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Support vector machines (SVMs) have become a popular
technique in the chemometrics and bioinformatics field,
and other fields, for the classification of complex data sets.
Especially because SVMs are able to model nonlinear
relationships, the usage of this technique has increased
substantially. This modeling is obtained by mapping the
data in a higher-dimensional feature space. The disad-
vantage of such a transformation is, however, that infor-
mation about the contribution of the original variables in
the classification is lost. In this paper we introduce an
innovative method which can retrieve the information
about the variables of complex data sets. We apply the
proposed method to several benchmark data sets and a
metabolomics data set to illustrate that we can determine
the contribution of the original variables in SVM clas-
sifications. The corresponding visualization of the contri-
bution of the variables can assist in a better understanding
of the underlying chemical or biological process.

In the past decade support vector machines (SVMs) have
become a popular technique in pattern recognition and regression
estimation. Applications of SVMs are among the fields of
bioinformatics,1,2 medicine,3-6 drug discovery,7-9 text categoriz-
ing,10 gene expression analysis,11-13 face recognition,14 spam

categorizing,15,16 financial forecasting,17,18 and many others.
Especially because of the possibility to model complex nonlinear
relationships the application of SVMs has grown substantially.19-22

By transforming the original input space into a high dimensional
feature space, the nonlinear relationships can be presented in a
linear form. This transformation is performed by using a specific
kernel function.6,23,24 Several kernel functions are proposed in the
literature for this purpose and include variance-covariance based
linear and polynomial kernels, the Euclidean distance based radial
basis function (RBF) and the Pearson VII Universal Kernel (PUK)
functions.23-25 The transformation by a kernel function has also
been introduced in other algorithms, such as Kernel Principal
Component Analysis,26 Kernel Partial Least Squares,27,28 and
Kernel Fisher Discrimination.29

However, the disadvantage of using such a kernel function is
that the correlation between the obtained SVM model and the
original input space is lost. Therefore it is not possible to
determine which variables (e.g., spectral ranges) contribute to
the final SVM results and a direct interpretation of the SVM model
is not straightforward.30,31 This seriously hampers the ultimate
(bio)chemical interpretation of the resulting classification model.
In this manuscript we propose a novel method to overcome this
problem and reveal the importance of the original variables.
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Another approach to handle this limitation is automatic relevance
determination,32,33 which was developed as a feature selection
procedure in SVM models. Even though this method selects the
variables that are important for the model, the relation between
the variables and, for example, the class separation is not
visualized. Generally, researchers report the high performance
obtained by using a SVM model for classification and regression
estimation, but do not comment on the relationship between the
input variables and the modeled output data. SVM is often used
as a black box approach.

In this paper we present an innovative approach to open this
black box for the SVM classifier and give insight in the transfor-
mation by the kernel function to make the SVM model more
transparent. This approach is based on the nonlinear biplot
principles described by Gower and Harding in 198834 and is used
to visualize and determine the importance and influence of the
input variables to the final SVM classifier. The resulting informa-
tion can then be used to reduce the number of input variables to
improve the performance or to reduce the complexity of the
model. Furthermore, the visualization of the contribution of the
original variables can assist in a better understanding of
the underlying chemical or biological process. We will present
the proposed approach, and illustrate and validate the methodol-
ogy by applying it for classification problems: two benchmark data
sets and a relevant metabolomics data set obtained from magnetic
resonance spectroscopic images to diagnose human brain tumors.
The effectiveness of the method is verified by a comparison of
the classification performance obtained by using the entire set of
input variables and a selection of variables, determined by our
approach.

EXPERIMENTAL SECTION
Theory and Computational Strategy. As the theory of SVMs

is described extensively in the literature13,21-24 and the use of a
kernel transformation results in the loss of information about the
input variables, we will focus in the next section briefly on the
concepts of the kernel function. Subsequently, we will explain
the basic steps of the nonlinear biplot technique, as described by
Gower and Harding,34 to discuss the proposed method to
determine the contribution of the input variables in SVM clas-
sifications. The full theory and algorithm of the proposed method
can be found in the Supporting Information (SI).

