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The Witt group of non-degenerate
braided fusion categories

By Alexei Davydov at Durham, Michael Miiger at Nijmegen,
Dmitri Nikshych at Durham and Victor Ostrik at Eugene

Abstract. We give a characterization of Drinfeld centers of fusion categories as non-
degenerate braided fusion categories containing a Lagrangian algebra. Further we study
the quotient of the monoid of non-degenerate braided fusion categories modulo the sub-
monoid of the Drinfeld centers and show that its formal properties are similar to those of
the classical Witt group.

1. Introduction

Tensor categories are ubiquitous in many areas of mathematics and it seems worth-
while to study them deeper. The simplest class of tensor categories is formed by so called
fusion categories ([ENOI1], see Section 2.1 below for a definition). It is known ([ENO1])
that over an algebraically closed field k of characteristic zero there are only countably
many equivalence classes of fusion categories and that the classification of these equiv-
alence classes is essentially independent from the field k (namely, an embedding of fields
k = k' induces a bijection between the sets of equivalence classes of fusion categories
over k and over k'). Thus the classification of fusion categories seems to be a natural and
interesting problem. This problem is very far from its solution at the moment.

An interesting additional structure that one might impose on a tensor category is a
braiding ([JS2]). For a fusion category .7, its Drinfeld center % (.</) is a braided fusion cate-
gory, see Section 2.3. Our first main result addresses the following question: when is a
braided fusion category % equivalent to the Drinfeld center of some fusion category? The
answer we give is as follows: ¢ should be non-degenerate in the sense of [DGNO] and %
should contain a Lagrangian algebra, that is, a connected étale algebra of maximal possible
size, see Section 4. More precisely, we show that the 2-groupoid of fusion categories is
equivalent to the 2-groupoid of quantum Manin pairs, where a quantum Manin pair
consists of a non-degenerate braided fusion category and a Lagrangian algebra in this
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category. This result can be considered as (a step in) a reduction of the classification of all
fusion categories to the classification of braided fusion categories.

The problem of classification of all braided fusion categories (even of non-degenerate
ones) seems to be very interesting but is almost as inaccessible as a classification of all
fusion categories. The second main result of this paper is an observation that there is an
interesting algebraic structure in this classification. Namely, we prove that the quotient
of the monoid of non-degenerate braided fusion categories by the submonoid of Drinfeld
centers has formal properties similar to those of the classical Witt group of the quadratic
forms over a field. Moreover, we show that the Witt group of finite abelian groups en-
dowed with a non-degenerate quadratic form embeds naturally into this quotient. Thus
we call it the Witt group of non-degenerate braided fusion categories and consider its com-
putation as a fundamental problem in the study of fusion categories. Further we show that
each Witt equivalence class contains a unique representative which is completely anisotropic
(Theorem 5.13); this result is a counterpart of the statement that in the classical Witt group
each Witt class contains a unique anisotropic quadratic form.

An interesting subgroup of the Witt group is the unitary Witt group (see Defini-
tion 5.24) consisting of the classes of pseudounitary braided fusion categories. A well-
known source of examples of pseudounitary braided fusion categories is the representation
theory of affine Lie algebras, see e.g. [BK], Chapter 7. Namely, for any simple finite dimen-
sional Lie algebra g and a positive integer k one constructs a pseudounitary non-degenerate
braided fusion category %(g, k) consisting of integrable highest weight modules of level k&
over the affinization of g. We do not know any elements of the unitary Witt group that are
not in the subgroup generated by the classes [¢(g, k)]. It would be very interesting to find
out whether such elements exist. The relations between the classes [¢(g, k)] (or, more gen-
erally, between the classes of known braided fusion categories) are of great interest. By
Corollary 5.9, any such relation produces at least one fusion category; one can hope to con-
struct new examples of fusion categories in this way (see [CMS], Appendix, for an example
of this kind). In Section 6 we give examples of such relations using the theory of conformal
embeddings and coset models of central charge ¢ < 1. It would be interesting to see whether
other relations exist. At this moment even all relations between the classes [%(sl(2), k)] are
not completely known (see Section 6.4).
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second author also thanks A. Kitaev for two invitations to Microsoft’s Station Q and to
Caltech, respectively. The fourth author is grateful to Zhenghan Wang for his interest in
this work. Finally, we would like to thank the referee for his exceptionally thorough work
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2. Preliminaries

Throughout this paper our base field ks is an algebraically closed field of characteristic
Zero.

2.1. Fusion categories. By definition (see [ENOL1]), a multi-fusion category over [
is a k-linear semisimple rigid tensor category with finitely many simple objects and finite



Davydov, Miiger, Nikshych and Ostrik, The Witt group of non-degenerate braided fusion categories 137

dimensional spaces of morphisms. A multi-fusion category is called a fusion category if
its unit object 1 is simple. By a fusion subcategory of a fusion category we always mean a
full tensor subcategory that is itself fusion (i.e., in particular rigid and semisimple.) Let Vec
denote the fusion category of finite dimensional vector spaces over k. Any fusion cate-
gory .o/ contains a trivial fusion subcategory consisting of multiples of 1. We will identify
this subcategory with Vec. A fusion category .o/ is called simple if Vec is the only proper
fusion subcategory of .o7.

A fusion category is called pointed if all its simple objects are invertible. For a fusion
category .o/ we denote .o, the maximal pointed fusion subcategory of .«7. We say that .o is
unpointed if .o/, = Vec.

We will denote by o7 [x] # the tensor product of fusion categories .o/ and %. (Cf.
[De], Section 5. Under the assumptions of this paper, where k is algebraically closed and
</, % semisimple, o7 [x] # can be obtained as the completion of the k-linear direct product
o/ @ % under direct sums and subobjects.)

I

For a fusion category .o/ we denote by (/(.«7) the set of isomorphism classes of simple

objects in .o7.

Let o/ be a fusion category and let K(.o7) be its Grothendieck ring. There exists
a unique ring homomorphism FPdim : K(.«/) — R such that FPdim(X) >0 for any
0 + X € .o/, see [ENOI], Section 8.1. (See also [ENO1], Section 9 for the observation that
the results used below are independent of the ground field.) For a fusion category ./ one
defines (see [ENO1], Section 8.2) its Frobenius—Perron dimension:

(1) FPdim(«/) = Y. FPdim(X)”.
XeO()

For any object X in o7 let [X] denote the corresponding element of the Grothendieck
ring K (o). One defines the (virtual) regular object of </ by

2) R,= Y FPdim(X)[X]eK()®;R,
XeO()

see e.g. [ENOI1], Section 8.2. The regular object R, has the following properties (see
loc. cit.):

(1) FPdim(R./) = FPdim(.7).
(2) [X]R,, = FPdim(X)R,, for any X € /.

(The first is obvious. The second is a restatement of the fact that the positive vec-
tor (FPdim(X;)), is the (unique up to a scalar) common FP eigenvector, with respect to
the canonical basis [Xj], of the commuting operators [X] acting on K(</) ®;R by
multiplication. The proof only uses multiplicativity of the FP dimension. This also shows
that R, is actually characterized by the properties (1) and (2).)

Let .o/}, .o/, be fusion categories such that FPdim(.«/;) = FPdim(.«/,). By [EO], Prop-
osition 2.19, any fully faithful tensor functor F' : .o/ — .o/, is an equivalence.



138 Davydov, Miiger, Nikshych and Ostrik, The Witt group of non-degenerate braided fusion categories

There is another notion of dimension .7, the categorical (or global) dimension defined
as follows (see [Mu2]). For each simple object X in .o/ pick an isomorphism ay : X = X**
and set

(3) dim(«/) = > X%
Xel()

where [X|* = Try(ay) Try- ((ay')"). By [ENOI1], Theorem 2.3, dim(.7) is a non-zero ele-
ment in k.

A fusion category .7 over k = C is called pseudo-unitary if dim(.«7) = FPdim(.«/), see
[ENOI1], Section 8.4. A pseudo-unitary fusion category .o/ has a unique spherical structure
such that the categorical dimension dim(X) of any object X in .o equals FPdim(X), see
[ENO1], Proposition 8.23. It is easy to see that if .o/; and .o/, are pseudo-unitary, then so
1S .of 1 szz.

2.2. Braided fusion categories. A braided fusion category is a fusion category %
endowed with a braiding cx vy : X ® ¥ = Y ® X, see [JS2]. For a braided fusion category
its reverse %' is the same fusion category with a new braiding ¢y, y = cy'y. A braided
fusion category is symmetric if ¢ = c.

Recall from [Mu4] that objects X and Y of a braided fusion category % are said to
centralize each other if

(4) Cy_’XOCX,y :id)(®y.

The centralizer ' of a fusion subcategory & <= ¥ is defined to be the full subcategory of
objects of ¥ that centralize each object of 2. It is easy to see that &’ is a fusion subcategory
of 4. Clearly, & is symmetric if and only if Z = &'.

Definition 2.1 (see [DGNO], Definition 2.28 and Proposition 3.7). We will say that a
braided fusion category % is non-degenerate if €' = Vec.

A non-degenerate braided fusion category € =+ Vec is prime if it has no proper non-
degenerate braided fusion subcategories other than Vec. Clearly, a non-trivial simple
braided fusion category is prime.

For a fusion subcategory & of a non-degenerate braided fusion category % one has
the following properties, cf. [DGNO], Theorems 3.10, 3.14:

9// _ @,
FPdim(Z) FPdim(2') = FPdim(%).

A pre-modular category is a braided fusion category equipped with a spherical struc-
ture. A pre-modular category € is modular (i.e., its S-matrix is invertible) if and only if € is
non-degenerate [DGNO], Proposition 3.7. (Cf. also [Mu4].)

The following statement is well known. We include its proof for the reader’s conve-
nience.
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Proposition 2.2. Let € + Vec be a non-degenerate braided fusion category. Then

(5) C=6RX- - X%,
where €,...,%, are prime non-degenerate subcategories of €. Furthermore, if € is un-

pointed, then its decomposition (5) into a tensor product of prime non-degenerate subcatego-
ries is unique up to a permutation of factors.

Proof. Existence of the decomposition (5) is established in [Mu4], Theorems 4.2,
4.5, for modular categories. Up to one argument that requires generalization, given by
[DGNO], Theorem 3.13, the same proof works for non-degenerate fusion categories.

It remains to prove uniqueness. If & < @ is a fusion subcategory, let &; < 6; be
the fusion subcategory generated by all simple objects X; € %; such that there is a simple
X=X\X KX KX- XX, eZ. Clearly we have ¥ « 9, [X - - - [x] &,, but the converse
need not hold. If it does, we say that & factorizes. Denoting by Z,4 the fusion subcate-
gory of & generated by X ® X*, where X runs through simple objects of &, the fact that
XX =(Xi®X)K - KX, ®X) has 1K HIK X, @ X)K1IKX---X1 as
direct summand for each i implies that Z,q > (Zad),, thus Z,q factorizes. Let 2 < % be a
non-degenerate fusion subcategory. Since % is unpointed, i.e., ¥ = Vec, & is unpointed
and by [DGNO], Corollary 3.27, we have Z,q = (th)/ N9 = 9. Thus 2 factorizes, i.e.,
9 =9 XX 92, where each &; is non-degenerate. Since %; is prime, we must have
either ¥; = Vec or &; = €; for each i = 1,...,n. In particular, every prime non-degenerate
fusion subcategory Z < % coincides with some ;. Hence, (5) is unique up to a permutation
of factors. []

Remark 2.3. The proof actually also shows the following stronger result: If ¥ < € is
an unpointed and non-degenerate fusion subcategory, then ¥ = 9, [X] - - - [x] Z,,, where each
9; 1s either &; = Vec or %; = %;. This means that the prime factors %; that are unpointed
appear in every prime factorization of ¢, whether or not % itself is unpointed.

2.3. Drinfeld center of a fusion category. For any fusion category .o/ its Drinfeld
center % (/) is defined as the category whose objects are pairs (X, yy), where X is an
object of &7 and yy : V@ X 2 X ® V, V € .o/, is a natural family of isomorphisms, satis-
fying a certain compatibility condition, see [JS1], Definition 3, or [K], Definition XIII.4.1.
It is known that Z(.<7) is a non-degenerate braided fusion category and that

(6) dim(Z (%)) = dim(%)*>, FPdim(Z (%)) = FPdim(%)".

(See [Mu3], Theorems 3.16, 4.14, Proposition 5.10, for ¥ semisimple spherical and [ENO1],
Theorem 2.15, Proposition 8.12, [DGNO], Corollary 3.9, for ¢ fusion.)

For a braided fusion category % there are two braided functors

(7) C— Z(%): X — (X,c_x),
(8) C* — Z(€): X — (X,é- x).
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These functors are fully faithful and so we can identify ¢ and €™ with their images in
Z(%). These images centralize each other, i.e., ¥’ = ™. (Cf. [Mu3], Proposition 7.3.)
This allows us to define a braided tensor functor

9) G:CRE™ — Z(%).

