The methanol lines and hot core of OMC2-FIR4, an intermediate-mass protostar, with Herschel-HIFI*

(Affiliations can be found after the references)

DRAFT, August 17, 2010

ABSTRACT

In contrast with numerous studies on the physical and chemical structure of low- and high-mass protostars, much less is known about their intermediate-mass counterparts, a class of objects that could help to elucidate the mechanisms of star formation on both ends of the mass range. We present the first results from a rich HIFI spectral dataset on an intermediate-mass protostar, OMC2-FIR4, obtained in the CHESS (Chemical HERSCHEL SurveyS of star forming regions) key programme. The more than 100 methanol lines detected between 554 and 961 GHz cover a range in upper level energy of 40 to 540 K. Our physical interpretation focuses on the hot core, but likely the cold envelope and shocked regions also play a role in reality, because an analysis of the line profiles suggests the presence of multiple emission components. An upper limit of 10^{-6} is placed on the methanol abundance in the hot core, using a population diagram, large-scale source model and other considerations. This value is consistent with abundances previously seen in low-mass hot cores. Furthermore, the highest energy lines at the highest frequencies display asymmetric profiles, which may arise from infall around the hot core.

Key words. stars: formation – ISM: abundances, kinematics and dynamics, molecules

1. Introduction

Intermediate-mass, and therefore intermediate-luminosity protostars offer insights into the physical and chemical differences between the formation of low- and high-mass stars, but questions about their chemistry and dominant gas-heating mechanisms remain only partly answered.

Deep in the interior of a protostellar core, energy is released by a forming protostar. This energy heats the surrounding gas by dust-mediated and UV photon heating, as well as through shocks caused by protostellar outflows. The respective roles of these mechanisms as a function of protostar luminosity and the effects of heating on protostar evolution, are under intense study (e.g. Spaans et al. 1995; Dutrey et al. 2006; Bruderer et al. 2009), with the role of shocks and UV photons in low- and intermediate-luminosity sources emphasized by recent Herschel Space Observatory results (Fich et al. 2010; van Kempen et al. 2010). Sub-millimeter molecular line emission is a versatile probe of the physical and chemical conditions in these heated regions, the hot cores, revealing the initial conditions for forming stars and planetary systems. Hot cores are compact (sizes $< 0.1 pc$), warm ($T > 100 K$), and show evidence of complex chemistry (Kurtz et al. 2000; Ceccarelli et al. 2007).

The two main paths to this complexity are gas-phase and grain-surface reactions (e.g. Garrod et al. 2008). During the gradual warm-up of grains in a hot core, species formed on them in earlier evolutionary phases react and the products are later released into the gas phase. Observable chemical differences include a methanol–formaldehyde abundance ratio, which increases with decreasing protostar luminosity (Cazaux et al. 2003; Bottinelli et al. 2004, 2007).

We present Herschel-HIFI sub-millimeter observations of methanol line emission toward the intermediate-mass protostar OMC2-FIR4, attributing part of the emission to a hot core. With a luminosity of $1000 L_\odot$ (Crimier et al. 2009, hereafter Crim09) and a distance of only 440 pc (Hirota et al. 2007), the protostar OMC2-FIR4 is an excellent laboratory to study hot core chemistry in the intermediate mass regime. A structure model, constrained by $7.5''$ to $14.8''$ resolution dust-continuum maps and the broadband spectral energy distribution, was made for OMC2-FIR4 by Crim09. The uncertainties in the properties of the central component are large, but the model suggests a hot core radius of $R_{\text{rim}} = 440 AU$ and densities above $~5 \cdot 10^6$ cm$^{-3}$. At ~1'' resolution, FIR4 is seen to consist of several clumps, which may be forming a cluster of protostars (Shimajiri et al. 2008, hereafter Shim08). Some of this activity may be triggered by an outflow from the nearby source OMC2-FIR3.
Methanol is a powerful diagnostic of the physical and chemical conditions in protostellar sources (van der Tak et al. 2000; Leurini et al. 2004, 2007; Maret et al. 2005; Wang et al. 2010), and is used to that end here. A careful analysis of methanol is also important for recovering the other species which CH$_3$OH lines often blend with.

3. Results

Preliminary data processing reveals 91 lines from 17 species in band 1b, and similar numbers in 2b and 3b, establishing OMC2-FIR4 as a relatively line-rich protostar (see also the review by Ceccarelli et al. in this volume). Methanol lines are advantageous to study in OMC2-FIR4 because they are abundant, cover a large range of excitation conditions, and are straightforward to measure because the spectrum is less crowded than in higher luminosity hot sources, in which more levels of more species can be significantly excited. Out of the hundreds of CH$_3$OH transitions in each band, we detect 46 lines in band 1b, 46 in 2b, and 40 in 3b, with a range of 40 K < E_u < 540 K in excitation energy. Identification made use of the JPL database, with methanol data by Xu et al. (2008). This paper discusses lines detected with > 4σ confidence and not blended or damaged by spurs.