Kernel Transformations. In the various kernel-based methods
a specific mapping function is used to project the original input
data in a higher-dimensional feature space.24 The data in this new
feature space can subsequently be used as a new input for pattern
recognition. The advantage of such an approach is that the method
can deal with complex nonlinear problems. The typical (two-
dimensional) example to illustrate this approach is shown in the
inset of Figure 1. This data set (X) contains two classes that we
would like to separate.

The inner circle represents one class and the outer circle
represents the other class. From the figure it is obvious that we
are not able to separate the classes by a linear model. However,
if we project this data in a higher dimensional space by using a
mapping function, we are able to obtain the three-dimensional
feature space which is represented in Figure 1. In this feature
space the two classes can be linearly separated by a plane between
the circles. In this case the transformation is performed by the
mapping function φ. It has been shown that, since the (nonlinear)
mapping function is in general unknown beforehand and is difficult
to determine, the feature space can be constructed implicitly by
invoking a generic kernel function (see, e.g., refs 23-25, 35). Such
a kernel function is a function (K) which operates on two vectors,
such that

K(xi., xj.) ) 〈�(xi.), �(xj.)〉 (1)

where xi. and xj. are two objects in the data set and φ represents
the actual nonlinear mapping function. The use of a kernel
function makes it unnecessary to know the actual underlying
feature map in order to be able to construct a linear model in
the feature space. The application of such a kernel function
will result in a square symmetric matrix: the kernel matrix K.
This matrix is a weighted dissimilarity matrix, of which each
position represents a dissimilarity (distance) measure between
two objects. The specific kernel function and the optimal
parameter settings of the function are determined in combina-
tion with the applied classification algorithm (e.g., SVM) by
optimizing the classification performance. However, because
the kernel function transforms the original input space into a
feature space with a higher dimension, information about the
original variables is not preserved.

Nonlinear Biplots. To explain the concepts of nonlinear biplots,
we will first describe the classical biplots technique which is used
extensively in (chemometric) data analysis.

(30) Üstün, B.; Melssen, W. J.; Buydens, L. M. C. Anal. Chim. Acta 2007, 595,
299–309.

(31) Devos, O.; Ruckebusch, C.; Durand, A.; Duponchel, L.; Huvenne, J. P.
Chemom. Intell. Lab. Syst. 2009, 96, 27–33.

(32) Van Gestel, T.; Suykens, J. A. K.; De Moor, B.; Vandewalle, J. Proc. Eur.
Symp. Artif. Neural Networks. 2001, 13–18.

(33) MacKay, D. J. C. In Neural Networks and Machine Learning, NATO Asi
Series. Series F, Computer and Systems Sciences 168; Bishop, C. M., Ed.;
Springer: Berlin, 1998; pp 133-165.

(34) Gower, J. C.; Harding, S. A. Biometrika 1988, 75, 445–455.

(35) Gunn, S. R. Support Vector Machines for Classification and Regression.
Technical Report; Image Speech and Intelligent Systems Research Group,
University of Southampton: Southampton, 1997.

Figure 1. The synthetic benchmark data set. Mapping of a two-
dimensional data set which contains two nonlinearly separable classes
(outer and inner circles) into a three-dimensional feature space. The
transformation is performed by applying the nonlinear mapping
function φ(x.1, x.2) ) (x.1

2,�2x.1x.2, x.2
2), which makes the two classes

linearly separable.
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A biplot is a visualization in which the samples and the
variables of a data set are represented together. This technique
has been introduced by Gabriel in 197136 and is based on singular
value decomposition (SVD) or principal component analysis
(PCA)37 of the column mean-centered data matrix X, containing
n samples and m variables. By SVD X is decomposed into scores
and loadings according to

X(n×m) ) U(n×r)Λ(r×r)V(m×r)
T ) S(n×r)L(m×r)

T (2)