It was shown in [Mu3], Theorem 7.10, and [DGNO], Proposition 3.7, that G is a braided
equivalence if and only if ¢ is non-degenerate.

Let % be a braided fusion category and let .o/ be a fusion category.

Definition 2.4. If F : ¥ — .o/ is a tensor functor, a structure of a central functor on F
is a braided tensor functor F': ¢ — Z(.o/) whose composition with the forgetful functor
% (o) — of equals F.

Equivalently, a structure of central functor on F is a natural family of isomorphisms
Y®FX)>FX)®Y, Xe¥, Y e.o, satisfying certain compatibility conditions, see
[B], Section 2.1.

2.4. Separable algebras. Let .o/ be a fusion category. In this paper an algebra A € o/
is an associative algebra with unit, see e.g. [O], Definition 3.1.

Definition 2.5. An algebra A € ./ is said to be separable if the multiplication mor-
phism m : A ® A — A splits as a morphism of 4-bimodules.

Remark 2.6. (i) The morphism m is surjective (due to the existence of unit in A4),
so the definition makes sense.

(i) Observe that if F : .o/ — 2 is a tensor functor, then F(A4) € 4 is a separable alge-
bra for a separable algebra A € .«7.

For an algebra 4 € .o/ let 74, 49/, 494 denote, respectively, abelian categories of
right A-modules, left A-modules, 4-bimodules, see e.g. [O], Definition 3.1.

Proposition 2.7. For an algebra A € o/ the following conditions are equivalent:

() A is separable.

(i) The category <4 is semisimple.

(i) The category 4./ is semisimple.

(iv) The category 4.4 is semisimple.

Proof. Assume that A4 is separable. Note that 4 considered as a bimodule over itself
is a direct summand of the A-bimodule 4 ® A. Thus any M = M ®, A € «/4 is a direct
summand of M ®,A4A® A= M ® A. The object M ® A € </, is projective (see e.g. [O],

Section 3.1). Thus any M e .<Z4 is projective and we have the implication (i) = (ii). The
implication (i) = (iii) is proved similarly.
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The implications (ii) = (iv) and (iii) = (iv) follow from [ENOI1], Theorem 2.16, and
[O], Remark 4.2. Finally, the implication (iv) = (i) is obvious. []

Let € be a braided fusion category. Recall that an algebra 4 in % is called com-
mutative if mocy 4 =m, where m: A ® A — A is the multiplication of 4, see e.g. [KiO],
Definition 1.1.

Example 2.8. Let G be a finite group and let .o/ = Rep(G) be the fusion category
of finite dimensional representations of G. Let 4 = Fun(G) be the algebra of k-valued
functions on G. The group G acts on A via left translations, so 4 can be considered as a
commutative algebra in .o/. The algebra A is called the regular algebra of the category
</ = Rep(G). Associating to f € A the function u(f) : G x G — k, (g,h) — 6,/ (g), easy
computations show that u: 4 — A ® A4 is a splitting of m: A ® A — A and a bimodule
map. Thus 4 is separable. (Cf. [Br], p. 227, for a similar argument.)

More generally we say that a braided fusion category & is Tannakian ([De]) if there is
a braided equivalence F : & ~ Rep(G); in this case the algebra F~!'(4) (with 4 € Rep(G)
as above) is called a regular algebra A, of &. It is known that the algebra A, is unique up
to isomorphism. (Such an isomorphism is non-unique, in particular Aut A4 =~ G.) See e.g.
[DGNO], Section 2.13.

2.5. Equivariantization and de-equivariantization. Let .7 be a fusion category with
an action of a finite group G. In this case one can define the fusion category /¢ of
G-equivariant objects in .«Z. Objects of this category are objects X of .7 equipped with an
isomorphism u, : g(X) — X for all g € G such that

Ugh © yyth =Uy 0 g(uh)v

where y,, : g(h(X)) — gh(X) is the natural isomorphism associated to the action.
Morphisms and tensor product of equivariant objects are defined in an obvious way. This
category is called the G-equivariantization of .«/. One has FPdim(.« ®) = |G| FPdim(.«7).
See [Br], [Mu5] and [DGNO)], Section 4, for details.

Example 2.9. Let H be a normal subgroup of G. Then there is a natural action of
G/H on .«/" and (/)" ~ /€,

There is a procedure opposite to equivariantization, called the de-equivariantization.
Namely, let .7 be a fusion category and let & = Rep(G) < Z(.<7) be a Tannakian subcate-
gory which embeds into .«7 via the forgetful functor Z(.«/) — /. Let A = Fun(G) be the
regular algebra of &. It is a separable commutative algebra in Z (/) and so the cate-
gory .o/ of left A-modules in .o/ is a fusion category with the tensor product ® ,, called
de-equivariantization of /. One has FPdim(.«/;) = FPdim(.«7)/|G]|.

The above constructions are canonically inverse to each other, i.e., there are canoni-
cal equivalences (/) =~ o/ and (o/ %) = o, see [DGNO], Section 4.2.

2.6. Module categories over fusion categories. Let .o7 be a fusion category. A left
o/ -module category is a finite semisimple Abelian k-linear category .# together with a
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bifunctor ® : .o/ X .4 — ./ and a natural family of isomorphisms
XR®Y)OM>X®(Y®M) and 1QM > M

for X,Y € o/, M € ./, satisfying certain coherence conditions. See [O] for details and for
the definitions of .«7-module functors and their natural transformations. A typical example
of a left .o7-module category is the category .o74 of right modules over a separable algebra 4
in .«Z ([O]). An .«/-module category is called indecomposable if it is not equivalent to a direct
sum of two non-trivial .«7-module categories.

The category of .«/-module endofunctors of a right .«/-module category .# will be
denoted by .« },. It is known that ./, is a multi-fusion category, see [ENO1], Theorem 2.18
(it is a fusion category if and only if .# is indecomposable).

Let .# be an indecomposable right .«/-module category. We can regard .# as an
(o2, </)-bimodule category. Its (o}, .o/)-bimodule endofunctors can be identified, on the
one hand, with functors of left multiplication by objects of Z(.<},), and on the other hand,
with functors of right multiplication by objects of Z(.«7). Combined, these identifications
yield a canonical equivalence of braided categories

(10) Z(A) = ZL(Ay).

This result is due to Schauenburg, see [S].

3. Etale algebras and central functors
3.1. Etale algebras in braided fusion categories.

Definition 3.1. An algebra 4 € € is said to be ézale if it is both commutative and
separable. We say that an étale algebra A € € is connected if dimy Homg (1, 4) = 1.

Remark 3.2. (i) The terminology of Definition 3.1 is justified by the fact that étale
algebras in the usual sense can be characterized by the property from Definition 3.1.

(i) Any étale algebra canonically decomposes as a direct sum of connected ones.

Example 3.3. (i) Let & < ¥ be a Tannakian subcategory. Then a regular algebra
Ag € € (see Example 2.8) is connected étale.

(i) Let % be a pre-modular category. Let 4 be a commutative algebra in ¢ such that
dimy Homg (1, 4) = 1, the pairing 4 ® A > A — 1 is non-degenerate, 0, =id,, and
dim(A4) =% 0. It is proved in [KiO], Theorem 3.3, that such an A4 is connected étale.

Remark 3.4. In general if 4 € € is a connected étale algebra and 4 — 1 is a nonzero
homomorphism (it is unique up to a scalar), then the pairing A ® 4 % 4 —» 1 is non-
degenerate. Indeed the kernel of this pairing would be a non-trivial ideal of 4 (= non-trivial
subobject in the category %); but the category %4 is semisimple and

dimy Homg, (4, 4) = dimy Hom¢ (1, 4) = 1.
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In particular, this implies that any étale algebra is a self-dual object of % (use Remark 3.2 (ii)
for disconnected étale algebras).

3.2. From central functors to étale algebras.
Lemma 3.5. Let € be a braided fusion category, let .o/ be a fusion category, and let
F : % — of be a central functor. Let I : of — € be the right adjoint functor of F. Then the

object A = 1(1) € € has a canonical structure of connected étale algebra.

The category of right A-modules in € is monoidally equivalent to the image of F, i.e.,
the smallest fusion subcategory of <o/ containing F ().

Proof. Let ¢ : % — Vec be the contravariant representable functor corresponding
to A, that is, ¢(X) = Homg (X, 4) = Hom,, (F(X),1). The linear map

Hom,, (F(X;),1) ®,Hom, (F(X;),1)
— Hom,, (F(X1) ® F(X>),1®1) ~ Hom (F(X; ® X2),1)
defines a natural family
(11) i, x - A(X1) @ d(X2) — ¢(X1 @ X3)
such that the compositions

P(X1) ® ¢(X2) ® ¢(X3) — ¢(X1 ® X2) ® ¢(X3) — d(X1 ® X2 ® X3),
P(X1) ® p(X2) ® ¢(X3) — ¢(X1) ® ¢(X2 ® X3) — ¢(X1 ® X2 ® X3)

are equal. We claim that a morphism (11) is the same thing as an associative
multiplication m: 4 ® A — A. Namely, we define m € Hom(4A ® 4,4) = ¢(A ® A) by

m = vy 4(1d4 ® id,4), where id, is considered as an element of ¢(4). Now by naturality
of v one has

lesz(f ® g) =mo (f ® g)’
and associativity of m follows from (12).

By definition, Homg(1, 4) = Hom,, (F(1),1) = Hom,(1,1) = k. It is easy to see
that the image of 1 € kk in Homg(1, 4) is a unit of the algebra 4.

Next we want to prove the commutativity of m. By its definition, m is the image of
a certain morphism 7 € Hom,, (F(A ® A),1) under the bijection

Hom,, (F(A® A),1) =~ Homg (4 ® 4, A).
By naturality of the adjunction bijections, m o ¢4, 4 corresponds to

mo F(cy 4) € Homy (F(A® A),1).



144 Davydov, Miiger, Nikshych and Ostrik, The Witt group of non-degenerate braided fusion categories

The equality m = m o F(c4,4) follows from commutativity of the following diagram, where
F’ is the central structure, i.e., a braided tensor functor F' : ¢ — Z(.o/) lifting F : 4 — o/:

FlA®A) —— FIOQF ) 2L 191 — 1

F/(CA'A)J CF/(A).F/(A)J/ J/C]_] ld]J{

FA®A) = FIAQF U 2L 191 - 1.
Here / € Homg (F(A),1) is the image of id, under Homg (4, 4) = Hom,, (F(A4),1). The
left square commutes since F’ is a braided functor, and the right one since ¢y ; = id. That
the middle square commutes is more subtle, since / : F(A) — 1 only is a morphism in .o/
but not in Z(.</). It commutes nevertheless since the braiding of % (/) is natural for
such morphisms w.r.t. the second argument. (Since ¢(x ¢,) (v,e,) = €x(Y) and the half-
braiding, Y +— ex(Y) is natural w.r.t. all morphisms ¥ — Y in .<7.)

That the category of right A-modules in % identifies with the image of F in .o follows
from [EO], Theorem 3.17 (cf. also [O], Theorem 3.1). Thus %, is semisimple. By Prop-
osition 2.7 semisimplicity of the category of 4-modules implies the semisimplicity of the
category of A-bimodules. In particular, the morphism of A-bimodules m: A ® 4 — A,
thus 4 is separable. []

Example 3.6. (i) Let ¥ = Rep(G) and let F: % — Vec be the forgetful functor.
Then the étale algebra 4 from Lemma 3.5 is the regular algebra, see Example 2.8.

(ii) Let Vecg be the fusion category of finite dimensional G-graded vector spaces with
the associativity constraint twisted by a 3-cocycle w € Z3(G, k™). Let ¢ = Z(Vec?) and let
F : % — Vecg be the forgetful functor. Then the étale algebra A from Lemma 3.5 is the
regular algebra of Rep(G) < .

(iii) Let ¥ = Z (Rep(G)) = Z(Vecg) and let F : 4 — Rep(G) be the forgetful func-
tor. Then the étale algebra 4 from Lemma 3.5 is the group algebra of G considered as an
algebra in %. Notice that in this case the algebra F(A4) in the symmetric tensor category
Rep(G) is non-commutative unless G is commutative.

Remark 3.7. Lemma 3.5 fails over fields of characteristic p > 0. Namely the algebra
A = I(1) is still commutative (with the same proof), but it can fail to be separable. Here is
a counter-example. Let G be a finite abelian group of order divisible by p. Take ¥ = Vecg,
i.e., ¥ is the category of finite dimensional G-graded vector spaces with the obvious sym-
metric braided structure. Let 2 = Vec and let F : ¥ — & be the functor of forgetting the
grading. Then 4 is the group algebra of G, which is not étale. In this example the category
of A-bimodules identifies with Rep(G) and is not semisimple.