3.2. Population diagram and LTE modelling

The detection of 132 CH$_3$OH lines covering 500K in upper level energy presents an excellent opportunity to perform a population diagram analysis (Goldsmith & Langer 1999) to study the excitation conditions. In Fig. 2 we present the population diagram
for the observed methanol lines. Line fluxes were obtained from single-Gaussian fits.

Part of the vertical scatter in Fig. 2 is due to optical depth, estimated from LTE modelling to contribute $\Delta \ln (N_{u}/g_{u}) \lesssim 0.37$. Another factor is beam dilution, which contributes up to $\Delta \ln (N_{u}/g_{u}) \approx 2 \ln (37''/25'') \approx 0.8$ for a point source observed at the spectral edges of bands 1b and 3b. However, most of the scatter is due to differences in thermalization conditions for CH$_{3}$OH transitions with different upper level K quantum numbers. We assume the K-ladders with the lowest n_{cr}, e.g. $K_{u} = 0$ approach LTE, as they thermalize below the densities expected for the hot core from the Crim09 model and are seen to lie close to each other, forming the upper envelope of the diagram. The $K_{u} = -3$ ladder, which has a critical density of $n_{cr} \approx 10^{9} \text{cm}^{-3}$, forms the lower envelope, well below most detected ladders ($-4 \lesssim K_{u} \leq 4$).

Excitation temperatures and column densities from linear fitting are given in Table 2 for the ladder likely closest to LTE, $K_{u} = 0$. The fit to the A state is shown in Fig. 2 and yields $T_{\text{rot}} = (145 \pm 12) \text{K}$ and $N_{A} = (2.2 \pm 0.5) \times 10^{14} \text{cm}^{-2}$. Fitting the E state gives $T_{\text{rot}} = (120 \pm 8) \text{K}$ and $N_{A} = (1.4 \pm 0.3) \times 10^{14} \text{cm}^{-2}$. A fit to the $K_{u} = -3$ ladder gives $T_{\text{rot}} = (66 \pm 2) \text{K}$. This low value is likely mostly due to subthermal excitation, but optical depth and beam dilution may also play a role, as explained earlier.

A two-component LTE model was made with the CASSIS software, treating methanol as a single species. The model envelope and hot core have methanol abundances of 2×10^{-7} and 10^{-12}, line widths of 3 km/s and apparent diameters of 20.0" and 3.5", respectively. Source sizes, H_{2} column densities, and excitation temperatures were taken to be consistent with the Crim09 source model, as well as with the observed T_{rot} values in Table 2.

3 CASSIS has been developed by CESR-UPS/CNRS (http://cassis.cesr.fr).

<table>
<thead>
<tr>
<th>Approach</th>
<th>Component</th>
<th>T_{rot} [K] (type)</th>
<th>N_{meth} [cm$^{-2}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>$K_{u} = 0 (A)$</td>
<td>145.12 ± 12 (rot)</td>
<td>$(2.2 \pm 0.5) \times 10^{14}$</td>
</tr>
<tr>
<td>$K_{u} = 0 (E)$</td>
<td>120.48 ± 8 (rot)</td>
<td>$(1.4 \pm 0.3) \times 10^{14}$</td>
<td></td>
</tr>
<tr>
<td>LTE model</td>
<td>Envelope input</td>
<td>40 (exc)</td>
<td>2×10^{14}</td>
</tr>
<tr>
<td>Hot core</td>
<td>120 (exc)</td>
<td>6×10^{14}</td>
<td></td>
</tr>
<tr>
<td>LTE simulated obs.</td>
<td>$K_{u} = 0 (A)$</td>
<td>164 (rot)</td>
<td>1.4×10^{14}</td>
</tr>
<tr>
<td>$K_{u} = 0 (E)$</td>
<td>168 (rot)</td>
<td>1.7×10^{14}</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. From the top: the rotational temperatures and methanol column densities derived from the observed population diagram; the input excitation temperatures and column densities of the LTE model; the rotational temperatures and column densities derived from the modelled population diagram.

4. Discussion

The source OMC2-FIR4 is a line-rich protostar with a high degree of chemical and physical complexity. The hundreds of CH$_{3}$OH transitions that are detectable with HIFI cover a wide range of excitation conditions and offer unprecedented spectral constraints on the structure of protostellar cores.

Previous knowledge (Jørgensen et al. 2006, Shim08, Crim09) suggests OMC2-FIR4 is dominated by three components: a large-scale, cool envelope $\sim 10^{4} \text{AU}$ across; a compact hot core $\sim 10^{2} \text{AU}$ across; and the outflow from FIR3, in particular a suspected blue-shifted spot resulting from its interaction with the FIR4 envelope. The hot core gives rise to a dominant part of the emission in all lines in our LTE model, but the changes in line profiles through Fig. 1 imply reality is more complex. The envelope may contribute significantly to the lowest excitation lines, and shocks from regions such as where the FIR3 outflow strikes FIR4 (Shim08) are likely to be important.