The positions of the samples (rows of X) in a two-dimensional
biplot are subsequently given by the elements in the columns of
UΛ, often called the scores S. The variables (columns of X) are
usually represented as vectors pointing from the origin to the
coordinates that are given by the elements of the columns of V,
called the loadings L. To construct a biplot for the first two
singular vectors (or principal components, PCs), the elements in
the first two columns of S and in the first two columns of L are
used. This is illustrated for the Iris data set (see the Iris
benchmark Data Set section) in Figure 2a. The coordinates of a
new sample in this biplot can be obtained by premultiplying the
sample as a row vector with V:

x(1×m)V(m×2) ) s(1×2) (3)

The key idea leading to the nonlinear biplot is the interpretation
of the loadings in the classical biplot (the representation of the
variables) as projections of special so-called pseudosamples that
carry all their weight in one variable. This means that these
pseudosamples have a value of 0 for all variables, except for one
variable. Projecting this pseudosample in the two-dimensional PCA
plot yields coordinates that are equal to the loadings of the variable
whose weight it carries. For example, [1, 0, 0, ..., 0] is a (1 × m)
pseudosample with a value 1 for variable 1 and a value 0 for all
other variables. Then

[1, 0, 0, ..., 0](1×m)V(m×2) ) s(1×2) ) v(1×2) (4)

where v is the first row of V and contains exactly the loading of
variable 1, defining its position in the biplot. If the value of 1 is
replaced by p different values z, a total of p pseudosamples are
obtained. The projection of these pseudosamples in the PCA plot
will result in a trajectory along the direction of the variable vector,
as illustrated in Figure 2b.

Gower et al.34 extend this idea to the visualization of variable
information in principle coordinate analysis. In principal coordinate
analysis (or classical metrics scaling) an SVD is performed not
on the original rectangular data matrix X, but on the symmetric
matrix of squared Euclidean distances. This approach allows the
visualization of the relative distances of the objects. It is often
remarked that the information of the original variables (such as
in a biplot) is lost. Gower et al., however, showed that this can be
overcome by using the concept of trajectories of pseudosamples,
as explained earlier. To make this approach feasible, one must
be able to calculate the squared Euclidean distances of the
pseudosamples with all other samples (e.g., data X). By projecting
the rows of the resulting distance matrix in the principal
component space, the trajectories that represent the variables are
obtained. Gower et al. showed that this concept can be extended
from Euclidean distances to many nonlinear distance metrics, as
long as the same distance metric can be used to calculate the
distances of the pseudosamples to the original data samples. In
the classical linear biplot, only one pseudosample per variable is
sufficient to represent the variables. For a nonlinear distance
metric, the trajectory will be curved and multiple pseudosamples
per variable are required.

Nonlinear Biplots in SVM Classification. We propose to apply
the above approach to the kernel-based SVM method, since the
kernel is a (nonlinear) distance metric between objects. This
procedure comprises the following steps (shortened):

0. Optimize the kernel function and parameter settings for the
SVM classification used (resulting in the kernel function K(xi.,xj.)).

1. From the data X calculate the kernel matrix K, by using
the optimized kernel function. This matrix is subsequently
centered, resulting in matrix Kc of size n × n.

2. Apply SVD on Kc and construct different score plots (for
the various combinations of principal components) for the n
samples in Kc. Inspect these score plots to find the direction(s)

(36) Gabriel, K. R. Biometrika. 1971, 58, 453–467.
(37) Massart, D. L. Handbook of Chemometrics and Qualimetrics: Part A; Elsevier

Science Publishers: Amsterdam, 1997.

Figure 2. Biplots of the Iris benchmark data set. The scores (representing the samples) are visualized as symbols, whereas the loadings are
visualized by the vectors. The loadings are obtained by (a) projection of the first two columns in the loading matrix and (b) projection of the
scores of 10 pseudosamples (for each variable).
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(principal components, PCs) in which maximum class separa-
tion is obtained. Note that this is not necessarily along the first
PCs.

3. Construct a matrix Pj for the jth variable which contains p
pseudosamples. The range of these pseudosample values zj

should vary between the minimum and maximum value of the
original variable.

4. Apply the kernel function K(pi.,xj.) to the pseudosample
data Pj to obtain the kernel matrix of the pseudosamples C
(i.e., calculate the kernel distances of the pseudo samples to
the original samples).

