LETTER TO THE EDITOR

Water in low-mass star-forming regions with Herschel*

HIFI spectroscopy of NGC1333

(Affiliations can be found after the references)

Draft: July 20, 2010

ABSTRACT

Water In Star-forming regions with Herschel (WISH) is a key programme dedicated to studying the role of water and related species during the star-formation process and constraining the physical and chemical properties of young stellar objects. The Heterodyne Instrument for the Far-Infrared (HIFI) on the Herschel Space Observatory observed three deeply embedded protostars in the low-mass star-forming region NGC1333 in several H2O, H218O, and CO transitions. Line profiles are resolved for five H218O transitions in each source, revealing them to be surprisingly complex. The line profiles are decomposed into broad (>20 km s⁻¹), medium-broad (~5–10 km s⁻¹), and narrow (<5 km s⁻¹) components. The H218O emission is only detected in broad 10–11 lines (>20 km s⁻¹), indicating that its physical origin is the same as for the broad H218O component. In one of the sources, IRAS4A, an inverse P Cygni profile is observed, a clear sign of infall in the envelope. From the line profiles alone, it is clear that the bulk of emission arises from shocks, both on small (<1000 AU) and large scales along the outflow cavity walls (~10000 AU). The H2O/C0 abundance ratios are measured to be in the range of ~0.1–1, corresponding to H2O abundances of ~10⁻⁵–10⁻⁴ with respect to H2. Approximately 5–10% of the gas is hot enough for all oxygen to be driven into water in warm post-shock gas, mostly at high velocities.

Key words. Astrochemistry — Stars: formation — ISM: molecules — ISM: jets and outflows — ISM: individual objects: NGC1333

1. Introduction

In the deeply embedded phase of low-mass star formation, it is often only possible to trace the dynamics of gas in a young stellar object (YSO) by analysing resolved emission-line profiles. The various dynamical processes include infall from the surrounding envelope towards the central protostar, molecular outflows caused by jets ejected from the central object, and strong turbulence induced within the inner parts of the envelope by small-scale shocks (Arce et al. 2007, Jørgensen et al. 2007). One of the goals of the Water In Star-forming regions with Herschel (WISH) key programme is to use water as a probe of these processes and determine its abundance in the various components as a function of evolution (van Dishoeck et al. in prep.).

Spatially resolved observations of the H2O 10–11 line at 557 GHz with ODIN and SWAS towards low-mass star-forming regions have revealed it to be broad, ~20 km s⁻¹, indicative of an origin in shocks (e.g., Bergin et al. 2003). Within the large beams (2' and 4'), where both the envelope and the entire outflow are present, outflow emission most likely dominates. Observations and subsequent modelling of the more highly excited H2O lines with ISO-LWS were unable to distinguish between an origin in shocks or an infalling envelope (e.g., Ceccarelli et al. 1996, Nisini et al. 2002, Marett et al. 2002). Herschel-HIFI has a much higher sensitivity, higher spectral resolution, and smaller beam than previous space-based missions, thus is perfectly suited to addressing this question. Complementary CO data presented by Yıldız et al. (2010) are used to constrain the role of the envelope and determine outflow temperatures and densities.