3.3. The tensor category %, corresponding to an étale algebra A. Let % be a braided
fusion category and let 4 € % be a connected étale algebra. Let ¥, be the category of right
A-modules and let

(13) FAI%H%A:XHX@@A

be the free module functor. The category %, is semisimple by Proposition 2.7.
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Using the braiding we can define two left A-module structures on a right A-module
M by

Ca, M

c—l
(14) AQMZEM®A—M orby AQM Z2M®A4— M.

Both structures make M an A-bimodule, and we will denote the results by M, and
M_, respectively. Clearly, the functors M — M, are sections of the forgetful functor
A(gA — (gA.

Since the category %4 of A-bimodules in % is a tensor category, we obtain in this
way two tensor structures ®, on %, which are opposite to each other. For definiteness,
when we consider %4 as a tensor category, the tensor structure ®_ is understood. By defi-
nition, we have tensor functors ¢4 — 4%, and €% — 4%,4.

Now the functor F : € — %4 has an obvious structure of tensor functor. The cate-
gory %, is rigid since any object M in %, is a direct summand of the rigid object

FaM)=MQ@A=M®, (AR A).

The unit object of €4 is 4 = F4(1) and the connectedness of A implies that 4 € €, is
simple. Thus, %, is a fusion category. Alternatively, this follows from the fact that 4%, is
fusion, cf. e.g. [O], and the fact that the functors M — M, from %, and €, to 46,4 are
tensor embeddings.

Example 3.8. Let @ be a braided fusion category and let & < ¥ be a Tannakian
subcategory. Let 4 € & be the regular algebra (which is connected étale by Example 3.3 (i)).
In the terminology of [DGNO)], Section 4.2, the fusion category %, introduced above is the
de-equivariantization of & (cf. Section 2.5) viewed as a fusion category over &.

3.4. The central functor € — €4. Observe that the free module functor (13) admits a
natural structure of a central functor, see Definition 2.4. Indeed, we have F (X) = X ® 4,
and, hence, F(X)Q® Y =X ® Y. Similarly, Y Q F4(X) = Y ® X. These two objects

A y

are isomorphic via the braiding of ¢ (using the commutativity of A, one can check that
the braiding gives an isomorphism of 4-modules) and, hence, F, lifts to a braided tensor
functor

(15) Fi: 6 — Z (%)

whose composition with the forgetful functor 2 (%,) — %4 equals F4. This construction is
in a sense converse to Lemma 3.5:

Lemma 3.9. Let A € € be a connected étale algebra and let F, : € — %4 be the cen-
tral functor as above. Then the algebra object Ar, = I(1) obtained from F4 according to
Lemma 3.5 is isomorphic to A.

Proof- The adjoint of the functor F: % — %4 is given by the forgetful functor
I:%4 — €. The unit of €, being (A4, m), we have I(1¢,) = A. It is straightforward to see
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that the construction of the algebra structure on 4 = I(1¢,) defined in (the proof of)
Lemma 3.5 recovers the original algebra structure. [

Let .o7], o/, be fusion categories. We will say that a tensor functor F : .o/ — .o/, is
surjective if any object in .o/, is a subobject of some F(X), X € .«/;.

Remark 3.10. Some authors use the term dominant functor for what we call a surjec-
tive functor, see [Br], [BN].

Lemma 3.11.  For a connected étale algebra A in a braided fusion category € we have

(16) FPdim(%,) = %ﬁg;.

Proof. The functor (13) is surjective. Considering the multiplicity of the unit object
on both sides of the identity proven in [ENOI], Proposition 8.8, we obtain

FPdim(%) . 1] — FPdim
7deim(%)—x§(mFPd (X)[F4(X) : 1] = FPdim(I(1)),

where (%) denotes the set of simple objects of ¥ and I is the right adjoint of F,. Since
A = I(1), the result follows. []

3.5. Subcategory (62 < 6,4 of dyslectic modules. Let ¢ be a braided fusion category
and let 4 € € be a connected étale algebra and recall the discussion of the tensor functors
M — M, from 6,4 and €~ to 4%, in Section 3.3.

Definition 3.12. A module M € 4, is dyslectic (or local, in alternative terminology)
if the identity map id,, is an isomorphism of A-bimodules M, ~ M _.

Equivalently, a module M € 4 is dyslectic if the diagram

CA,MOCM. 4

M®A —— M®A
M

(17) h .

commutes. Here p: M ® 4 — M denotes the action of 4 on M.
The notion of dyslectic module was introduced by Pareigis in [P]. See also [KiO].

Remark 3.13. Note that a simple M € %, is dyslectic if and only if M, ~ M_ as
A-bimodules. Indeed, since the functors M +— M, from %, to 4%, are embeddings, for
any simple M € %, any isomorphism between A-bimodules M. and M_ must be a multiple
of idy,.

Dyslectic modules form a full subcategory of %, which will be denoted by %!. It is
known (see [P], Section 2, and [KiO]) that %" is closed under ®, and that the braiding
in % induces a natural braided structure in %¢. Thus, %! is a braided fusion category.
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Example 3.14. Let & — € be a Tannakian subcategory and let 4 € & be a regular
algebra, see Example 2.8. Then [DGNO], Proposition 4.56 (i), says that %] is equivalent
to the de-equivariantization of &’, cf. Section 2.5.

Lemma 3.15. Let € be a braided fusion category, let A be an étale algebra in €,
and let X be an object of €. Then the free module X ® A is dyslectic if and only if X cen-
tralizes A.

Proof. Consider the following diagram, where we omit identity maps and associa-
tivity constraints:

(18) ARX® A
X®A®A — X®A®A X®A®A — X®A®A

m y
my my
X ® A.

The two upper triangles commute by the hexagon axioms and the two lower triangles com-
mute since 4 is commutative. Therefore,

(idy ® my) o (caxocx 4 ®idy) = (idy @ my) o s x0u° cxea 4 © (Idy ® C,Z,IA)a
which means that X ® A4 is dyslectic if and only if
(19) (idX®mA)O(CA,XOCX,A ®1dA):1dx®mA

In other words, commutativity of the perimeter of the above diagram is equivalent to com-
mutativity of the diamond in the middle. Let u4 : 1 — A4 denote the unit of A. Suppose that
(19) holds. We have

caxocy 4= (idy ®my)o (idygs @ us)0cax0Cx, 4
= (ldX ®mA) (e} (CA,X (e} CX,A ®1dA) (e} (idX®A ® MA)
= (idy ® my) o (idygs ®u4) = idxg4,

where the third equality holds by (19). Thus, (19) is equivalent to ¢4 xy o cx 4 = idyga4.
Combining the above equivalences, we get the result. []

3.6. Etale algebras in %! and étale algebras over A. Let % be a braided fusion cate-
gory and let 4 € € be a connected étale algebra. An algebra B € ¥ equipped with a unital
homomorphism f : 4 — B is called algebra over A if the following diagram commutes:

A9B 2% BoB ™. B

1
(B,AJ/ %

B4 2%/ pgB.
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In the language of [O], Section 5.4, we require that the morphism f lands in the right center
of B; in particular for a commutative algebra B this diagram commutes automatically.
Notice that the morphism f is automatically injective since the algebra 4 has no nontrivial
right ideals.

Observe that an algebra B over A has an obvious structure of right 4-module, that is
B e 4. Moreover, any right B-module has an obvious structure of right A-module. The
following statements are tautological:

(a) An algebra over A is the same as an algebra in €.

(b) Let B be an algebra over A. Then right B-module in %4 (with B considered as an
algebra in %) is the same as right B-module in %. In particular, the categories (%,); and
%p are equivalent.

(c) Commutative algebra over 4 is the same as commutative algebra in 4% = 4.

Proposition 3.16 (cf. [FFRS], Lemma 4.13, and [D1], Proposition 2.3.3). 4 commu-
tative algebra over A is étale if and only if the corresponding algebra in (52 is étale. Under this
bijection connected algebras correspond to connected ones.

Proof- The first statement follows from the tautologies above combined with Prop-
osition 2.7. The second statement is implied by the fact that a simple 4-module M with
Homg (1, M) % 0 is isomorphic to 4, see e.g. [O], Lemma 3.2. [

3.7. The category Rep_,(A4) and its center. Let .o be a fusion category and let

F:%(d)— o

be the forgetful functor. Let A € Z'(.«7) be a connected ¢étale algebra. Observe that any right
F(A)-module M € o/ has a natural structure of left F(A4)-module defined as

FA)®M > MQF(A) — M.
It is easy to verify that in this way M acquires a structure of F(A)-bimodule.

Definition 3.17. The category Rep_,(A) is the tensor category of right F(A)-modules
in .o/ with tensor product ®p()-

Remark 3.18. (i) Assume that % is a braided fusion category and A4 € % is a con-
nected étale algebra. Then A can be considered as a connected étale algebra in Z (%) via
the braided functor ¥ — Z(%) given in (7). In this case the categories %, and Rep,(A4)
are identical. Nevertheless the tensor structures on 4 and Rep,(A) are opposite to each
other.

(i) The category Rep,(A) is equivalent to the category of left F(A)-modules.

Arguments similar to those in Section 3.3 show that Rep_,(A4) is a semisimple rigid
tensor category. Its unit object F(4) may be reducible, so in general Rep_ ,(A) is not a
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fusion category. In general Rep ,(A4) is an example of a multi-fusion category, see Sec-
tion 2.1.

Remark 3.19. Given an étale algebra 4 € Z°(.«/) there is a surjective tensor functor
o —Rep,(4): X — X ® F(A).

Conversely, let G : .o/ — % be a tensor functor and let 7 : # — .o/ be its right adjoint. Then
the object I(1) € .o/ has a natural lift to Z°(.</). Moreover, it has a natural structure of an
¢tale algebra in Z(.«/). The algebra I(1) € Z(.<7) is connected if and only if the functor G is
not decomposable into a non-trivial direct sum of tensor functors. Similarly to Section 3.4
these two constructions are inverse to each other. See [BN] for details.

It is easy to see that the forgetful functor Z(+#)% — % (), — Rep,,(4) has a
canonical structure of central functor. Thus, it lifts to a braided tensor functor

(20) Z ()Y — Z(Rep,,(A4)).

The following result was proved by Schauenburg (see [S], Corollary 4.5) under much
weaker assumptions on the category .o/ and commutative algebra 4 € Z(.«/) than ours.

Theorem 3.20. The functor (20) is a braided equivalence % (#)%, ~ % (Rep,,(4)).
Sketch of proof. We just sketch a construction of an inverse functor. Let
M e Z (Rep,,(A)).
For any X € .« consider X ® F(A4) € Rep_,(A). Then
(X®F(A)®rqyM=X®M and M Qpy (X ®F(4)) =M X.

It is easy to see now that the central structure of M as F(A)-module defines a central struc-
ture of M as an object of .«/. Moreover one verifies directly that F(A4)-module structure on
M gives A-module structure on this lift of M to Z'(.<Z); the resulting object of Z(.<7) , lies
in Z (o )91. Finally, this assignment has a natural structure of tensor functor. []

Remark 3.21. Theorem 3.20 above implies that the unit object of the fusion cate-
gory Z (Rep,,(A)) is indecomposable (recall that the algebra A is connected). It follows
that the multi-fusion category Rep_,(A) is indecomposable in the sense of [ENOI1], Sec-
tion 2.4.

3.8. Properties of braided tensor functors.
Proposition 3.22. Let €, & be braided fusion categories and let F : € — % be a
surjective braided tensor functor. Let I : 9 — € be the right adjoint functor of F and let

A :=I(1) be the canonical connected étale algebra constructed in Lemma 3.5. Then A € €'

Proof- Since F is a central functor, & identifies with the category %4 of A-modules
in €, cf. Section 3.4. We claim that every A-module is dyslectic, i.e., that €4 = %ﬂ?. Indeed,
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the fusion category 4%, identifies with the category of ¥-module endofunctors of &, see [O]
(the action of % on Z is defined via F : ¥ — ). Under this identification, for every simple
object M € & the bimodules M correspond to endofunctors of left and right multiplica-
tion by M. But these endofunctors are isomorphic via the braiding of &, i.e., M is dyslectic.

In particular, for every X € ¥ the free A-module X ® 4 is dyslectic. Hence,
Lemma 3.15 implies that every X € & centralizes 4, i.e., A€ %'. [

Remark 3.23. Note that the étale algebra 4 from Proposition 3.22 is a commutative
algebra in a symmetric fusion category %’. Therefore, 4 belongs to the maximal Tannakian
subcategory & = Rep(G) = ¢’. As is well known, every étale algebra 4 € Rep(G) is
isomorphic to the algebra Fun(G/H) of functions on G invariant under translations by
elements of H for a uniquely determined subgroup H < G, the module category Rep(G) ,
is equivalent to Rep(H) and the functor F, identifies with the restriction functor
Rep(G) — Rep(H). In view of 4 € &, the restriction F : & — F(&) of F to & identifies
with the restriction functor Rep(G) — Rep(H).