5. Project the rows of the centered pseudosample kernel matrix
Cc in the score plot that was found in step 2.

6. Repeat steps 3-5 for each variable j.
The resulting plot contains a trajectory of pseudosamples for

each original variable. These trajectories yield information about
the relative contribution of the variables to the SVM classification.
The curvature of a trajectory indicates a nonlinear kernel
transformation.

SVM Classification and Validation Procedure. Each data set was
analyzed by SVM using the RBF kernel. The RBF kernel was
chosen because of its simplicity for optimization. Because the SVM
application that we have used is a binary classifier, each different
class in a data set that contains more than two classes was
analyzed by a one-against-all approach.38 The kernel parameters
parameter σ and the SVM parameter C (C is a cost parameter23)
were optimized by leave-10%-out cross-validation.

All calculations are performed in the software program Matlab
(The MathWorks Inc.) version 6.5 release 13. The nonlinear biplot
approach was implemented in Matlab by using the commercially
available PLS toolbox from eigenvector Research Inc.

Data Sets. To illustrate the applicability of the proposed
method we have used several benchmark data sets (synthetic and
real) and a metabolomics data set based on Magnetic Resonance
Spectroscopic Imaging (MRSI) data.

Synthetic Benchmark Data Set. A synthetic data set was
constructed based on the data presented in Figure 1, which is
generally used to illustrate the power of SVM classification. The
data set contains two variables to represent an inner and outer
circle, both consisting of 50 objects. The two circles can not be
separated in a linear way and therefore a kernel-based classifica-
tion method is required to separate the data.

To construct the Synthetic data set we added five variables
containing random noise (normally distributed) to the data. The
variance of these five variables was set to be about 10% of the
variance of the two variables which represent the circles. Because
noise contains no information, the added variables do not
contribute to the classification performance. This data set was
constructed to confirm that the first two variables (representing
the circles) are only (equally) important in the SVM classification.

Iris Data Set. A widely used benchmark data set to exemplify
discriminant and cluster analysis is the data published by Fisher
in 1936.39 This Iris data set contains fifty specimens of each of
the three species Iris Setosa, Iris Versicolor, and Iris Virginica,
resulting in a total of 150 samples. Four properties of the species
are measured to determine differences between the three classes.

These properties (representing four variables) are Sepal Length,
Sepal Width, Petal Length, and Petal Width, all measured in
millimeters. The Setosa class can easily be separated from the
other two classes using only one variable (either Petal Length or
Petal Width). The two other classes are partly overlapping, as
shown in Figure 2.

We will use the Iris data set to demonstrate the applicability
of our proposed method to determine the most discriminative
variable for the three species.

Metabolomics Data Set. To illustrate the proposed method for
variable selection on a more complex data set, we have used a
metabolomics data set which consists of magnetic resonance
spectroscopic (MRS) spectra obtained from MRSI data.40 This data
set was constructed during a European project called Interpret,
which was funded by the European Commission to develop new
methodologies to automatically classify tumors in the human brain
(see http://azizu.uab.es/INTERPRET). Data from a total of 24
patients and 4 volunteers were acquired by MRS at different
positions in the brain, according to an acquisition protocol defined
by the Interpret Consortium. The study was approved by the
ethical committee and followed the rules of the World Health
Organization. After reaching consensus about the histopathology,
three tumor types were identified according to the World Health
Organization classification system. These three classes contained
glial tumors with different grades: Grade II (10 cases), Grade III
(4 cases), and Grade IV (7 cases). A fourth class consists of spectra
acquired from patients with Meningioma (3 cases). Additionally,
a class consisting of Healthy tissues was created from patient (4
cases) and volunteer (4 cases) data. For each predefined class a
selection of spectra from the different patients was made. Only
spectra acquired at regions which clearly consisted of tissue
belonging to the particular class were selected. The data for the
Healthy class was selected from the volunteers or from the contra-
lateral brain region of the patients.41 The resulting data set
contains 569 spectra, consisting of five different classes. Each
spectrum contains 229 data points, covering the chemical shifts
between 4.0 and 0.5 ppm. Details about the acquisition parameters
and preprocessing of the data are described in Simonetti et al42

and are beyond the scope of this paper.