NGC1333 is a well-studied region of clustered, low-mass star formation at a distance of 235 pc (Hirota et al. 2008). In particular, the three deeply embedded, low-mass class 0 objects IRAS2A, IRAS4A, and IRAS4B have been observed extensively with ground-based submillimetre telescopes (e.g., Jørgensen et al. 2005, Marett et al. 2005) and interferometers (e.g., Di Francesco et al. 2001, Jørgensen et al. 2007). All sources have strong outflows extending over arcmin scales (~15000 AU). Both IRAS4A and 4B consist of multiple protostars (e.g., Chiò 2005). Because of the similarities between the three sources in terms of luminosity (20, 5.8, and 3.8 L☉), en-
Three sources in NGC1333, IRAS2A, IRAS4A, and IRAS4B, were observed with HIFI (de Graauw et al. 2010) on Herschel (Pilbratt et al. 2010) on March 3–15, 2010 in dual beam switch mode in bands 1, 3, 4, and 5 with a nod of 3'. Observations detected several transitions of H2O and H18O in the range \(\nu_0 / h \nu_0 = 50-250 \) K (Table 2 in the online appendix). Diffraction-limited beam sizes were in the range 19–40″ (4500–9500 AU). In general, the calibration is expected to be accurate to \(\pm 20\% \) and the pointing to \(\pm 2^\prime\). Data were reduced with HIPE 3.0. A main-beam efficiency of 0.74 was used throughout. Subsequent analysis was performed in CLASS. The rms was in the range 3–150 mK in 0.5 km s\(^{-1}\) bins. Linear baselines were subtracted from all spectra, except around 750 GHz (corresponding to the H2O 211–202 transition) where higher-order polynomials are required. A difference in rms was always seen between the V- and H-polarizations, with the rms in the H-polarization being lower.

In cases where the difference exceeded 30% and qualitative differences appear in the line profile, the V-polarization was discarded. Otherwise, the spectra were averaged.

All targeted lines of H18O were detected and are listed in Table 1 and Fig. 1. The \(J = 10-9 \) transition at 557 GHz was not observed before the sources moved out of visibility. The H18O \(J = 10-9 \) line was detected in all sources (Fig. 2), although the detection in IRAS2A was weak (\(\approx 5 \sigma = 0.13 \) K km s\(^{-1}\)). This line is superimposed on the ground-state CH triplet at 356 GHz, observed in the lower sideband (Fig. 2). Neither the H18O \(J = 11-10 \) nor the 202–111 line in IRAS2A is detected down to \(\sigma < 0.06 \) K km s\(^{-1}\).

The H2O lines exhibit multiple components: a broad emission component (FWHM \(\approx 20 \) km s\(^{-1}\)) sometimes offset from the source velocity (\(\nu_{LSR} \approx +7.2–7.7 \) km s\(^{-1}\)), a medium-broad emission component (FWHM \(\approx 5–10 \) km s\(^{-1}\)), and a deep, narrow absorption component (FWHM \(\approx 2 \) km s\(^{-1}\)) seen at the source velocity. The individual components are all reproduced well by Gaussian functions. The absorption is only seen in the H2O 111–010 line and is saturated in IRAS2A and IRAS4A. In IRAS4B, the absorption extends below the continuum level, but is not saturated. Furthermore, the IRAS4A spectrum of the 202–111 line exhibits an inverse P Cygni profile. The shape of the lines is the same within a source; only the relative contribution between the broad and medium components changes. For example, in IRAS2A the ratio of the peak intensities is \(\approx 2 \), independent of velocity. The H2O line profiles compare well to the broad component seen in H2O, i.e., similar FWHM \(> 20 \) km s\(^{-1}\) and velocity offset. The width is much larger than isotopologue emission of, e.g., C18O (\(\approx 1–2 \) km s\(^{-1}\)) and is centred on the source velocity (Yildiz et al. 2010). The medium and narrow components are not seen in the H18O 111–010 line, but are visible in the H2O 211–202 transition.

The upper limits to the H18O \(J = 11-10 \) line are invaluable for estimating upper limits to the optical depth, \(\tau \). In the following, the limit on \(\tau \) is derived for the integrated intensity; in the line wings, \(\tau \) is most likely lower (Yildiz et al. 2010). In the broad component, the limit ranges from 0.4 (IRAS4B) to 2 (IRAS2A), whereas it ranges from 1.1 (IRAS4B) to 2.7 (IRAS2A) for the medium component. The H2O 211–202 line is saturated in IRAS2A, infers an upper limit to the optical depth of H18O \(0.13 \) km s\(^{-1}\), whereas it ranges from 1.1 (IRAS4B) to 2.7 (IRAS2A) for the medium component and 1.9 for the broad. Thus it is likely that neither the broad nor the medium components are very optically thick.