Corollary 3.24. Let F: % — © be a surjective braided tensor functor between
braided fusion categories. There exists a braided fusion category € with an action of a finite
group G, a subgroup H = G, and braided tensor equivalences €, = 6°, 6, =~ € such that
the diagram

% . %
L

commutes. Here Forg : €° — €™ is the functor of “partially forgetting equivariance”.

Proof. By Proposition 3.22 there is an étale algebra A in %/ such that 6, =~ (%)) ,.
Let & =Rep(G) be the maximal Tannakian subcategory of %/ and let 4 = (%)-
Since equivariantization and de-equivariantization are mutually inverse constructions (see
[DGNO], Theorem 4.4, and Section 2.5), we have % =~ ¢ °.

By Remark 3.23 there is a subgroup H < G such that 4 = Fun(G/H). Note that
a Fun(G/H)-module in %; is the same thing as an H-equivariant Fun(G)-module, which
implies (%)), = ((%)G)H = @M. Furthermore, the forgetful functor ¥¢ — % identifies
with the given functor F : % — %, = (%), since both of them correspond to the same
¢tale algebra A = Fun(G/H). [

Definition 3.25. A braided fusion category ¥ is called almost non-degenerate if
the symmetric category %’ is either trivial or is equivalent to the category of super vector
spaces.

In other words, % is almost non-degenerate if 4’ does not contain any non-trivial
Tannakian subcategories.

Corollary 3.26. Any braided tensor functor F : € — 9 between braided fusion cate-
gories with € almost non-degenerate is fully faithful.



Davydov, Miiger, Nikshych and Ostrik, The Witt group of non-degenerate braided fusion categories 151

Remark 3.27. Using [EO], Theorem 2.5, and [De]|, Proposition 2.14, one can relax

the assumptions of Corollary 3.26 on the category Z: it is enough to assume that & is a

abelian rigid braided tensor category with finite dimensional Hom spaces and finite lengths
of all objects.

Let € be a braided fusion category, 4 € ¥ be a connected ¢tale algebra and
F,: % — %, be the functor (13) with the central structure F (15). The functor

(22) TAZ(gA(gjev—)A(gAZMNHMJr@AN,

has a natural structure of tensor functor.

Corollary 3.28. Assume € is almost non-degenerate. Then the functor F) in (15) is
Sully faithful and the functor T4 : €4 X1 6% — 464 defined in (22) is surjective.

Proof- The first assertion is Corollary 3.26. To prove the second assertion, observe
that F is dual to T4 (in the sense of [ENOI1], Section 5.7) with respect to the module
category %,4. Indeed, an object M X] N of 4, [x] ¢~ corresponds to the Z(%,)-module
endofunctor M ®, — ®4 N of €,. The functor dual to F) restricts this endofunctor to
the ¥-module endofunctor of %4 by means of F) : 4 — % (%,). This is precisely what
T4(M x] N) does. So the result follows from [ENO1], Proposition 5.3. []

3.9. Tensor complements. Let ¥ be a non-degenerate braided fusion category, see
Definition 2.1. Let 4 € ¥ be a connected étale algebra. Then 4 can be considered as a
connected étale algebra in ™ and in Z (%) via the embedding

¢ =Vec X €™ — CXEC =~ Z(F),
see (9).
Lemma 3.29. Under the identification % (€¢) ~ % X1 €™ we have
Z(6), =CRES and Z (%) =CR (€.

Proof. The first statement is obvious and the second one is an immediate conse-
quence. []

Corollary 3.30. For a non-degenerate € and a connected étale algebra A € € there is
a braided equivalence % (64) ~ € X (63)™". In particular the category €\ is non-degenerate.

Proof. Combine Theorem 3.20 and Lemma 3.29. []
Remark 3.31. (i) One can show that the embedding functor
% =% X Vec— €KX (69) = Z(%,)

is naturally isomorphic to the functor F from (15), providing an alternative proof of the
injectivity of that functor, as asserted in Corollary 3.28.
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(i1) If we assume in addition that % is modular and 4 is as in Example 3.3 (ii), then
%" has a natural spherical structure, see e.g. [KiO]. In this case Corollary 3.30 gives an
alternative proof of [KiO], Theorem 4.5.

Corollary 3.32. For a non-degenerate € and a connected étale algebra A € € we have

FPdim(%)

23 FPdim(¢?) = ——— =
(23) €0 FPdim(A4)’

Proof. This follows immediately from Corollary 3.30 and equations (6) and (16).
U
4. Quantum Manin pairs

4.1. Definition of a quantum Manin pair. We start with the following consequence
of Corollary 3.28.

Corollary 4.1. Let € be a non-degenerate braided fusion category and let A € € be a
connected étale algebra in 6. Assume that FPdim(A)* = FPdim(%). Then:

(i) The functor F) : € — % (%4) defined in (15) is a braided tensor equivalence.
(ii) The functor T4 : €4 X1 6" — 4%4 defined in (22) is a tensor equivalence.

Proof. By Lemma 3.11,

. _ FPdim(%)
Hence,
: 2
FPdim (2 (44)) = M — FPdim(%),
FPdim(A4)

see (6). Since by Corollary 3.28, F} is a fully faithful functor between categories of equal
Frobenius—Perron dimension, it is necessarily an equivalence by [EO], Proposition 2.19.
Hence the dual functor 74 is also an equivalence. []

Definition 4.2. A quantum Manin pair (¢, A) consists of a non-degenerate braided
fusion category % and a connected étale algebra 4 € % such that FPdim(A)2 = FPdim(%).

Remark 4.3. Observe that by (23) the condition FPdim(4)? = FPdim(%) is equiv-
alent to the condition %Y = Vec.

Quantum Manin pairs form a 2-groupoid 29i: a 1-morphism between two such pairs
(€1, A1) and (%>, A>) is defined to be a pair (D, ¢), where ® : ¢ ~ %, is a braided equiv-
alence and ¢ : ®(A4;) = A4, is an isomorphism of algebras; a 2-morphism between pairs
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(@, ¢) and (@', ¢’) is a natural isomorphism of tensor functors u : ® = @’ such that the
following diagram commutes:

D(4;) —-

'(4)
N
.

A

On the other hand, we have the 2-groupoid FC of fusion categories: objects are fusion cat-
egories, 1-morphisms are tensor equivalences, and 2-morphisms are isomorphisms of tensor
functors. We have a 2-functor 29 — FC defined by (€, A) — 4.

Proposition 4.4.  This 2-functor 29 — FC is a 2-equivalence.

Proof. Let o/ € §C. The forgetful functor F : (/) — .o/ has an obvious structure
of central functor. Let I : .o/ — Z(.o/) be its right adjoint. By Lemma 3.5, I(1) is a con-
nected étale algebra. It is known that FPdim(/(1)) = FPdim(%), see e.g. [EO], Lemma
3.41. So (6) implies that (Z(.<7),1(1)) € 2. Thus we get a 2-functor FE — 2. Using
Corollary 4.1 and the results from Section 3.4 we see that it is quasi-inverse to the 2-functor
20— FC. O

Remark 4.5. Proposition 4.4 can be viewed as a categorical analogue of the follow-
ing reconstruction of the double of a quasi-Lie bialgebra from a Manin pair (i.e., a pair
consisting of a metric Lie algebra and its Lagrangian subalgebra) in the theory of quantum
groups [Dr], Section 2:

Let g be a finite dimensional metric Lie algebra (i.e., a Lie algebra on which a non-
degenerate invariant symmetric bilinear form is given). Let [ be a Lagrangian subalgebra
of g. Then [ has a structure of a quasi-Lie bialgebra and there is an isomorphism between
g and the double D(I) of I. The correspondence between Lagrangian subalgebras of g and
doubles isomorphic to g is bijective, see [Dr], Section 2, for details.

4.2. Lagrangian algebras and module categories.

Definition 4.6. Let ¥ be a non-degenerate braided fusion category. A connected
étale algebra in % will be called Lagrangian if FPdim(A4)* = FPdim(%).

Thus, 4 is Lagrangian if and only if (%, A) is a quantum Manin pair.

Remark 4.7. Let & < ¥ be a Lagrangian subcategory of €, i.e., a Tannakian sub-
category such that &' = &, see [DGNO], Definition 4.57. Then the regular algebra 4 of &
is a Lagrangian algebra in %. Indeed, Example 3.14 says that ¥ = Vec and the statement
follows from Remark 4.3.

Proposition 4.8. Let o/ be a fusion category and let € = % (/). There is a bijection
between the sets of Lagrangian algebras in € and indecomposable .o/ -module categories.

Proof. By Corollary 4.1 every Lagrangian algebra B e @ determines a braided
equivalence ¥ ~ Z (%), where % := %p. Conversely, any braided equivalence between %
and Z(4#) determines a surjective central functor ¥ — % and, hence, a connected étale
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algebra A € ¢, see Lemma 3.5. Combining Lemma 3.11 and equation (6), we see that the
algebra A is Lagrangian. As we observed in Section 3.4 these two constructions are inverses
of each other.

Thus it suffices to prove that the set of braided equivalences between Z(.«/) and
centers of fusion categories is in bijection with indecomposable .«7/-module categories. This
is done in [ENO3], Theorem 3.1, and [ENO2], Theorem 1.1. Namely, the bijection is pro-
vided by assigning to an .o/-module category .# braided equivalence (10). []

Remark 4.9. (i) It follows from the proof that the bijection in Proposition 4.8 has
the following property: for a Lagrangian algebra B € % the fusion category %j is equivalent
to the dual category .7, where .# is the module category corresponding to B.

(i) Note that the bijection in Proposition 4.8 is given by the so-called full centre con-
struction. In particular, /(1) is the full centre of .o7 as a module category over itself. In the
case when .o/ is modular, the statement of the proposition was verified in [KR], Theorem
3.22. Note also that in this case the bijection can be lifted to an equivalence of groupoids
(module categories with module equivalences by one side and Lagrangian algebras and
isomorphisms by the other) [DKR].

4.3. Lattice of subcategories. Let .o/ be a fusion category and let (4, 4) be the
corresponding Manin pair. Here ¥ = Z(.o/) and A = I(1), where [ : o/ — Z(</) is the
induction functor.

Let £(.«/) denote the lattice of fusion subcategories of .7 and let L(A4) denote the
lattice of étale subalgebras of A.

Theorem 4.10. There is a canonical anti-isomorphism of lattices L(.</) ~ L(A).
If B< A is the subalgebra corresponding to the subcategory % — .o/ under this anti-
isomorphism, then FPdim(B) FPdim(4) = FPdim(.7).

Proof.  We will construct mutually inverse order-reversing bijections
a: () — L(A) and f:L(A4) — L().

Let # < o/ be a fusion subcategory. Define the relative center Zz(</) to be
the tensor category whose objects are pairs (X,yy), where X is an object of .o/ and
Yy VX ~XQ®V, Ve is a natural family of isomorphisms, satisfying the same
compatibility condition as in the definition of Z(.«7). The forgetful functor % (/) — .o/
has a factorization

P ) Dy(et) 2

where Fy and Fy are the obvious forgetful functors. Let I and 1, be the right adjoint
functors of Fj and F,. The embedding 1 < I4(1) corresponding to the identity map
under the isomorphism Hom(l,ig,;(l)) = Hom(Fg(l), 1) induces an embedding of alge-
bras I(1) c Iy 0 I4(1) = I(1) = A. The algebra I4(1) is separable (and hence étale), see
Remark 3.19. We define

(25) 2(B) = (1) < A.
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An inclusion of subcategories % = %, < .o/ induces a factorization
Fy,
Y () — Ly, (A) — Ly ()

of the functor Fy, . This, in turn, yields an inclusion of subalgebras I4,(1) < I (1) < A.
Thus the map o is order-reversing.

The functor Fy is surjective by [DGNO], Section 3.6. Hence we have

. FPdim(.o/
FPdim (x(2)) = Wm((/ﬂ))

by (the proof of) [ENOI], Corollary 8.11.