RESULTS
Synthetic Benchmark Data Set. Classification of the Syn-

thetic data set by using SVMs resulted in a leave-10%-out cross-
validated accuracy of 100%. This accuracy (see also SI Table 1)
illustrates that SVMs are able to separate the two circles. As noise
contains no information, the particular noise-variables should not
have contributed to the class separation. To verify the contribution
of each variable in the final classification first we have to find
and visualize the optimal (linear) separation between the classes
in the resulting kernel matrix. Because the Synthetic data set
contains one hundred objects, the feature space in which the
original data is mapped (i.e., the space of the kernel matrix)
consists as a consequence of one hundred dimensions. Therefore
PCA is used to reduce the dimensionality of the feature space.
Analysis of the score plots of combinations of only the first five

(38) Suykens, J. A. K.; Van Gestel, T.; De Brabanter, J.; De Moor, B.; Vandewalle,
J. Least Squares Support Vector Machines; World Scientific: Singapore, 1999.

(39) Fisher, R. A. Annu. Eugen. 1936, 7, 179–188.

(40) Barker, P. B.; Lin, D. D. M. Prog. Nucl. Magn. Reson. Spectrosc. 2006, 49,
99–128.

(41) Simonetti, A. W.; et al. Anal. Chem. 2003, 75, 5352–5361.
(42) Simonetti, A. W.; et al. NMR Biomed. 2005, 18, 34–43.
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PCs show that “PC 5” can be used to visualize the class separation
of the two classes. The pairs-plot for the first five PCs of the
Synthetic data set is given in Figure 3. Apparently, the variance
which accounts for the separation between the classes is captured
by PC 5. The contribution of each original variable can be
determined by projecting the kernel matrix of the corresponding
pseudosamples in the feature space spanned by PC 5 and any of
the other PCs and by subsequently analyzing the obtained
trajectories.

The pseudosample matrices were constructed by varying the
intensities of the individual variables over twenty objects (uni-

formly distributed). The application of the kernel function resulted
in seven kernel matrices (one for each variable) of size (20 × 100).
These matrices were then projected in the feature space obtained
by PCA on the original kernel matrix K. The trajectories of the
seven variables obtained by the proposed method are visualized
for the space spanned by “PC 1” and “PC 5” in Figure 4b. As
shown, the trajectories of the five noise-variables (variables 3-7)
are along the direction of the class separation (PC 5), but are
relatively small compared to the two trajectories of the variables
representing the inner and outer circle (variables 1 and 2). This
indicates that the noise-variables have a small contribution to the

Figure 3. Principle component score plots of the synthetic benchmark data set. Pairs-plot of the first five principal components (PCs) are
shown. The separation between the inner circle (blue +-symbol) and the outer circle (red o-symbol) is obtained on PC 5.

Figure 4. Relevant score plot and pseudo sample trajectories for the Synthetic benchmark data set. (a) Projection of the objects of the Synthetic
benchmark data set (after the kernel transformation) in the feature space spanned by PC 1 and PC 5. (b) Pseudosample trajectories projected
in the same feature space. The trajectories of the two variables representing the two circles are indicated by the numbers “1” and “2”. The five
noise-variables (variables “3” to “7”) are distributed around the origin of the plot and are therefore not clearly visible.
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class separation, which is in accordance with our hypothesis. As
the trajectories of variable 1 and 2 have a similar length on PC 5,
both variables are important for the class separation. A (linear)
classification based on only one variable is therefore not possible.
A visual inspection of the Synthetic data set (see the Theory and
Computational Strategy section) already confirmed this conclusion.

Inspection of the trajectories in the score plots of combinations
of other PCs showed that the variables representing the two circles
can have a relatively small loading in the particular feature space
(results not shown). For example, in the space spanned by “PC
2” and “PC 4” variable 4 (representing noise) has the largest
loading compared to the other variables. However, no class
separation was found in this particular score-plot (see Figure 3)
and therefore this feature space is not informative.

