The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/83517

Please be advised that this information was generated on 2019-03-18 and may be subject to change.
CoRoT photometry and high-resolution spectroscopy of the interacting eclipsing binary AU Mon*

M. Desmet1†, Y. Frémat2, F. Baudin3, P. Harmanec4, P. Lampens2, E. Janot Pacheco5, M. Briquet1, P. Degroote1, C. Neiner6, P. Mathias7, E. Poretti8, M. Rainer8, K. Uytterhoeven8,9, P. J. Amado10, J.-C. Valtier7, A. Prša11,12, C. Maceroni13 and C. Aerts1,14

1 Institut voor Sterrenkunde, K.U.Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
2 Royal Observatory of Belgium, 3 Avenue circulaire, B-1180 Brussels, Belgium
3 Institut d’Astrophysique Spatiale, CNRS/Université Paris XI UMR 8617, 91405 Orsay, France
4 Astronomical Institute of the Charles University, Faculty of Mathematics and Physics, V Holešovická 2, CZ 180 00 Praha 8, Czech Republic
5 Universidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas - IAG, Departamento de Astronomia, Rua do Matão, 1226 - 05508-000 São Paulo, Brazil
6 Observatoire de Paris - Section de Meudon, Place Jules Janssen 5, 92195 Meudon cedex, France
7 UNS, CNRS, OCA, Campus Valrose, UMR 6525 H. Fizeau, F-06108 Nice Cedex 2, France
8 INAF - Osservatorio Astronomico di Brera, via Bianchi 46, 23807 Merate (LC), Italy
9 Laboratoire AIM, CEA/DSM-CNRS Université Paris Diderot, CEA, IRFU, Saclay, centre de Saclay, F-91191, Gif-sur-Yvette, France
10 Instituto de Astrofísica de Andalucía (CSIC), Granada, Spain
11 Villanova University, Dept. Astron. Astrophys, 800 E Lancaster Ave, Villanova, PA 19085, USA
12 University of Ljubljana, Dept. of Physics, Jadranska 19, SI-1000 Ljubljana, Slovenia
13 Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio (RM), Italy
14 Department of Astrophysics, IMAPP, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, the Netherlands

Received 8 September 2009; Accepted...

ABSTRACT
Analyses of very accurate CoRoT space photometry, past Johnson V photoelectric photometry and high-resolution échelle spectra led to the determination of improved and consistent fundamental stellar properties of both components of AU Mon. We derived new, accurate ephemerides for both the orbital motion (with a period of 11±113) and the long-term, overall brightness variation (with a period of 416±9) of this strongly interacting Be + G semi-detached binary. It is shown that this long-term variation must be due to attenuation of the total light by some variable circumbinary material. We derived the binary mass ratio $M_G/M_B = 0.17±0.03$ based on the assumption that the G-type secondary fills its Roche lobe and rotates synchronously. Using this value of the mass ratio as well as the radial velocities of the G-star, we obtained a consistent light curve model and improved estimates of the stellar masses, radii, luminosities and effective temperatures. We demonstrate that the observed lines of the B-type primary may not be of photospheric origin. We also discover rapid and periodic light changes visible in the high-quality residual CoRoT light curves. AU Mon is put into perspective by a comparison with known binaries exhibiting long-term cyclic light changes.

Key words: stars: binaries: general – stars: binaries: eclipsing – stars: emission-line, Be – accretion – stars: individual: AU Mon

1 INTRODUCTION
AU Monocerotis was selected as one of the few known binary targets in the asteroseismology field of the French-European

Spain. Based on observations collected at the Centro Astronómico Hispano-Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
† E-mail: maarten.desmet@ster.kuleuven.be
AU Mon varied cyclically with a period of 411 days and a peak-to-peak amplitude of about 0.9. This was established by studies of W Serpentis subclass, phenomenologically defined by Plavec & Koch (1978) and Plavec et al. (1980). These binaries are sometimes also called “massive or hot Algols”. According to current knowledge, they are characterized by a semi-detached configuration and several distinct components of circumstellar matter: a “cloud” of very hot plasma manifesting itself by emission lines in far-UV spectra and probably located outside the orbital plane, a disk, possibly optically thick, which mimics a false photosphere with a lower T_{eff} than the central star, a gas stream between both components, and a “hot-line region” arising from the interaction of the gas stream and the disk/cloud complex (Bisikalo & Matsuda 2007). We mention only some published studies of W Ser binaries, relevant to our present work. Elias (1990) studied centimeter observations of 6 different W Ser binaries and found very strong evidence for circumstellar matter around these systems. The same was claimed for SX Cas (Andersen et al. 1989) and RX Cas (Andersen et al. 1989) on the basis of photometry and spectroscopy. A system which is similar to AU Mon is W Cru, consisting of a B-star and a G supergiant. Pavlovski et al. (2006) found this object to have a very extended accretion disk with a clumpy rim, and suggested that the clumpiness may account for the light curve distortions and asymmetries, as well as for secular changes.