In the opposite direction, given an étale subalgebra B = 4 we have a tensor functor
?®pA:6p — 64 inducing A-modules from B-modules. Let f(B) be the full image in
%4, = .o/ of the subcategory %g < % under this functor. Observe that 4 considered as a
B-module is dyslectic. It follows that the objects of f(B) are precisely 4-modules which
are dyslectic as B-modules. This implies that the map f is order-reversing. Observe that
the right adjoint functor of 7 ® 3 4 is isomorphic to the forgetful functor €4 — %z and
sends the unit object of @4 to 4 € 4y = . Using again the proof of [ENO1], Corol-
lary 8.11, we see that

FPdim(A4)

(26) FPdim(B(B)) = Fhdim(3)

By construction, %, = Z4(«/). We claim that the subcategory (63(%) < by
identifies with 2 (%) = Z4(</). Indeed, by Corollary 3.30 the category (%&%))rev identi-
fies with the centralizer of ¥ in Z(%,4)). On the other hand it is explained in [DGNO],
Section 3.6, that Z4(.</) = (o7 [x] #°P), (see Section 2.6 for the notation), so equation
(10) implies Z (24 (7)) = Z (/) K Z (%)™ . The central functor

(A =2 (AR < Z (L) KL (B) =L (Ly(A)) = ZLy(A)
identifies with F5 with obvious central structure. Hence the subcategories
Y(A)=2Z (AR = Z(Zy(/)) and € < Z(6yy)

coincide and so do their centralizers in 2 (Z4(.<7)) and their images in Z4(7) = G,p).
Our claim follows.

The induction functor
(27) Con) — 4= A

identifies with the forgetful functor Z4(.«/) — ./ and so maps surjectively Z (%) = (60?(_%,)
to 4. Thus, f(«(2)) = 2.
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Conversely, we claim that there is an equivalence 2 p)(.«/) = % such that the for-
getful functor Fyp) : Z(o/) — Zpp) (/) identifies with the free module functor ¢ — %.
This immediately implies that oc(ﬁ(B)) = B. To prove this claim, note that the braid-
ing of ¥ allows to equip any A-module induced from % with a morphism permut-
ing it with the objects of f(B) < %4 (notice that for M € 63 and N € f(B) we have
(M®pA)®N=MQ®zN and N®, (M ®zA) =N ®3 M). This gives rise to a tensor
functor

(28) Fi s — Zyp(C1), M—MQpA.

Recall the equivalence Fj from Corollary 4.1 (i). It follows from the above definition that
the diagram

F/
¢ —— Z(6y)

(29) ?@Bl l(

FY
(53 — gﬁ(B)(gA)

commutes. In particular, the induction functor (28) is surjective. Using [DGNO], equation
(56), and equation (26), we get

_ FPdim(4)’

FPdim (2 s (+/)) = FPdim($(B)) FPdim(«/) = 25 B

= FPdim(%g).

Thus functor (28) is an equivalence by [EO], Proposition 2.20. This completes our proof.
]

Example 4.11. Let us illustrate Theorem 4.10. Let G be a finite group.

(i) Let .o/ = Rep(G) be the fusion category of representations of G. Its fusion sub-
categories are of the form Rep(G/N) where N ranges over the set of all normal subgroups
of G. The étale algebra in % (Rep(G)) corresponding to the subcategory Rep(G/N) is
the group algebra kN. As an object of & (Rep(G)) it has the following description. It
is a G-graded algebra with non-zero graded components labelled by elements of N, the
G-action on kN is the conjugation action (see [D1], where étale algebras in 2 (Rep(G))
were classified).

(ii) Let .o = Vec{ be the fusion category of G-graded vector spaces with the associa-
tivity constraint twisted by a 3-cocycle w € Z3(G, k™). Fusion subcategories of .« corre-
spond to subgroups H = G. A typical such subcategory is Vec,a;‘”. The corresponding étale
algebra in Z(Vecy) is the algebra of k-valued functions on G invariant under translations
by elements of H.

Remark 4.12. Let % be a non-degenerate braided fusion category and let 4 € € be
a connected étale algebra. Recall that Z (%) ~ % ((greV)g (see Corollary 3.30) and
the functor ¥ = ¢ X1 < Z(%,) — %, is isomorphic to the free module functor F,, see
Remark 3.31(i). It follows that 4 = A[X]1 € Z(%,) is a subalgebra of the Lagrangian
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algebra I(1). It is easy to see that the corresponding subcategory of % is precisely %j.
Thus Theorem 4.10 implies the following statement: the lattice of subalgebras of 4 is anti-
isomorphic to the lattice of subcategories of 4,4 containing (6/?. Notice that Theorem 4.10 is
a special case of this statement, see Remark 4.3.

4.4. Quantum Manin triples. Recall that a Manin triple consists of a metric Lie
algebra g along with Lagrangian Lie subalgebras g, , g_ such that g = g, @ g_ as a vector
space. It was shown by Drinfeld in [Dr], Section 2, that Manin triples are in bijection with
pairs of dual Lie bialgebras (cf. Remark 4.5).

Below we extend this result to the “quantum’ setting.

Definition 4.13. A quantum Manin triple (¢, A, B) consists of a non-degenerate
braided fusion category % along with connected étale algebras 4, B in ¥ such that both
(¢,A4) and (%, B) are quantum Manin pairs and the category of (4, B)-bimodules in % is
equivalent to Vec.

Example 4.14. Let H be a semisimple Hopf algebra and let Rep(H) denote the cat-
egory of finite dimensional representations of H. Let ¥ := & (Rep(H )) It is well known
that % is equivalent, as a braided fusion category, to Rep(D(H)) where D(H) is the
Drinfeld double of H. There is a canonical Hopf algebra isomorphism D(H) = D((H*)®"),
where H* denotes the dual Hopf algebra and op stands for the opposite multiplication.
We thus have two central functors, to wit the forgetful functors,

% — Rep(H) and % — Rep((H")").

Let A and B denote the étale algebras in ¥ corresponding to these functors constructed as
in Section 3.2.

We claim that (%, 4, B) is a quantum Manin triple. The only thing that needs to
be checked is that the category of (4, B)-bimodules in % is trivial. Note that 4 = (H*)?
and B = H as D(H)-module algebras (i.e., algebras in ¥ = Rep(D(H))). The category of
(H*)°® @ H-bimodules in Rep(D(H)) is nothing but the category of D(H)-Hopf modules
which is equivalent to Vec by the Fundamental Theorem of Hopf modules (see [M] for the
definition of a Hopf module and the Fundamental Theorem).

We explain now that any quantum Manin triple arises from the construction in
Example 4.14. Let (%, 4, B) be a quantum Manin triple. Then Vec identified with (4, B)-
bimodules has a structure of a €4-module category via ®,. Equivalently, €4 has a fiber
functor, i.e., a tensor functor to Vec, see [O], Proposition 4.1. Thus ¥4 =~ Rep(H) for a
semisimple Hopf algebra H, see [Ul]. The dual category (%)y.. is equivalent to %5 (see
Remark 4.9 (i)) and so %z = Rep((H*)"), see [O], Theorem 4.2.

Quantum Manin triples form a 2-groupoid %;: a l-morphism between triples
(61,A41,B)) and (%, 4>, B) is defined to be a triple (®,¢,y), where ®: 6 ~ %, is a
braided equivalence and ¢ : ®(4;) = Ay, ¥ : ®(B;) = B, are isomorphisms of algebras;
a 2-morphism between triples (®, ¢, ) and (@', 4', ') is a natural isomorphism of tensor
functors u : ® ~ @' such that ¢ = ¢'u, and Y = 'up (cf. diagram (24)).
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Let ¥, denote the 2-groupoid whose objects are pairs (o7, F) where o/ is a fusion
category and F : .o/ — Vec is a fiber functor; 1-morphisms between (o7, F) and (/') F')
are pairs (z,v) where 1 : .o/ = o/’ is a tensor equivalence and v : F = F'1 is an isomorphism
of tensor functors; 2-morphisms between (11, v;) and (i, v;) are natural isomorphisms of
tensor functors m : 11 = 1, such that v, = (F'm) o vj.

As we explained above a quantum Manin triple (%, A, B) gives rise to a fusion cate-
gory %4 equipped with a fiber functor F : ¥4 — Vec. This construction can be upgraded to
a 2-functor ¥, — %,. Similarly, the construction from Example 4.14 can be upgraded to a
2-functor %, — %, (we recall that by [Ul] a pair (<, F) € %, is isomorphic to the pair
(Rep(H), Fy) where H is a semisimple Hopf algebra and Fy; : Rep(H) — Vec is the for-
getful functor).

Proposition 4.15. The 2-functors above are mutually inverse 2-equivalences between
g] and gz.

The proof of Proposition 4.15 is similar to that of Proposition 4.4 and amounts to
showing that the above constructions are inverses of each other. In fact, 2-groupoids %
and %, are also equivalent to the third 2-groupoid %; which is defined in linear algebra
terms: objects of %; are semisimple Hopf algebras, 1-morphisms are twisted isomorphisms

of Hopf algebras (defined in [D]), and 2-morphisms are gauge equivalences of twists.
Details of these equivalences will be given elsewhere.

Finally, we give an easy criterion which allows us to recognize a quantum Manin
triple. Let Ry € K(%) ®, R denote the regular object of %, see Section 2.1.

Proposition 4.16. Let € be a non-degenerate braided fusion category and let (¢,A),
(€, B) be quantum Manin pairs. The following conditions are equivalent:

(i) (€,4,B) is a quantum Manin triple.

(ii) [4 ® B] = Rg.

(iii) dimy Homg (1,4 ® B) = 1.

(iv) dimy Hom¢ (A4, B) = 1.

Proof. Let us prove the implication (i) = (ii). The category of (A4, B)-bimodules has
a unique up to isomorphism simple object M. For any X € €, the object 4 ® X ® B has

an obvious structure of (A4, B)-bimodule. Hence [4 ® X ® B] = ry[M] for some positive
integer ry. Consequently

M®X®m:%m®m

Computing the Frobenius—Perron dimension of both sides, we get

[A® X ® B| = FPdim(X)[4 ® B.
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Since the category ¥ is braided, we have
[X][4® B] = [4® X ® B = FPdim(X)[4 ® B.

Since FPdim(4) = FPdim(B) = \/FPdim(%), we have FPdim(4 ® B) = FPdim(%). Hence
[4 ® B] = Ry, see Section 2.1.

The implication (ii) = (iii) is immediate and the equivalence (iii) < (iv) follows from
Remark 3.4 since Homg¢ (A4, B) = Homg(1,* A ® B) ~ Homg (1,4 ® B).

Let us prove the implication (iii) = (i). By Corollary 4.1 (i), the central functor
FB 16— (53

is isomorphic to the forgetful functor % (%z) — %5 (for a suitable choice of braided equiv-
alence % ~ Z(%p)). Consider the category Rep,, (A4) (see Section 3.7). Notice that by
Remark 3.18 (ii), this category coincides with the category of (A4, B)-bimodules in €. Thus,
we need to prove that Repy, (4) ~ Vec. Recall from Section 3.7 that the category Repy, (4)
has a structure of multi-fusion category. On the other hand the unit object A ® B of this
category is irreducible since Hom,_p(A4 ® B, A ® B) = Hom¢(1,4 ® B). Thus, the multi-
fusion category Repy, (4) is in fact a fusion category. By Theorem 3.20 and Remark 4.3
we have 2 (Repy,(4)) = €] = Vec. Thus (6) implies that FPdim(Rep,(4)) = 1, whence
Repy,(4) = Vec. [

5. Definition and properties of the Witt group
5.1. Definition of the Witt group.

Definition 5.1. Non-degenerate braided fusion categories 4, and %, are Witt equiv-
alent if there exists a braided equivalence 4 x| Z (/) ~ @, [x] Z (.o/5), where o/, o/, are
fusion categories.

Remark 5.2. The equivalence relation in Definition 5.1 will not change if we allow
/) and .o/, to be non-zero multi-fusion categories. Indeed, assume that

%1 Qp(&/l) :(62;@”(&/2)

where .o7| and .o/, are multi-fusion categories. We can assume that .o/; and .o/, are inde-
composable in the sense of [ENOI1], Section 2.4 (replace .o7; and .o/, by suitable summands
otherwise). It follows from [EO], Lemma 3.24, Corollary 3.35, that for an indecompos-
able multi-fusion category .o/ there exists a fusion category .o/’ and a braided equivalence
Z () ~ Z(</"). Our statement follows.

It is easy to see that Witt equivalence is indeed an equivalence relation. For
example the transitivity holds since the conditions %) x| Z (/) ~ %, [x] Z(.o/,) and
) ff(ﬂzl) ~ @ X Z(of3) imply

G R (K oty) G R (b K oAty) ~C KL (A K oth) ~C KL (s K o).
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We will denote the Witt equivalence class containing a category % by [#]. The set of Witt
equivalence classes of non-degenerate braided fusion categories will be denoted #". Clearly
W is a commutative monoid with respect to the operation [x]. The unit of this monoid is
[Vec].

Lemma 5.3. The monoid W is a group.