Iris Benchmark Data Set. The application of the three
possible one-against-all classifications resulted in cross-validated
accuracies of at least 96.7% (see also SI Table 1). After PCA was
applied to the three kernel matrices (for each one-against-all
classifier), we searched for the PCs resulting in the optimal
separation between the classes in the pairs-plots. These optimal
separations are visualized in Figure 5a-c and as shown the Setosa
class is completely separated from the other classes by the
variance captured by PC 1. The Versicolor and Virginica class
requires two principal components to capture the variance which
accounts for the class separation, that is, PC 2 and PC 5 for
Versicolor and PC 1 and PC 2 for the Virginica class.

To determine the contribution of the original variables, pseu-
dosample trajectories were constructed and projected in the space
spanned by the corresponding PCs. These projections are visual-

ized in Figure 5d-f and as illustrated the variables Petal Length
(variable 3) and Petal Width (variable 4) are most discriminative
for the classifications, confirming our hypothesis. However, the
length of the trajectory of Petal Width is much shorter compared
to Petal Length (for unscaled data) and is therefore less important
for the classifications. To confirm these observations we have
applied SVM to the Iris data set by including only Petal Length.
The resulting cross-validated accuracies are given in SI Table 2.
Although the accuracies for the Versicolor and Virginica class are
somewhat lower compared to the results where all the variables
are used (95.3% versus 96.7%), the accuracies are still comparable.
If one of the other variables was chosen for the classification, that
is, Sepal Width, the accuracies are much lower (<84%, results not
shown), indicating that Petal Length is the most important variable
in the classification.

Metabolomics MRSI Brain Tumor Data Set. The MRSI data
set was used to study the proposed method for data sets with
many variables (229). For illustration purposes we only consider
the classification of the Healthy class against all the tumor classes.
The application of SVM resulted in an accuracy of 98.7% as shown
in Table 1 of the SI. By the application of PCA on the kernel
matrix, the variance between the Healthy class and the other
classes is captured by PC 1 and PC 3. The projection of the
samples in the space spanned by PC 1 and PC 3 is presented in
Figure 6a. If the trajectory of each pseudosample (representing
the individual variables) is projected in the same space, many
trajectories are located around the origin as shown in Figure 6b.
Only two groups of trajectories show a clear elongated pattern.

Figure 5. Relevant score plots and pseudo sample trajectories for the Iris benchmark data set. Projection of the objects of the Iris data set
after kernel transformation and PCA, to illustrate the optimal separation of the (a) Setosa, (b) Versicolor, and the (c) Virginica class (red o-symbols).
The pseudosample trajectories are projected in the same feature space for the (d) Setosa, (e) Versicolor, and the (f) Virginica class. The
trajectory of each variable is indicated by a different number: “1” for Sepal Length, “2” for Sepal Width, “3” for Petal Length, and “4” for Petal
Width.
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One group of trajectories consists of pseudosamples representing
the variable numbers 170-184 (1.40-1.19 ppm; the trajectories
in the direction of PC1, colored orange in Figure 6b), and the
other group the variables 129-132 (2.03-1.98 ppm; the trajecto-
ries more or less in the direction of PC3, colored green in Figure
6b). Because the group of variables within 2.03-1.98 ppm is along
the direction of the class separation we postulate that these
variables have a large contribution to the SVM classification. This
observation corresponds to results published in the literature, in
which the researchers stated that this specific region corresponds
to N-acetyl-aspartate, which is a neuronal marker for viable
neurons, and that the concentration is reduced or absent in most
brain tumors.43

Note that the other group of trajectories, representing the
variables 170-184 (1.40-1.19 ppm), corresponds to lactate and
lipids regions of the spectra. These trajectories are located in the
direction along PC 1 and direction corresponds to increasing
tumor grade. This observation also corresponds to the results of
Howe et al.43

With only the variables selected within the region of 2.03-1.98
ppm (four variables), the SVM classification results in a leave-
10%-out cross-validated accuracy of 95.4% (see SI Table 2). This
value is in agreement with the accuracy obtained when all the
variables are included in the SVM model (98.7%), indicating that
these variables have a large contribution to the classification. If a
set of four variables was selected randomly, the cross-validated
accuracy was <76%. Classification of the other classes results in
similar conclusions. This indicates that the proposed method can
be used to determine the variables which contribute to the optimal
class separation in kernel-based methods.

