spð4Þ; 1

��
:
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The category C
�
spð4Þ; 1

�
is an Ising braided category. Using the central charge one com-

putes that
�
C
�
slð2Þ; 10

��
¼

�
C
�
slð2Þ; 2

��7
.

(8) Let gðG2Þ be a Lie algebra of type G2. There exists a conformal embedding

slð2Þ28 H gðG2Þ1:

Thus,

�
C
�
slð2Þ; 28

��
¼

�
C
�
gðG2Þ; 1

��
:

The category CðgðG2Þ; 1
�

is a Fibonacci category. Using the central charge one computes
that

�
C
�
slð2Þ; 28

��
¼

�
C
�
slð2Þ; 3

�
þ
�
:

(9) The category C
�
slð2Þ; k

�
with k divisible by 4 is known to contain an étale algebra

A of dimension 2, see [KiO], Theorem 6.1. It is also known that in this case for k 3 4; 8; 28
the category C

�
slð2Þ; k

�0

A
has property S and is not equivalent to any category C

�
slð2Þ; k1

�
þ

with odd k1. Thus we get infinitely many more elements of the set Sy. For example we see
that

�
C
�
slð2Þ; 12

��
A W has infinite order.

6.5. Holomorphic vertex algebras with cF 24. We recall that a rational vertex alge-
bra V is called holomorphic if RepðVÞ ¼ Vec, that is the only simple V -module is V itself,
see e.g. [DM]. In [Sc] Schellekens gives a conjectural list of 71 holomorphic vertex algebras
with central charge c ¼ 24, see also [DM]. Out of this list, 69 algebras are extensions of
vertex algebras associated with a‰ne Lie algebras as in Section 6.2. Thus in view of the
discussion in Section 6.1, each of these algebras should give a conjectural relation between
the classes ½Cðg; kÞ�. Some of these relations can be deduced from the relations in Sections 6.2
and 6.3, but some others are genuinely new. For example entry No. 14 from the Schellekens
list gives a conjectural relation ½CðF4; 6Þ� ¼

�
C
�
slð3Þ; 2

���1
which cannot be deduced from

the results above.

6.6. Open questions. In this section we collect some open questions about the Witt
group W.

Question 6.3. Is it true that W is a direct sum of cyclic groups? Is there an inclusion
QHW?

Question 6.4. Is Wun generated by classes ½Cðg; kÞ�?

Remark 6.5. Notice that Wpt is contained in the subgroup generated by ½Cðg; kÞ�.
Namely, the subgroup of W generated by

�
C
�
slð2Þ; 1

��
and

�
C
�
slð2Þ; 2

��
contains Wptð2Þ.

For a prime p ¼ 4k þ 3, the subgroup WptðpÞ is generated by
�
C
�
slðpÞ; 1

��
. Finally for a

prime p ¼ 4k þ 1 choose a prime number q < p which is a quadratic non-residue modulo p

(it is easy to see that such a prime does exist). Then WptðpÞ is contained in the subgroup
of W generated by

�
C
�
slðpÞ; 1

��
and

�
C
�
slðpqÞ; 1

��
and WptðqÞ. Thus we are done by

induction.
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Remark 6.6. Since the end of the eighties there is a common belief among physicists
that all rational conformal field theories come from lattice and WZW models via coset and
orbifold (and perhaps chiral extension) constructions (see [MS]). An analogous statement
for modular categories would imply that the unitary Witt group is generated by classes of
a‰ne categories Cðg; kÞ.

Question 6.7. What are the relations in the subgroup of W generated by ½Cðg; kÞ�?
Is it true that all relations in the subgroup generated by

�
C
�
slð2Þ; k

��
are described in

Section 6.4? Is it possible to express some nonzero power of
�
C
�
slð2Þ; 12

��
A W in terms

of
�
C
�
slð2Þ; k

��
, k 3 12? What is the order of

�
C
�
slð2Þ; 14

��
A W?

Question 6.8. Is there a class w A WS of order 2? Equivalently does exist a non-
degenerate braided fusion category C with property S and such that Crev FC?

Question 6.9. Is it true that torsion in W is 2-primary? Is there an element of order 3
in W?

Question 6.10. What is the biggest finite order of an element of W? For example,
are there elements of W of order 64?

Appendix. Conformal embeddings and cosets with cH 1

Here we reproduce (from [BB], [SW]) the list of maximal embeddings starting with
serial embeddings (rank-level dualities, (anti-)symmetric and regular embeddings and their
variants) and followed up by sporadic embeddings. For the sake of compactness we use
matrix algebra notations (instead of Dynkin symbols) for the rank-level embeddings (the
first four):

suðmÞn � suðnÞm L suðmnÞ1; spð2mÞn � spð2nÞm L soð4mnÞ1;

soðmÞn � soðnÞm L soðmnÞ1; soðmÞ4 � suð2Þm L spð2mÞ1;

An;n�1 LAðn�1Þðnþ2Þ
2

;1
; An;nþ3 LAnðnþ3Þ

2
;1
;