Proof. For a non-degenerate braided fusion category ¢ we have Z (%) ~ € [x1 4™,
see Section 2.3. Thus [4] ' = [™]. [

Proposition 5.4. Let A € € be an étale connected algebra. Then [63] = [€] in W'
Proof. This is immediate from Definition 5.1, Lemma 5.3 and Corollary 3.30. []

Definition 5.5. The abelian group ¥ defined above is called the Witt group of non-
degenerate braided fusion categories.

Remark 5.6. It is apparent from the definition that the group %" depends on the
base field k and should be denoted # (k). However it is known that any fusion category
(or braided fusion category) is defined over the field of algebraic numbers Q, see [ENO1],
Section 2.6. Thus an embedding @ < k induces an isomorphism % (Q) ~ % (k). In this
sense we can talk about the Witt group of non-degenerate braided fusion categories (with-
out mentioning the field k). Of course this implies that the group # carries a natural action

of the absolute Galois group Gal(@/Q) and should be considered together with this action.

Remark 5.7. It follows from [ENO1], Theorems 2.28, 2.31, and Remark 2.33 that
there are countably many non-equivalent braided fusion categories. In particular, the group
W is at most countable. We will see later that ¥ is infinite.

Proposition 5.8. Let € be a non-degenerate braided fusion category. Then € € [Vec] if
and only if there exist a fusion category .o/ and a braided equivalence € ~ % (/).

Proof. By definition, % € [Vec] if and only if € [x] Z (%)) ~ % (%,) with fusion cate-
gories %) and %,. By Proposition 4.4 there exists a connected étale algebra 4 € Z(%;) such
that (:”Z’ (%), A) is a quantum Manin pair, see Definition 4.2. By abuse of notation we will
denote by 4 € Z(%,) the image of 1[x] A under the equivalence € X1 Z (%)) ~ Z(%,).
Consider the multi-fusion category .o/ = Repy, (A4), see Section 3.7. By Theorem 3.20 we
have (o) = & (%’2)2. On the other hand we have an obvious injective braided tensor
functor

(30) C— (%)X — (XR1)Q A.
We have

_ FPdim (% (%,)) FPdim(Z(%,))
~ FPdim(Z(%41))  FPdim(A4)’

FPdim(%) — FPdim(Z(%,)"),

i.e., (30) is a fully faithful tensor functor between fusion categories of equal Frobenius—
Perron dimension. Therefore, it is an equivalence by [EO], Proposition 2.19. The proposi-
tion follows, see Remarks 3.21 and 5.2. [
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Corollary 5.9. We have [€¢] = [Z] if and only if there exists a fusion category </ and a
braided equivalence € X| ™" ~ Z (/).

5.2. Completely anisotropic categories.

Definition 5.10. We say that a non-degenerate braided fusion category is completely
anisotropic if the only connected étale algebra 4 € € is A = 1.

Remark 5.11. A completely anisotropic non-degenerate braided fusion category has
no Tannakian subcategories other than Vec, i.e., it is anisotropic in the sense of [DGNO],
Definition 5.16.

Lemma 5.12. Let € be a completely anisotropic category, let o/ be a fusion category,
and let F : € — <o/ be a central functor. Then F is fully faithful.

Proof. Let I : .o/ — € be the right adjoint of F. Since % is completely anisotropic,
Lemma 3.5 implies that 7(1) = 1. Thus

Homg(X,Y) @ Homy (X ® " Y, 1)
~ Homy (X ® *Y,1(1))
~ Hom, (F(X ® *Y),1)
~ Hom,, (F(X) ® “F(Y),1)
~ Hom,, (F(X),F(Y)).

The result follows. [

We will say that a connected étale algebra 4 in a braided fusion category € is maxi-
mal if it is not a proper subalgebra of another such algebra. For any & there exists at least
one maximal connected étale algebra since by (16) the Frobenius—Perron dimensions of
connected étale algebras are bounded by FPdim(%).

Theorem 5.13. Each Witt equivalence class in W contains a completely anisotropic
category that is unique up to braided equivalence.

Proof. Let % be a non-degenerate braided fusion category. Let A € ¥ be a maximal
connected étale algebra By Proposition 3.16 any connected étale algebra in %9 can be
considered as a connected étale algebra in %, so maximality of A4 is equivalent to (62 being
completely anisotropic. Thus, Proposition 5.4 implies that any Witt equivalence class con-
tains a completely anisotropic category.

Now let ¥ and 2 be two completely anisotropic categories such that [¢] = [Z]. By
Corollary 5.9 there exists a fusion category .« and a braided equivalence

CRD ~ X (A).

In particular we have central functors ¥ — &/ and 2™ — .o/. By Lemma 5.12 these
functors are fully faithful. Hence FPdim(%) < FPdim(.«/) and FPdim(Z) < FPdim(.</).
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Combining this with (6) we see that FPdim(%) = FPdim(%) = FPdim(.«/) and the func-
tor ¥ — o/ (and 2™ — /) is an equivalence. In particular ./ acquires a structure (in
fact, two structures) of non-degenerate braided fusion category. Let ¢’ be the centralizer
of in X1 2™ ~ Z (/) ~ Z(%). Then on one hand ¢’ = 2™ and on the other hand
€' = €™, see Section 2.3. The result follows. []

Corollary 5.14. Let A and B be two maximal connected étale algebras in a non-
degenerate braided fusion category €. Then there exists a braided equivalence €9 ~ (gg_ In
particular FPdim(A4) = FPdim(B).

Proof. The first statement is immediate from Theorem 5.13. The second one follows
from (23). [

The following result shows that Witt equivalence can also be understood without
reference to the Drinfeld center:

Proposition 5.15. Let %), % be non-degenerate braided fusion categories. Then the
following are equivalent:

(i) [@] = [€,], i.e., € and €, are Witt equivalent.

(i) There exist a non-degenerate braided fusion category €, connected étale algebras
Ay, Ay € € and braided equivalences 6, — (6/?1, € = (622.

(i) There exist connected étale algebras Ay € 6\, A € €, and a braided equivalence

()3, = (€)%,
Proof.  The implications (ii) = (i) and (iii) = (i) are immediate by Proposition 5.4.
(i) = (ii) By Definition 5.1, we have a braided equivalence
F:6 XZ(A) =~ X Z (L)

Thus we can define % to be %, X Z(.«/>), the algebra A; to be F(1 X 1,(1)) and the alge-
bra A, to be 1[x] Ir(1). Here I, : .o/; — Z(.o/;) are right adjoints to the forgetful functors
% (ot;) — ;. Finally we define the braided equivalence 4; — %{?l as

G- GRL () (GRL (D)) =C,
and the braided equivalence %, — (522 as
© — QR Z (b)) ) =C.
(i) = (iii) Choose étale algebras A4; € €; such that the categories (%)gi are completely

anisotropic. Now [((61)811] =% =[6] = [(%)32] together with Theorem 5.13 implies the
existence of a braided equivalence ((51)811 = (%)22. O
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Remark 5.16. (1) The proposition implies that Witt equivalence is the equivalence
relation ~ on non-degenerate braided fusion categories generated by ordinary braided
equivalence ~ and the relations € ~ (62, where A4 € % is an étale algebra. But the prop-
osition is more precise in that it says that any two Witt equivalent categories can be
joined by just two invocations of 4 ~ %" and either one (part (iii)) or two (part (ii)) braided
equivalences.

(2) The proposition has applications to conformal field theory, cf. [Mu6].

5.3. The Witt group of metric groups and pointed categories. Recall that a quadratic
form with values in k™ on a finite abelian group A is a function ¢ : 4 — k™ such that

q(—x) = ¢g(x) and b(x, y) :M is bilinear, see e.g. [DGNO], Section 2.11.1. The

q(x)q(y)
pair (4,q) consisting of finite abelian group and quadratic form ¢: 4 — k™ is called a
pre-metric group, see [DGNO], Section 2.11.2. A pre-metric group (4, q) is called metric
group if the form ¢ is non-degenerate (i.e., the associated bimultiplicative form b(x, y) is
non-degenerate).

To a pre-metric group (4,q) one assigns a unique up to a braided equivalence
pointed braided fusion category %(4,q), where g(a) € k™ equals the braiding on the
simple object X, ® X, where X, is a representative of an isomorphism class a € 4 (see
e.g. [DGNOJ, Section 2.11.5). It was shown in [JS2] that this assignment is an equivalence
between the 1-categorical truncation of the 2-category of pre-metric groups and that of the
2-category of pointed braided fusion categories.

The category %(4, q) is non-degenerate if and only if (4,¢) is a metric group, see
[DGNO], Sections 2.11.5 and 2.8.2.

Let (4,q) be a metric group and let H = A be an isotropic subgroup (that is,
qly =1). Then H = H+ where H* is the orthogonal complement of H in A with respect
to the bilinear form b(x, y). Moreover, the restriction of ¢ to H* is the pull-back of a non-
degenerate quadratic form ¢ : H/H — k™. We say that (H+/H, q) is an m-subquotient of
(4, ). Two metric groups are Witt equivalent if they have isomorphic m-subquotients (for
some choice of isotropic subgroups in each of them), cf. [DGNO], Appendix A.7.1. The set
of equivalence classes has a natural structure of abelian group (with addition induced by
the orthogonal direct sum) and is called the Witt group of metric groups, see loc. cit. We
will denote this group #.

Proposition 5.17. The assignment

(31) Wot = W : (4, q) — [€(4,q)]
induces a well-defined injective homomorphism Wy — W'

Proof. Let H < A be an isotropic subgroup. Then the corresponding subcategory
%(H,1) = %(A4,q) is Tannakian, see e.g. [DGNO)], Example 2.48. Let Be ¥(H,1) be the

corresponding regular algebra, see Example 2.8. Then the category (4, q)g identifies with
%(H*/H,q). In particular, [¢(4,q)] = [¢(H*/H, q)]. This implies that (31) is well defined.
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It is known (see [DGNO], Section A.7.1) that each class in %7 has a representative
(A, q) which is anisotropic, that is ¢(x) =+ 1 for 4 3 x # 1. It is clear that the corresponding
category %(A, q) is completely anisotropic. Thus, (31) is injective by Theorem 5.13. ]

In what follows we will identify the group %7 with its image in %". The group #
is explicitly known, see e.g. [DGNO], Appendix A.7. Namely,

Wor = S5 Wpt(l’),

p is prime

where # i (p) = W consists of the classes of metric p-groups.
The group #;(2) is isomorphic to Z/8Z @ Z/27Z; it is generated by two classes
[¢(2/22,q))] and  [4(Z/4Z,q,)),

where ¢, ¢» are any non-degenerate forms. For p = 3 (mod 4) we have % (p) = Z/4Z and
the class [¢(Z/pZ, q)] is a generator for any non-degenerate form ¢g. For p = 1 (mod4) the
group W pi(p) is isomorphic to Z/27 @ 7 /27 it is generated by the two classes [4(Z/pZ,q")]

and [4(Z/pZ,q")] with ¢'(I) = Clz and ¢" (1) = C"lz, where ( is a primitive pth root of unity
in k and » is any quadratic non-residue modulo p.

5.4. Property S. Let € be a non-degenerate braided fusion category.

Definition 5.18. We say that ¢ has property S if the following conditions are
satisfied:

(S1) % is completely anisotropic.

(S2) % is simple (that is, ¥ has no non-trivial fusion subcategories) and not pointed
(so in particular € & Vec).

We will also say that a class w € #" has property S if a completely anisotropic repre-
sentative of w has property S. In Section 6.4 we will give infinitely many examples of non-
degenerate braided fusion categories with property S.

Theorem 5.19. Let & = [X| 6; where 6; are braided fusion categories with property S.

iel
Assume that 9 is a Drinfeld center of a fusion category. Then there is a fixed point free invo-
lution a : I — I such that 6, ~ ;"

Proof.  Assume that 9 = Z(.</) for some fusion category .o7. Let
F:9=%(d)— o

be the forgetful functor. Choose a bijection 7 = {1,...,n}. For 1 <i <n let o/ be the
image of %] [X] 6> X - - - [x] 4; under F (so .<; is a fusion subcategory of .7).

Claim. There is a subset J; < {1,...,i} such that F restricted to 6 <=2 is an

equivalence € ~ ;. jed;
JjeJi
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Proof of the Claim. We use induction on i. For i = 1 we set J; = {1}; in this case the
claim follows from Lemma 5.12. Now consider the induction step. The subcategory .7
is clearly generated by .oZ; and (the image of) %, < .o/ (recall that by Lemma 5.12, the
functor F restricted to %, is fully faithful). There are two possibilities:

(a) The subcategories .«7; and %, intersect non-trivially in .o/; then .o/; contains %
since by (S2), ;1 has no non-trivial subcategories. In this case we set J;1; = J,.