DISCUSSION
The application of the method to the different classification

problems shows that the proposed procedure can be used to
visualize and determine the relative contribution of the original

variables in SVM classifications. From the examples with classes
that are not linearly separable, the curvatures of the trajectories
illustrate the effect and importance of the nonlinear kernel
transformation. This can be concluded especially for the Synthetic
and Iris benchmark data sets, in which several trajectories are
curved. Such a determination of the relative contribution of the
original variables and the effect of the kernel transformation can
also be applied to kernel PLS in regression problems. Another
possible extension is the application the method to multiclass
kernel classifiers. Even though promising results for the kernel
PLS case are already obtained, these approaches are still subject
to further research.

The metabolites identified and visualized using the proposed
method on the metabolomics data set were also identified applying
the ARD method on this data set.44 The advantage of our method,
however, is the visualization and identification of (non-) linearity
of the contribution. Moreover, our method is computationally
simple.

The results of the data sets illustrate that the optimal class
separations are captured by any or a combination of the first five
principal components. However, a combination of several principal
components has still to be (visually) analyzed. Another approach
is to apply pattern recognition techniques45,46 to the feature space
in order to find the direction which described the class separation.
This approach is also still under investigation.

The proposed method could possibly fail if no class separation
can be found after inspection of the score plots with different
combinations of principal components. This is, however, not
expected, as the SVM algorithm searches for a kernel function
that provides such a linear class separation.

(43) Howe, F. A.; Opstad, K. S. NMR Biomed. 2003, 16 (3), 123–131.

(44) Postma, G. J.; Luts, J.; Idema, A. J.; Julià-Sapé, M.; Moreno-Torrese, Á.;
Gajewicz, W.; Suykens, J. A. K.; Heerschap, A.; Van Huffel, S.; Buydens,
L. M. C. Comp. Biol. Med. (submitted).

(45) Jain, A. K.; Murty, M. N.; Flynn, P. J. ACM Comput. Surv. 1999, 31, 264–
323.

(46) Webb, A. Statistical Pattern Recognition; Wiley: Malvern, 2002.

Figure 6. Relevant score plot and pseudo sample trajectories for the metabolomics data set. (a) Space spanned by PC 1 and PC 3, obtained
by PCA applied on the kernel matrix of the MRSI data set. The Healthy class is indicated by red o-symbols and the tumor classes by blue
+-symbols. (b) Pseudosample trajectories, projected in the same feature space as in (a). Each trajectory is indicated by a different number and
represents a different variable. The trajectories are also color-coded using the variable numbers, resulting in similar colors for trajectories of
variables representing specific regions in the NMR spectrum.
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CONCLUSIONS

In this paper we have introduced a new method to successfully
visualize and identify the important variables in the classification
by a kernel-based method. By constructing a set of pseudosamples
we are able to determine the effect of the kernel function to the
individual variables. We have applied the proposed method to
several synthetic and real data sets and have shown that our
method is able to find and visualize the most discriminative
variables. To confirm this conclusion, we have selected only the
most discriminative variables and reapplied the proposed method.
The cross-validated classification accuracies of these reduced data
sets are similar to the accuracies obtained by using the data sets
with the full set of variables. This illustrates the validity of our
method to determine the most important variables for classifica-

tion purposes by kernel-based techniques. The interpretation of
SVM models with our proposed visualization method has the
potential to extract relevant chemical and biological knowledge
from complex data, such as omics data. This will greatly enhance
the applicability of the powerful SVM classifiers.

SUPPORTING INFORMATION AVAILABLE
List of symbols, discussion of theory and computational

strategy, two additional figures, and two additional tables. This
material is available free of charge via the Internet at
http://pubs.acs.org.
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