![Fig. 1. H2O spectra of the three NGC1333 sources. CO 10–9 is shown for comparison (Yildiz et al. 2010); the CO 10–9 emission in IRAS2A is affected by chopping into outflow material. The top panel shows the decomposition into broad (red), medium (blue), and narrow (black) components. The cartoon illustrates the physical origin of each component. The inset shows a zoom on the inverse P Cygni profile in the H2O 202–111 line of IRAS4A, where the other components have been subtracted; the vertical scale ranges from -0.3 to 0.3 K.](image)

![Fig. 2. H18O 111–010 spectra of the three NGC1333 sources along with the CH 536 GHz triplet from the lower sideband (dotted lines). Spectra are shown for a channel size of 0.25 km s\(^{-1}\). The spectrum of IRAS2A has been rebinned to 4 km s\(^{-1}\) to illustrate the detection of a broad feature. The red line shows the source velocity at \(\nu_{LSR} = +7.5 \) km s\(^{-1}\).](image)
various physical components. Many physical components in a YSO are directly traced by the uncertainties included statistical errors only.

The most prominent feature of all the observed line profiles is discussed in detail, and the H$_2$O abundance is estimated in the high-temperature regions all free oxygen is driven into water. The shocked regions may be illuminated by FUV radiation originating in the star-disk boundary layer, thus further enhancing the water abundance by means of photodissociation. The broad emission seen in the H$_2$O $1_{01}-1_{01}$ line arises in the same shocks (see cartoon in Fig. 1).

The medium component (FWHM \approx5–10 km s$^{-1}$) is most likely also caused by shocks, although presumably on a smaller spatial scale and in denser material than the shocks discussed above. For example, the medium component in IRAS2A is seen in other grain-product species such as CH$_3$OH (Jørgensen et al. 2005, Maret et al. 2005, Fig. 3), where emission arises from a compact region ($<1''$, i.e., <250 AU) centred on the source (Jørgensen et al. 2007), and the same is likely true for the medium H$_2$O component in that source. In interferometric observations of IRAS4A, a small (~few arcsec) blue-shifted outflow knot of similar width has been identified in, e.g., SiO and SO (Choi 2005, Jørgensen et al. 2007). Small-scale structures exist in the other sources as well, which may produce the medium components.

The H$_2$O $2_{02}-1_{11}$ spectrum of IRAS4A shows an inverse P Cygni profile, a clear sign of infall also detected in other molecular tracers using interferometer observations (Di Francesco et al. 2001, Jørgensen et al. 2007). This infall signature is also tentatively seen in the $1_{11}-1_{00}$ line, but here the absorption from the outer envelope dominates and little is left of the blue emission peak. The signature is not seen in higher-excitation lines. The separation of the emission and absorption peaks is \approx0.8 km s$^{-1}$, whereas it is \approx1.5 km s$^{-1}$ in the observations of Di Francesco et al. (2001) and larger in the observations by Jørgensen et al. (2007), indicating that the infall observed in H$_2$O $2_{02}-1_{11}$ takes place over larger spatial scales.

The passively heated envelope is seen in ground-based observations of high-density tracers to produce narrow emission, \lesssim3 km s$^{-1}$, which may be self-absorbed (Fig. 3). For water, this type of emission is not seen in any of the sources; the medium component is broader by a factor of 2–3 with respect to what is expected from the envelope. The absorption seen in all three sources is attributed to cold gas in the outer parts of the envelope. Using interferometric observations, Jørgensen & van Dishoeck (2010) detected compact, narrow (\lesssim1 km s$^{-1}$) emission in the H$_2$O $3_{12}-2_{11}$ line in IRAS4B possibly originating in the circumstellar disk. Scaling the observed emission to the transitions observed here by assuming T_{rot}=170 K (Watson et al. 2007), the expected emission is typically less than 10% of the rms for any given transition. Hence, when extrapolated to the disks surrounding IRAS2A and 4A, the disk contribution to the H$_2$O emission probed by HIFI is negligible. The H$_2$O excitation temperature of the broad component is 220±30 K, comparable to that found by Watson et al. (2007), but the inferred column density is a factor of 100 higher. Thus, the mid-infrared lines seen by Watson et al. may come from the same broad outflowing gas found by HIFI, provided the mid-infrared lines experience a factor of 100 more extinction.