A2nþ1;2nþ2 LB2n2þ4nþ1;1; A2n;2nþ1 LD2nðnþ1Þ;1;

B2nþ1;4nþ1 LBð4nþ1Þðnþ1Þ;1; A2nþ1;4nþ5 LB4n2þ7nþ2;1;

B2n;4n�1 LDnð4nþ1Þ;1; B2n;4nþ3 LDnð4nþ3Þ;1;

C2n;2n�1 LB4n2�n�1;1; C2nþ1;2nþ2 LBð4nþ1Þðnþ1Þ;1

C2n;2nþ1 LDnð4nþ1Þ;1; C2nþ1;2n LDnð4nþ3Þ;1;

D2n;4nþ2 LB4n2þn�1;1; D2nþ1;4n LBnð4nþ3Þ;1;

D2n;4n�2 LDnð4n�1Þ;1; D2nþ1;4nþ4 LDðnþ1Þð4nþ1Þ;1;

Bn;2 LA2n;1; Dn;2 LA2n�1;1;
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D1;1 � Ai;1 � An�i�1 LAn;1; 1e i e n� 2; D1;1 � An�1;1 LAn;1;

D1;1 �Dn�1;1 LDn;1; D1;1 � An�1;1 LDn;1;

A1;1 � A1;1 �Dn�2;1 LDn;1; Di;1 �Dn�i;1 LDn;1; 3e ie n� 3;

A1;1 � A1;1 � Bn�2;1 LBn;1; D1;1 � Bn�1;1 LBn;1;

Di;1 � Bn�1;1 LBn;1; 3e ie n� 2; Di;1 � Bn�i;1 LBn;1;

A1;2 �Dn�1;1 LBn;1; D1;1 � An�1;2 LCn;1;

D1;1 �D5;1 LE6;1; A1;1 � A5;1 LE6;1;

A2;1 � A2;1 � A2;1 LE6;1; D1;1 � E6;1 LE7;1;

A1;1 �D6;1 LE7;1; A7;1 LE7;1;

A2;1 � A5;1 LE7;1; D8;1 LE8;1;

A4;1 � A4;1 LE8;1; A2;1 � E6;1 LE8;1;

A1;1 � E7;1 LE8;1; A8;1 LE8;1;

A1;1 � C3;1 LF4;1; G2;1 � A1;8 LF4;1;

A1;3 � A1;1 HG2;1; A2;2 � A2;1 HF4;1;

G2;1 � A2;2 LE6;1; A1;7 � G2;2 LE7;1;

A1;3 � F4;1 LE7;1; G2;1 � C3;1 LE7;1;

A2;6 � A1;16 LE8;1; G2;1 � F4;1 LE8;1;

A1;10 LB2;1; A1;28 LG2;1; A2;9 LE6;1;

A2;21 LE7;1; A5;6 LC10;1; A7;10 LD35;1;

B2;12 LE8;1; B4;2 LD8;1; C3;5 LC7;1;

C4;1 LE6;1; C4;7 LD21;1; D5;4 LA15;1;

D6;8 LC16;1; D8;16 LD64;1; E6;6 LA26;1;

E6;12 LD39;1; E7;12 LC28;1; E7;18 LB66;1;

E8;30 LD124;1; F4;3 LD13;1; F4;9 LD26;1;

G2;3 LE6;1; G2;4 LD7;1:

Next we reproduce the list of cosets with central charge 0 < c < 1 given in [BG]:

Vircn
¼ A1;1 � A1;n

A1;nþ1
; Vircn

L
Anþ1;2

An;2 � uð1Þ ;

Vircn
L

Cmþ1;1

Cm;1 � C1;1
; Virc1

L
soðnÞ1

soðn� 1Þ1
;
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Virc1
L

A1;2

uð1Þ ; Virc2
L

E7;2

A7;2
; Virc3

L
A2;1 � A2;1

A2;2
;

Virc3
L

A1;3

uð1Þ ; Virc3
L

E7;2

A1;2 �D6;2
; Virc4

L
E6;1 � E6;1

E6;2
;

Virc3
L

A2;2

A1;8
; Virc1

L
E8;2

D8;2
; Virc2

L
E7;1 � E7;1

E7;2
;

Virc3
L

A5;1

C3;1
; Virc2

L
E8;2

A1;2 � E7;1
; Virc1

L
E8;1 � E8;1

E8;2
;

Virc2
L

B3;1

G2;1
; Virc9

L
E8;2

A8;2
; Virc9

L
E8;1 � E8;2

E8;3
;

Virc3
L

E6;1

F4;1
; Virc9

L
F4;1

C3;2 � A1;2
; Virc8

L
F4;1 � F4;1

F4;2
;

Virc4
L

E6;2

C4;2
; Virc2

L
F4;1

B4;1
; Virc7

L
G2;1 � G2;1

G2;2
;

Virc5
L

E6;2

A1;2 � A5;2
; Virc3

L
G2;1

A2;1
; Virc6

L
G2;2

A1;2 � A1;6
:
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