(b) .oZ; and %, intersect trivially. Then we set J;;; = J; U {i + 1}. We claim that the
forgetful functor %; — o/ is fully faithful. As in the proof of Lemma 5.12 it is sufficient

U
to show that for 'ﬁeny 1object Ze [X] % wehave Hom,, (F(Z),1) = Homy(Z,1). Clearly,

Jir . .
we can restrict ourselves to the’ case when Z is simple. In this case Z = X [xX] Y where
Xe %; and Y € %, are simple. Then F(Z) = F(X) ® F(Y) where F(X) € .«/; and

JjeJi
F(Y) € F(%1) are simple. Then Hom,, (F(Z),1) = Hom, (F(X),F(Y)") =0 unless
X =1and Y = 1. We are done in this case and the claim is proved. []

We apply now the Claim with i = n; we see that .o = %;. Thus
jeJH

2(/) = B (G RE)
jedn
(see Section 2.3). The category & does not contain non-trivial invertible objects. By
Proposition 2.2 it has a unique decomposition into a product of simple categories. The
result follows. [

Corollary 5.20. Let € be a category with property S. Then [€] € W has order 2 if
€ ~ €™ and otherwise [€]| € W~ has infinite order. []

More precisely we have the following result. Let & be the set of braided equivalence
classes of categories with property S. Let %, < % be the subset consisting of categories €
such that ¥ ~ ¢™ and let ¥, = ¥\ %5. It is clear that the set .# is at most countable, see
Remark 5.7. It follows from (38) in Section 6.4 below that the set /., (and hence &) is
infinite. Let %, = %, be a maximal subset such that ¢ € . implies €™ ¢ . .

Corollary 5.21. Let #Ws < W be the subgroup generated by the categories with
property S. The map (ai)y .o — [ [€]" defines an isomorphism

Ced
P7R27dH7~Ws. O

Remark 5.22. (1) It is clear that the set %, is at most countable. However, we do not
know whether it is empty and we do not know whether it is finite.

(2) The description of the group #s above is non-canonical due to the choice of the
set ., . A better description is as follows: the set .% carries an involution ¢ which sends %
to ™. We extend o to the involution of the free abelian group Z[¥] generated by ¥ by
linearity. Then #'s ~ Z[.%]/Image(1 + o).

(3) An argument similar to the proof of Theorem 5.19 shows that #s N #} = {1}.
Thus the subgroup of #~ generated by #'s and #/y is isomorphic to #'s X # .
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(4) Assume that %; are braided fusion categories with property S and €' 4 %; for
j # i. Corollary 5.21 implies that [ (6,} #+ 0. A stronger statement is true: the category
iel
9 =[X] €; is completely anisotropic. Indeed, by Lemma 3.9 it is sufficient to show that
el
any sllfrjective central functor ¥ — .o/ is an equivalence. This is proved by an argument par-
allel to the proof of Theorem 5.19; notice that the case (a) in the proof of the Claim never
occurs since otherwise we would have a non-injective central functor %; [x] 4; — .Z; consid-
ering the image of this functor one shows that 4’ ~ %; as in the proof of Theorem 5.13.

Corollary 5.23. The Q-vector space W ®z Q also has countable infinite dimension.

Proof. Since ¥, is infinite, the (D-vector space #s ®; Q0 has countable infinite
dimension. The result follows since the functor ? ®, Q is exact. []

5.5. Central charge. From now on we will assume that k= C. Recall that any
pseudo-unitary non-degenerate braided fusion category has a natural structure of modular
tensor category (see e.g. [DGNOJ], Section 2.8.2).

Definition 5.24. Let #,, = #" be the subgroup consisting of Witt classes [%] of
pseudo-unitary non-degenerate braided fusion categories %.

Remark 5.25. Note that #, is not invariant under the Galois action from Re-
mark 5.6 (for example the class [ (sI(2),3) +] € W un from Section 6.4 below has a Galois
conjugate not lying in #,). In particular, #y, & 7.

Now recall that for a modular tensor category € one defines the multiplicative central
charge &(%) € C, see [DGNO], Section 6.2. The following properties are well known, see
e.g. [BK], Section 3.1.

Lemma 5.26. (i) (%) is a root of unity.
(ii) <(% X 62) = E(41)E(%2).
(iii) &@™) =) O

The statement (i) (due to Anderson, Moore and Vafa, see [AM], [V]) allows us to con-
sider the additive central charge ¢ = ¢(%) € Q/8Z, which is related to &(%) by &(%) = e*™¢/3.

Lemma 5.27. Let 6\ and 6, be two pseudo-unitary non-degenerate braided fusion cat-
egories considered as modular tensor categories. Assume that €, and €, are Witt equivalent.

Then f((g1) = f((gz)

Proof. By Corollary 5.9, 4 [X] 4,°" ~ % (.</). Since the category %; x] %,°" is pseudo-
unitary, so is .« (use (6)). Thus, the spherical structure on %) X] 4,*" = Z(.«/) is induced by
the spherical structure on 7. In this situation [Mu3], Theorem 1.2, says that é(f (of )) =1
The result follows from Lemma 5.26. []

Now for any class w € #, we define £(w) = &(%) where % is a pseudo-unitary repre-
sentative of the class w; according to Lemma 5.27 this is well defined. Similarly, we set
c(w) = c(%).
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Corollary 5.28. The assignment w — c¢(w) is a homomorphism Wy, — Q/8Z.
Proof- This is immediate from Lemma 5.26. []

Remark 5.29. A non-degenerate pointed category %(4, ¢g) has a canonical pseudo-
unitary structure (characterized by the condition that dimensions of all simple objects are
1). The ribbon twist of the corresponding modular structure on %(4,q) is Oy, = g(a)lyx,,
where X, is a simple object corresponding to a € A. The multiplicative central charge of
%(A,q) is given by [DGNO], Section 6.1,

1
ﬁaglq(a)-

In particular, for a metric cyclic group of order 2 with the value of the quadratic form
on the generator ¢(1) = i € k (with i = —1) we have

E(%(4,q) =

1+
V2

(4(2/22,9)) =
so that the additive central charge is

(32) c(¢(2/)22,9)) =1€Q/8Z.

6. Finite extensions of vertex algebras

6.1. Extensions of VOAs. Let J be a rational vertex algebra, that is, a vertex alge-
bra satisfying conditions 1-3 from [H], Section 1. It is proved in loc. cit. that the category
Rep(V) of V-modules of finite length has a natural structure of modular tensor category; in
particular Rep(V) is a non-degenerate braided fusion category.

Note that a rational vertex algebra has to be simple (i.e., has no non-trivial ideals).
This, in particular, means that VOA maps between rational vertex algebras are mono-
morphisms.

The category of modules Rep(V ® U) of the tensor product of two (rational) vertex
algebras is ribbon equivalent to the tensor product Rep(V') x] Rep(U) of the categories of
modules (see, for example [FHL]).

The following relation between the central charge ¢y of a (unitary) rational VOA V
and the central charge of the category of its modules Rep(V) is well known to specialists
(although we could not find a reference)®:

2nicy

f(Rep( V)) =% .

D This relation can be verified directly for all the examples we consider later.
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Now consider a finite extension of vertex algebras V' < W, that is, V' is a vertex
subalgebra of W (with the same Virasoro vector) and W viewed as a V-module decom-
poses into a finite direct sum of irreducible V-modules?. Then W considered as an object
A € Rep(V') has a natural structure of commutative algebra; moreover this algebra sat-
isfies the conditions from Example 3.3 (i) and hence is étale, see [KiO], Theorem 5.2,
Furthermore, the restriction functor Rep(W) — Rep(V) induces a braided tensor equiv-
alence Rep(W) ~ Rep(V)g. Thus, Proposition 5.4 implies that in this situation we have
[Rep(V)] = [Rep(W)]. We can use this in order to construct examples of interesting rela-
tions in the group #".

Example 6.1 (Chiral orbifolds). Let G be a finite group of automorphisms of a
rational vertex algebra V. The sub-VOA of invariants V' ¢ is called the chiral orbifold of V.
In the case when the vertex subalgebra of invariants V¢ is rational, we have a Witt equiv-
alence between categories of modules Rep(V), Rep(V %).

6.2. Affine Lie algebras and conformal embeddings. Let g be a finite dimensional
simple Lie algebra and let g be the corresponding affine Lie algebra. For any k € Z let
%(g,k) be the category of highest weight integrable g-modules of level k, see e.g. [BK],
Section 7.1, where this category is denoted (9}(“‘. The category %(g,k) can be identified
with the category Rep(V(g,k)) where V' (g,k) is the simple vertex algebra associated with
the vacuum g-module of level k. In particular the category %(g,k) has a structure of
modular tensor category, see [HL], [BK], Chapter 7.

Example 6.2. The category %(sl(n),1) is pointed. It identifies with %(Z/nZ,q),
where ¢(I) = ™™, 1 € Z/nZ. More generally, %(g,1) (with g simply laced) is pointed
[FK].

It is known ([BK]) that the categories %(g, k) are pseudo-unitary. In particular, we
have Witt classes [¢(g,k)] € #wn < #". The following formula for the central charge is
very useful, see e.g. [BK], 7.4.5:

__kdimg
k+hv

(33) c(¢(g,k))

where /" is the dual Coxeter number of the Lie algebra g.

One can construct examples of relations between the classes [%(g, k)] using the
theory of conformal embeddings, see [BB], [SW], [KW]. Let g’ = g’ be an embedding
i

(here g’ and g’ are finite dimensional simple Lie algebras). We will symbolically write

2 Note that finiteness is automatic if we assume that Ly-eigenspaces are finite dimensional (which is
standard and true e.g. for affine VOAs). Indeed, as a module over a rational vertex algebra V', W is completely
reducible, i.e., is a sum of simple V-modules. Since V" has only a finite number of non-isomorphic simple modules
the only way for W not to be finite is to have infinite multiplicities (in decomposition into simple ¥-modules).
That will contradict finite dimensiality of L¢-eigenspaces.

3 The proof of this result in [KiO] is not complete. However for examples we are going to consider in this
section the arguments from [KiO], Section 5.5, are sufficient.
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@(g")k[ < g;. if the restriction of a §’-module of level k' to &' has level k; (in this

1

case the numbers k; are multiples of k). Such an embedding defines an embedding of
vertex algebras & V(g’,k;) = V(g',k’); but in general this embedding does not preserve

the Virasoro vector. In the case when it does the embedding @(Qi)k,- c g, is called

conformal embedding; it is known that in this case the extension of vertex algebras
R V(g ki) = V(g' k') is finite”. Thus in view of Section 6.1, we get a relation

(34) [11%(g", ki)] = [€ (g, k"))

The complete classification of the conformal embeddings was done in [BB], [SW] (see also
[KW]) and is reproduced in the Appendix.

6.3. Cosets. Let U < V be an embedding of rational vertex algebras, which does
not preserve conformal vectors wy, wy (only operator products are preserved). The central-
izer Cy(U) is a vertex algebra with the conformal vector wy — wy, see [GKO]. Moreover
the tensor product U ® Cy(U) is mapped naturally to ¥ and this map is a map of vertex
algebras. In the case when V', U and Cy(U) are rational we have a Witt equivalence of
categories of modules

Rep(U) & Rep(Cy(U)) ~Rep(U ® Cy(U))
and Rep(V).
Let @(I)i),ci = @P(g/),, be an embedding of vertex algebras non necessarily pre-

J . .
serving the Virasoro vector as in Section 6.2. Let @ V(bh',ki) = @ V(g/, k) be the
i J

1
corresponding embedding of the vertex algebras. The centralizer

Co k) <® V', kl-)>

X (g7 )kj’
is called the coset model and is denoted -

>l,< (b,

i

Sometimes coset models defined by different embeddings of semisimple Lie algebras
are isomorphic. An example of such isomorphism was found by Goddard, Kent and Olive
[GKO]. They observed that the coset models™

At x A1 Cns1,1
)
Al,m—H Cm,l X C‘l,l

4 This follows from the fact that Ly-eigenspaces of V (g, k) are finite dimensional.
3 Here and in the Appendix the notation X; ; refers to the Lie algebra of type X; at level k.
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are isomorphic, since they are both isomorphic to the same rational Virasoro vertex algebra
Vir,,, with the central charge

6

(35) em =1 T mTI)

We can use coset models in order to construct new relations in the Witt group as
>j< (¢/ )kj’

>i< (),

follows. Assume that the central charge ¢ of a coset model vertex algebra is

i

positive® but less than 17. It is known that in this case ¢ = ¢,, for some positive integer m
and the vertex algebra in question contains a rational vertex subalgebra Vir,,, see [GKO].
This implies that the rational vertex algebra & V'(g/,k;) is a finite extension of rational

4 J
vertex algebra @ V' (h', k;) ® Vir,,. Thus according to the results of Section 6.1 we get a

1
relation in the Witt group

(36) (TTtetw' ko) - Vir = T k)L
i J
. . . : Ay m x A1)
A special case of this relation corresponding to the coset model — — reads
1,m+1
(37) Vir,,] = [(s1(2),m)] [ (s1(2),1)] [ (s1(2),m + 1)] .