3. Discussion

Many physical components in a YSO are directly traced by the line profiles presented here, including the infalling envelope and shocks along the cavity walls. In the following, each component is discussed in detail, and the H$_2$O abundance is estimated in the various physical components.

3.1. Line profiles

The most prominent feature of all the observed line profiles is their width. All line wings span a range of velocities of \approx40–70 km s$^{-1}$ at their base. The width alone indicates that the bulk of the H$_2$O emission originates in shocks along the cavity walls, as also implied by the standard high-velocity component in CO outflow data, but with broader line-widths due to water enhancement at higher velocities (Sect. 3.2.1, Bachiller et al. 1990, Santiago-García et al. 2009). The shocks release water from the grains by means of sputtering and in high-temperature regions all free oxygen is driven into water. The shocked regions may be illuminated by FUV radiation originating in the star-disk boundary layer, thus further enhancing the water abundance by means of photodissociation. The broad emission seen in the H$_2$O $1_{01}-1_{01}$ line arises in the same shocks (see cartoon in Fig. 1).

The medium components (FWHM \approx5–10 km s$^{-1}$) are most likely also caused by shocks, although presumably on a smaller spatial scale and in denser material than the shocks discussed above. For example, the medium component in IRAS2A is seen in other grain-product species such as CH$_3$OH (Jørgensen et al. 2005, Maret et al. 2005, Fig. 3), where emission arises from a compact region ($<1''$, i.e., <250 AU) centred on the source (Jørgensen et al. 2007), and the same is likely true for the medium H$_2$O component in that source. In interferometric observations of IRAS4A, a small (~few arcsec) blue-shifted outflow knot of similar width has been identified in, e.g., SiO and SO (Choi 2005, Jørgensen et al. 2007). Small-scale structures exist in the other sources as well, which may produce the medium components.

The H$_2$O $2_{02}-1_{11}$ spectrum of IRAS4A shows an inverse P Cygni profile, a clear sign of infall also detected in other molecular tracers using interferometer observations (Di Francesco et al. 2001, Jørgensen et al. 2007). This infall signature is also tentatively seen in the $1_{11}-1_{00}$ line, but here the absorption from the outer envelope dominates and little is left of the blue emission peak. The signature is not seen in higher-excitation lines. The separation of the emission and absorption peaks is \approx0.8 km s$^{-1}$, whereas it is \approx1.5 km s$^{-1}$ in the observations of Di Francesco et al. (2001) and larger in the observations by Jørgensen et al. (2007), indicating that the infall observed in H$_2$O $2_{02}-1_{11}$ takes place over larger spatial scales.

The passively heated envelope is seen in ground-based observations of high-density tracers to produce narrow emission, \lesssim3 km s$^{-1}$, which may be self-absorbed (Fig. 3). For water, this type of emission is not seen in any of the sources; the medium component is broader by a factor of 2–3 with respect to what is expected from the envelope. The absorption seen in all three sources is attributed to cold gas in the outer parts of the envelope. Using interferometric observations, Jørgensen & van Dishoeck (2010) detected compact, narrow (\lesssim1 km s$^{-1}$) emission in the H$_2$O $3_{12}-2_{11}$ line in IRAS4B possibly originating in the circumstellar disk. Scaling the observed emission to the transitions observed here by assuming T_{rot}=170 K (Watson et al. 2007), the expected emission is typically less than 10% of the rms for any given transition. Hence, when extrapolated to the disks surrounding IRAS2A and 4A, the disk contribution to the H$_2$O emission probed by HIFI is negligible. The H$_2$O excitation temperature of the broad component is 220±30 K, comparable to that found by Watson et al. (2007), but the inferred column density is a factor of 100 higher. Thus, the mid-infrared lines seen by Watson et al. may come from the same broad outflowing gas found by HIFI, provided the mid-infrared lines experience a factor of 100 more extinction.