The effects of the hot core radius and H_{2} column density on the line fluxes are degenerate if the lines are optically thin, as they are in our LTE model. Thus, an upper limit on the former and lower limit on the latter will result in an upper limit on the methanol abundance. Attributing the luminosity of FIR4, $10^{4} L_{\odot}$, to the central protostar and assuming grain mantle evaporation at 100 K, one finds an upper limit of $R_{\text{core}} \approx 760 \text{AU}$ for 0.1\(\mu\)m olivine grains. More realistic radiative transfer would decrease
this value. At 440 pc, 760 AU extends ~ 1.75" on the sky, which
is adopted as the core radius in the model.

To reproduce the observed $K_0 = 0$ line fluxes with LTE
at an assumed $T_{\text{ex}} = 120 K$, we need a column density of
N(CH$_3$OH) = 6 • 1016cm$^{-2}$ in the model hot core. Integrating
the Crim09 H$_2$ density distribution from 100 to R$_{\text{Crim}}$ =440 AU,
one obtains N(H$_2$) = 6 • 1022cm$^{-2}$. The source model was based
on low-resolution maps, and the core is poorly constrained and
excludes the inner 100 AU. We thus take the H$_2$ column density
as a lower limit and, adopting it in the LTE model, conclude that
the obtained CH$_3$OH abundance $X_{\text{core}} = 10^{-6}$ is a conservative
upper limit. The highest abundance seen in low-mass hot cores is
2 • 10^{-6} (Jørgensen et al. 2005). If the hot core does not dominate
the line emission in reality, smaller hot core sizes and methanol
column densities, as well as higher rotational temperatures, may
be consistent with the data. Presently, the abundance of methanol
in the envelope is very poorly constrained. We set it to 2 • 10^{-6}
in the LTE model, consistent with the factor 10$^{-3}$ abundance jump
seen in hot cores (van der Tak et al. 2000; Maret et al. 2005).

The hot core density is broadly constrained to be between 106 and 107 cm$^{-3}$ by this early analysis. Lower and higher values
would be difficult to reconcile with the large-scale density profile, furthermore the population diagram suggests the K
ladders with the lowest n_K may approach LTE while those with the
highest n_K clearly deviate from it. Typical kinetic temperatures
well in the $\gtrsim 100$ K hot core regime are implied by the obtained
rotational temperatures of $T_{\text{rot}} = (120 \ldots 145)$ K. Shock contri­
butions from the FIR3-FIR4 interaction spot as well as the hot
core itself need to be considered before drawing further conclu­
sions about the temperature structure.

An intriguing feature is the appearance of an asymmetry in the $E_u = 0$ line fluxes, as seen in Fig. 1. Because these lines
should be dominated by the hot core emission, the profiles ob­
served could represent the blue asymmetric profile expected for
infalling gas (e.g. Walker et al. 1994), implying we may be see­ing
collapse in the central regions. To clarify whether infall, shocks, or other phenomena are responsible for the asymmetry,
interferometry as well as further analysis of the Herschel-HIFI
data, in particular the 13CH$_3$OH lines, will be employed.

We note the difference in column density of the $K_0 = 0$ tran­
sitions of the A and E states in Table 2. Whether it is truly
significant will be explored in a future paper. Also, early results from
an analysis of formalddehyde in OMC2-FIR4 will be presented in
a companion paper (Crimier et al., in prep.).

Acknowledgements. The authors are grateful to the referee, Dr. Tim van Kempen, for constructive comments leading to a significant improvement of the paper, and to Rens Waters for helpful discussions. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major con­
tributions from Germany, France and the US. Consortium members are: Canada: CSA, U-Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF; Observatorio
Astrofisico di Arcetri - INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW, USA: Caltech, JPL - NHSC, and we are deeply grateful to everyone involved in the de­
signing, building, and exploitation of this fantastic instrument. HCSS, HSpot, and HIPPE are joint developments by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS, and SPIRE consortia. M.Kama gratefully acknowledges support from the Netherlands Organisation for Scientific Research (NWO) grant num­
ber 021.002.081 and the Leids Kerkhoven-Bosscha Fonds, and thanks SRON Groningen for hosting the HIFI ICC volunteers.

References

Bruderer, S., Benz, A. O., Doty, S. D., van Dishoeck, E. F., & Bourke, T. L. 2009,
The Astrophysical Journal, 700, 872
Protostars and Planets V, 47
Hirota, T., Bushimata, T., Choi, Y. K., et al. 2007, Publications of the
Astronomical Society of Japan, 59, 897
Kurtz, S., Cesaroni, R., Churchwell, E., Hofner, P., & Walmsley, C. M. 2000,
Protostars and Planets IV, 299
Ott, S. 2010, in ASP Conf. Ser.: Astronomical Data Analysis Software and
Systems XIX, ed. Y. Mizumoto & M. Ohishi, in press
683, 255
Spaans, M., Hogerheijde, M. R., Mundy, L. G., & van Dishoeck, E. F. 1995,
Astrophysical Journal Letters v.455, 455, L167