Thus combining (36) and (37), we obtain relations between the classes [%(g, k)].

6.4. Examples for g = sl(2). We give here some examples of relations (or absence
thereof) between the classes [%(sl(2),k)]. We refer the reader to [KiO], Section 6, for
more details on the categories % (51(2), k). Note that all étale algebras in these categories
were classified in [KiO], Theorem 6.1.

(1) The category %(sl(2),1) is pointed, moreover % (sl(2),1) ~ ¥(Z/2Z,q,) where
q+(1) = i. In particular, the class [ (sl(2),1)] € #" has order 8.

(2) For any odd k, we have %(sl(2),k) ~ %(sl(Z),kL X1 %4(Z/27Z,q+) where
%(sl(2), k) . 1s the subcategory of “integer spin” representations and g+(1) = +i (see e.g.
[KiO], Lemma 6.6). The category % (sl(2),k) . for an odd k = 3 has property S. Using
(33) and (32), we get

(@ ($2), ) ) = o (1),

k+2
In particular, 2¢(%(s1(2), k), ) + 0 € Q/8Z, so
(38) %(sl(2),k), 2 E(s1(2),k)\".

This shows that the set .%,, from Section 5.4 is infinite.

) 1t is known (see [GKO)]) that ¢ = 0. The case ¢ = 0 corresponds exactly to the conformal embeddings
discussed in Section 6.2.
7 The list of cosets with such central charge was given in [BG] and is reproduced in the Appendix.



Davydov, Miiger, Nikshych and Ostrik, The Witt group of non-degenerate braided fusion categories 171

Consider the category %(sl(2),3) . The class [#(sl(2),3),] € #"is a simplest exam-
ple of element of #" of infinite order. We will say that a braided fusion category % is
a Fibonacci category if the Grothendieck ring K(%) is isomorphic to K (% (sl(2),3) +) asa
based ring. It is known that a pseudo-unitary Fibonacci category is equivalent to either
%(sl(2),3), or 6(s1(2),3) "

4

(3) The category %(sl(2),2) is an example of Ising braided category, sce [DGNO],
Appendix B. In particular, it follows from [DGNO], Lemma B.24, that

[%(512),2)]” = [6(2/47,q)], where g(I) = /4.
Thus, the order of [€(sl(2),2)] € #" is 16.
Using [DGNOJ, Lemma B.24, it is easy to see that for an odd / we have
[4(s12),2)]" = [#],
where € is an Ising braided category. Since there are precisely eight equivalence classes of

Ising braided categories (see [DGNO], Corollary B.16), we get that for any Ising brlaided
category % there is a unique odd number /, 1 <7 < 15, such that [%] = [¢(s1(2),2)] . The

number / is easy to compute from ¢(%) using ¢(%(sl(2),2)) = 3

(4) There exists a conformal embedding sl(2), < sl(3),. Thus
[4(s1(2),4)] = [6(s1(3),1)] = [4(2/3Z,q)], where g(I) = >/,
In particular, the order of [%(sl(2),4)] € #" is 4.
(5) There exists a conformal embedding sl(2); @ sl(2); < so(9),. Thus
[4(s1(2).6)]” = [#(s0(9),1)].

Notice that %(so(9),1) is also an example of Ising braided category. Using the central
charge one computes that

[4(s1(2).6)]" = [€(s1(2),2)] .
In particular, [%(sl(2),6)] € # has order 32.

(6) The category %(sl(2),8) is known to contain an étale algebra A4 such that

4 (51(2),8)2 is equivalent to the product of two Fibonacci categories, see e.g. [MPS],

Theorem 4.1. Using the central charge one computes that
-2
[%(s1(2),8)] = [6(s1(2),3) ] .
(7) There exists a conformal embedding sl(2),, < sp(4),. Thus,

[%(s1(2),10)] = [6(sp(4). 1)].
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The category % (sp(4), 1) is an Ising bra7ided category. Using the central charge one com-
putes that [%(sl(2),10)] = [¢(s1(2),2)] .

(8) Let g(G>) be a Lie algebra of type G,. There exists a conformal embedding

s1(2)5 = 6(G2);-

Thus,
[%(s1(2),28)] = [¢(a(G2),1)].

The category %(g(G>), 1) is a Fibonacci category. Using the central charge one computes
that

[%(s12),28)] = [4(s1(2),3),].

(9) The category % (sl(2), k) with k divisible by 4 is known to contain an étale algebra
A of dimension 2, see [KiO], Theorem 6.1. It is also known that in this case for k =+ 4, 8,28
the category 4 (81(2), k)f1 has property S and is not equivalent to any category (51(2), kl) N
with odd k. Thus we get infinitely many more elements of the set .#,,. For example we see
that [%(sl(2),12)] € # has infinite order.

6.5. Holomorphic vertex algebras with ¢ = 24. We recall that a rational vertex alge-
bra V is called holomorphic if Rep(V') = Vec, that is the only simple V-module is V" itself,
see e.g. [DM]. In [Sc] Schellekens gives a conjectural list of 71 holomorphic vertex algebras
with central charge ¢ = 24, see also [DM]. Out of this list, 69 algebras are extensions of
vertex algebras associated with affine Lie algebras as in Section 6.2. Thus in view of the
discussion in Section 6.1, each of these algebras should give a conjectural relation between
the classes [4(g, k)]. Some of these relations can be deduced from the relations in Sections 6.2
and 6.3, but some others are genuinely new. For example entry No. 14 from the Schellekens
list gives a conjectural relation [¢(Fy,6)] = [€(s1(3),2)] ! which cannot be deduced from
the results above.

6.6. Open questions. In this section we collect some open questions about the Witt
group ¥

Question 6.3. s it true that #" is a direct sum of cyclic groups? Is there an inclusion
QcH#?

Question 6.4. Is 7, generated by classes [¢(g, k)]?

Remark 6.5. Notice that #7, is contained in the subgroup generated by [%(g, k)].
Namely, the subgroup of #~ generated by [%(sl(2),1)] and [#(s1(2),2)] contains #(2).
For a prime p = 4k + 3, the subgroup #}(p) is generated by [ﬂg (sl( D), 1)] Finally for a
prime p = 4k + 1 choose a prime number ¢ < p which is a quadratic non-residue modulo p
(it is easy to see that such a prime does exist). Then #7(p) is contained in the subgroup
of W generated by [%(sl(p),1)] and [%(sl(pg),1)] and #}(g). Thus we are done by
induction.
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Remark 6.6. Since the end of the eighties there is a common belief among physicists
that all rational conformal field theories come from lattice and WZW models via coset and
orbifold (and perhaps chiral extension) constructions (see [MS]). An analogous statement
for modular categories would imply that the unitary Witt group is generated by classes of
affine categories %(g, k).

Question 6.7. What are the relations in the subgroup of #" generated by [¢(g, k)]?
Is it true that all relations in the subgroup generated by [(6 (sl(2),k)] are described in
Section 6.4? Is it possible to express some nonzero power of [(6 (51(2), 12)] € ¥ in terms
of [#(sl(2),k)], k & 12? What is the order of [#(sl(2),14)] € #?

Question 6.8. Is there a class w e #s of order 2? Equivalently does exist a non-
degenerate braided fusion category & with property S and such that €™ ~ ¢?

Question 6.9. Is it true that torsion in ¥ is 2-primary? Is there an element of order 3
in W7

Question 6.10. What is the biggest finite order of an element of #™? For example,
are there elements of %" of order 64?

Appendix. Conformal embeddings and cosets with ¢ < 1

Here we reproduce (from [BB], [SW]) the list of maximal embeddings starting with
serial embeddings (rank-level dualities, (anti-)symmetric and regular embeddings and their
variants) and followed up by sporadic embeddings. For the sake of compactness we use
matrix algebra notations (instead of Dynkin symbols) for the rank-level embeddings (the
first four):

Su(m)n x SU(I’Z)m = SU(WH’Z)I, Sp(zm)n X Sp(zn)m = 80(4}7/11’1)1,

so(m), x so(n),, < so(mn),, so(m), x su(2),, < sp(2m),,
Ann1 € Apjn) Anns E Awoss |,
Ani1,2n12 S Boprianyi 1 Aoponv1 € Dangnan, 1,
Boni1,4n+1 S Blani1)(n+1),15 Aopi1,4n+5 S Ban2yni2,15
Bonan—1 S Dugant1),15 Bon,an+3 S Dnan+3),15
Conon1 S Bayr_y11, Cont1,2042 S Bant1)ns1),1
Conont1 S Dpgany). 15 Cont1,20 S Dans3),15
Doy anv2 S Baprin—1,15 Doyi1,4n S Bugania), 1,
Doy an—2 S Duan—1),1, Dopi1,an+4 S Ding1y@ansn), 1

B, 2 S A1, D,> < 4211,
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Dy xAjy X Ap—iz1 S Apjy, 1

lIA

D1 X Dy1,1 E Dy 1,

A1 X A11 X Dy 1 € Dy 1,

Ay x A1y X Bya1 E By,
Dy X By1,1 S By1, 3

A2 X Dy_11 € By,

D X Ds € Eg 1,

Ar 1 X Ay X Ax 1 S Ee 1,

A1 x Dg 1 S E7 1,

Az X As € Eq 1,

Ay X As1 S Eg 1,

A1 X E7y € Eg 1,

A1 x C31 € Faq,

A3 x A1) < Gay,

Ga1 X Az p S Eg 1,

A3 x Fy1 € E7q,

Az 6 x A116 S Eg,1,

A0 E B, Ars
Ar o1 € E7 1, Ass
By 1n = Eg 1, B>
Cs1 S Eg 1, Cq7
Ds g = Cis,1, Dg 16
Es 1o S D31, Eq2
Eg 30 S Dia1,  Faus

Gr3 S Es1,  Gaog

lIA
lIA
S
|
N

iSn—2, Dy XAp1,1 S An1,

Dy X Ap1,1 S Dyy,s
Di,l ><Dn—i,l gDn,ly
Dy X By_1,1 S By 1,
Di,l ><Bn—i,l an.,la
D1 xAy_12 € G,
A1 X As1 € Ee 1,
D1 x Eg1 S E7 1,
A7 € E7 1,

Dg 1 < Egq,

Az x Eg1 S Eg 1,
Ag 1 € Eg 1,

Gy X A1 8 S Fu 1,
Ar o X Ay 1 < Fy 1,
A7 x Gap S E7y,
Gy x Gy € E71,

Gy 1 X Iy S Eg 1,

S Gy, Axo S Egi,
c Ci,1, A7,10 S D351,
c Dg 1, G5 = Cra,
S Do11, Dsg S Ais,
S Des,1,  Eg6 S Az,
S Cs1, E7,18 S Bes, 1,
S D31, Fao9 S Do,

c D7 1.

35isn-3,

Next we reproduce the list of cosets with central charge 0 < ¢ < 1 given in [BG]:

. A] 1 X A1
Vir,, = ———"
Al,n+l
. Chri1
Vlr(fn g Lj
Cn1 x Cr 1

. Api1,2
Vir, € —————,

To =g > u(l)
Vifq c SO(]’[)I

so(n—1),’
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[AM]
[BB]
[BK]

[B]

[BG]
[Br]
(BN]
[CMS]

(D]
[D1]

[DB]
[DKR]
[De]

[DM]

. Ay . Er» . Ax 1 X Az
Vir,, € —5, Vir,, € —=, vir,, € ————,
u(l) A7’2 Azﬁz
A E Ee1 X E
VirC; g j’ \/irc3 g #’ Virc4 o= M’
P u(l) 7T A12x De > Es >
) As» . Eg» . E7 1 x E7)
Vir,, € —= Vir, € —= Vir, € ————
3 1 ) 2 b
Ay g Dg > Er»
. A . E ) Eg | X E
Vir,, € 51 Vir,, = 8,2 Vir,, = M,
G3 1 A2 x Eq7 Eg >
) Bs 1 . Eg» . Eg x Eg >
Vir,, € —— Vir,, € —= Vir, € ——=
(&) G C9 A ) Cy E 9
2,1 8,2 8,3
. Eg 1 . Fy . Fy1 X Fy
Vir,, € —, Vir,, € : Vir,, € —————,
Fy G X A12 Fy»
. Es > . Fy . Gy 1 % Gay
Ver4 g —’; Vlrcz g ;; Vlr(’7 = %7
Csn B4 1 Gy
) Es» . G2 : G2,»
Vir,, € ——=——, Vir, € -, Vir,, €& ————.
A2 x As As A2 x Are
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