3.2. Abundances

3.2.1. Shocks: H$_2$O/CO

The observed broad components are compared directly with HIFI observations of CO 10–9 (Yıldız et al. 2010), because the width and position of the lines are similar and they were obtained using approximately the same beamsize (22'' versus 19''). The exception is for IRAS2A, where the blue line wing is not observed. The advantage is that no detailed models are required to account for the H$_2$O/CO abundance, as long as the lines are optically thin, in particular the emission from the wings. The abundance ratio is estimated for various temperatures by using the RADEX escape probability code (van der Tak et al. 2007). The density is assumed to be 105 cm$^{-3}$, appropriate for the large-scale core. If the emission is optically thin, the abundance ratio scales linearly with density resulting in the same line ratio corresponding to a higher abundance ratio. There is little variation in the predicted ratio for T \gtrsim150 K, the typical temperature inferred.
by Yildiz et al. (2010). The line ratios and abundance ratios are blue- and red-shifted outflow lobes.

Fig. 3. Left: Comparison between the medium component in IRAS2A and other species observed with ground-based telescopes. The broad component has been subtracted for easy comparison. The vertical red line indicates the source velocity at +7.7 km s\(^{-1}\). Right: Comparison between H\(_2\)O 2\(_2\)-1\(_1\) and CO 6\(_6\)-5 obtained with APEX-CHAMP\(^+\), and emission ratios for the two components is ~2-3 in H\(_2\)O versus 10 in CO 6\(_6\)-5 (Liu et al. in prep.) shows the same morphology in terms of a broad and medium component (Fig. 3). Furthermore, the velocity offset and FWHM are the same as for H\(_2\)O suggesting that the H\(_2\)O emission from the warm inner envelope (r< 100 AU) is optically thick, hence no constraints can be obtained from the H\(_2\)O spectra on the inner abundance. However, the lack of narrow H\(_2\)O lines indicates that water is a far more reliable dynamical tracer than, e.g., CO. Comparing C\(^{18}\)O to H\(_2\)O emission and line profiles indicates that the H\(_2\)O/CO abundance is high in outflows and low in outflowing gas, thus test the high-temperature gas-phase chemistry models for the origin of water. This will be performed for a total sample of the 29 low-mass YSOs to be observed within the WISH key programme.

4. Conclusions

These observations represent one of the first steps towards understanding the formation and excitation of water in low-mass star-forming regions by means of resolved line profiles. The three sources have remarkably similar line profiles. Both the H\(_2\)O and H\(_2\)S\(_6\) lines are very broad, indicating that the bulk of the emission originates in shocked gas. The broad emission also highlights that water is a far more reliable dynamical tracer than, e.g., CO. Comparing C\(^{18}\)O to H\(_2\)O emission and line profiles indicates that the H\(_2\)O/CO abundance is high in outflows and low in the envelope. Additional modelling of the emission, should be able to constrain the total amount of water in the envelope and outflowing gas, thus test the high-temperature gas-phase chemistry models for the origin of water. This will be performed for a total sample of the 29 low-mass YSOs to be observed within the WISH key programme.

References

Pilbratt et al. 2010, A&A, 518, 1.1
the leadership of SRON Netherlands Institute for Space Research, Groningen, institutes and university departments from across Europe, Canada and the US under a 5-year programme. HIFI has been designed and built by a consortium of institutions and funding agencies for financial support. Acknowledgements. This work is made possible thanks to the HIFI guaranteed time programme. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the US under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA); Sweden: Chalmers University of Technology - MC2, RSS & GARD, Onsala Space Observatory, Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zürich, FHNW; USA: Caltech, JPL, NHSC. HIPE is a joint development by the Herschel Science Center, and the HIFI, PACS and SPIRE consortia. We thank many funding agencies for financial support.
Table 2. Observed H$_2$O, H$_2$^{18}O and CH transitionsa.

<table>
<thead>
<tr>
<th>Transition</th>
<th>ν (GHz)</th>
<th>J</th>
<th>$A_{v}/h\nu$ (K)</th>
<th>Beam ($^{\circ}$)</th>
<th>t_{tot} (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O 1--0${00}$</td>
<td>1113.34</td>
<td>111</td>
<td>53.4</td>
<td>18.42</td>
<td>19</td>
</tr>
<tr>
<td>2${01}$--1${10}$</td>
<td>987.93</td>
<td>369</td>
<td>100.8</td>
<td>5.84</td>
<td>22</td>
</tr>
<tr>
<td>2${12}$--2${02}$</td>
<td>752.03</td>
<td>309</td>
<td>136.9</td>
<td>7.06</td>
<td>20</td>
</tr>
<tr>
<td>3${12}$--3${03}$</td>
<td>1097.37</td>
<td>273</td>
<td>249.4</td>
<td>16.48</td>
<td>20</td>
</tr>
<tr>
<td>3${22}$--2${13}$</td>
<td>1153.13</td>
<td>259</td>
<td>249.4</td>
<td>2.63</td>
<td>19</td>
</tr>
<tr>
<td>H2^{18}O 1${00}$--0$_{00}$</td>
<td>543.68</td>
<td>547</td>
<td>60.5</td>
<td>3.59</td>
<td>39</td>
</tr>
<tr>
<td>1${11}$--0${00}$</td>
<td>1110.70</td>
<td>272</td>
<td>52.9</td>
<td>21.27</td>
<td>20</td>
</tr>
<tr>
<td>2${02}$--1${11}$</td>
<td>994.68</td>
<td>301</td>
<td>100.7</td>
<td>7.05</td>
<td>22</td>
</tr>
<tr>
<td>3${12}$--3${03}$</td>
<td>1095.16</td>
<td>273</td>
<td>249.4</td>
<td>22.12</td>
<td>20</td>
</tr>
<tr>
<td>CH$^+$ 3/2,2$^{-}$--1/2,1$^+$</td>
<td>536.36</td>
<td>558</td>
<td>23.8</td>
<td>0.66</td>
<td>39</td>
</tr>
<tr>
<td>3/2,1$^{-}$--1/2,0$^+$</td>
<td>536.78</td>
<td>558</td>
<td>23.8</td>
<td>0.23</td>
<td>39</td>
</tr>
<tr>
<td>3/2,1$^{-}$--1/2,0$^+$</td>
<td>536.80</td>
<td>558</td>
<td>23.8</td>
<td>0.46</td>
<td>39</td>
</tr>
</tbody>
</table>

Notes.
(a) From the JPL database of molecular spectroscopy (Pickett et al. 1998).
(b) Total on + off integration time.
(c) Observed in the same setting as the main isotopologue.
(d) Observed with H$_2$^{18}O 1--0$_{01}$.

Table 3. CO 6--5 and CO 10--9/H$_2$O 2$_{02}$--1$_{11}$ line ratios in 5 km s$^{-1}$ intervals and corresponding abundance ratio for $T>150$ K and $n=10^4$ cm$^{-3}$.

<table>
<thead>
<tr>
<th>dv_{LSR} (km s$^{-1}$)</th>
<th>IRAS2A</th>
<th>IRAS4A</th>
<th>IRAS4B</th>
</tr>
</thead>
<tbody>
<tr>
<td>20--15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20--15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15--10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10--5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5--0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0--5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5--10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10--15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15--20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20--25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25--30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30--35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes.
(a) From the JPL database of molecular spectroscopy (Pickett et al. 1998).
(b) Total on + off integration time.
(c) Observed in the same setting as the main isotopologue.
(d) Observed with H$_2$^{18}O 1--0$_{01}$.