2 PREVIOUS KNOWLEDGE ABOUT AU MON

2.1 Light changes, orbital period and ephemeris

The eclipsing nature of AU Mon was discovered by Hoffmeister (1931). The first ephemeris was published by Florja (1937). Lause (1938) derived a slightly longer value of the period. Lorenzi (1977) observed it and concluded that its light curve was undergoing rapid cyclic changes. He suggested that this could be due to a fast apsidal motion with a period of 2432 but also pointed out problems with such an interpretation. Shortly thereafter, Cerruti-Sola & Lorenzi (1977) came up with the correct explanation: the brightness of the whole system varied secularly. To understand the phenomenon, Lorenzi (1980b) secured 2616 V differential observations between 1976 and 1979 at two observatories. From a detailed analysis of these data, Lorenzi (1980a) determined that the brightness of AU Mon varied cyclically with a period of 411 days and a peak-to-peak amplitude of about 0.9. Taking this variation into account, he derived an improved ephemeris for the binary system:

$$T_{\text{Min}} = JD 2442801.3752(51) + 11 \times 1130371(68) \times E,$$

which has since been used by various other investigators. Lorenzi (1985) analyzed new observations from 1983 and 1984 and confirmed the periodic character of the brightness variations of AU Mon. A regularly updated ephemeris, based on all compiled times of minima, can be found in the database of the O-C diagrams (Kreiner 2004).

Table 1. Spectroscopic orbital elements for AU Mon derived by Sahade et al. (1997) in a spectroscopic analysis.

<table>
<thead>
<tr>
<th>Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_B \sin i$</td>
<td>6.6 ± 0.39</td>
</tr>
<tr>
<td>$a_G \sin i$</td>
<td>2.2 ± 0.41</td>
</tr>
<tr>
<td>K_B</td>
<td>43 ± 2.5</td>
</tr>
<tr>
<td>K_G</td>
<td>147 ± 3.0</td>
</tr>
<tr>
<td>e</td>
<td>0.06 ± 0.02</td>
</tr>
<tr>
<td>ω</td>
<td>204 ± 22</td>
</tr>
<tr>
<td>γ</td>
<td>2.1 ± 1.5</td>
</tr>
<tr>
<td>$M_{B}(M_\odot)$</td>
<td>6.1 ± 0.61</td>
</tr>
<tr>
<td>$M_{G}(M_\odot)$</td>
<td>1.8 ± 0.53</td>
</tr>
</tbody>
</table>

The far-UV spectra of AU Mon were obtained by IUE and studied by Polidan & Peters (1982), Peters & Polidan (1982); Peters (1988); Egikyan (1989); Peters (1991, 1994a,b, 1996) and Peters & Polidan (1998). Peters & Polidan (1982) confirmed that the gas stream between the components is seen in the UV resonance lines of $\text{N} \; \text{V}$ and $\text{C} \; \text{IV}$ in the orbital phase range 0.85 - 0.93, where phase zero corresponds to the time of primary eclipse. Egikyan (1989) found the electron density of the gas in the envelope to be $n_e \approx 2 \times 10^{11} \text{ cm}^{-3}$, and the electron temperature to be $T_e \approx 20000 \text{ K}$. Peters (1988) found a correlation between the instantaneous mass transfer rate and the line and continuum spectrum along the 411-d cycle. At the maximum of the mass transfer rate, the object was fainter and the accretion disk denser while, at the brightness maximum, the high-temperature plasma was more prominent in the UV spectral lines. Analyzing the spectral energy distribution (SED) from the low-dispersion IUE spectra, Peters (1991) concluded that the optical brightness variations of the system are due to a 1200 K variation in the photospheric effective temperature of the Be primary. She also suggested the presence of a 10000 K continuum source from an optically thick accretion disk around the primary to model the SED. Peters (1994a,b) increased the estimate...
of the temperature of that source to 12,000 K and suggested that the cyclic variations in the mass transfer rate could be due to pulsation of the mass-losing secondary. Peters & Polidan (1998) obtained a single high-dispersion ORFEUS-SPAS II far-ultraviolet spectrum (920–1210 Å) and concluded that it is typical of a B3 V star (the SED including the IUE data can well be fitted with $T_{\text{eff}} = 17,000$ K and $g \approx 4.0$ (cgs) with $v_i = 120$ km s$^{-1}$.

Richards & Albright (1999) made an in-depth study of the types of accretion structures found in Algol systems. AU Mon was part of their H{α} spectroscopic study. They have put AU Mon in the group with a widely separated double-peaked disk-like structure. They have permanent, but variable, accretion disks similar to those found in cataclysmic variables. Miller et al. (2005) studied the properties of the accretion structures in AU Mon through a multiwavelength spectral study. Double-peaked emission was detected in the observed H{α} line confirming the presence of an enduring accretion disk. The strength of the emission varies with epoch.

In a careful study, Glazunova et al. (2008) derived new rotational velocities for the components of 23 close detached and semi-detached binaries. For AU Mon, they showed how the presence of circumstellar matter can falsify the determination of the projected rotational velocities. They attempted to avoid the problem and observed v_b sin $i = 124 \pm 4$ km s$^{-1}$, and v_c sin $i = 42.1 \pm 2.1$ km s$^{-1}$. They also derived the asynchronicity parameter of the B-star, $F_B = 5.2$.

2.3 Published light curve solutions

To date, a few detailed photometric studies of AU Mon have been published. Several attempts, all of which are based on Lorenzi’s observations prewhitened for the 411-d variation, were made to derive light curve solutions. Lorenzi (1982) himself made the first attempt, creating symmetric normal points from his light curve and using the Russell-Merrill method. Independently, and a few months before him, Giuricin et al. (1982) solved the light curve using Wood’s model. Finally, another solution, this time based on the Wilson-Devinney (WD) method (Wilson & Devinney 1971; Wilson 1994), was published by Vivekananda Rao & Sarma (1998). These authors concluded that no third light is present in the system. The main results of these studies are summarized in Table 2. We note a good agreement between the first and the third solution, which are based on two independent computer programmes.

3 THE NEW PHOTOMETRIC DATA AND THEIR ANALYSIS

The new photometric data set consists of a continuous series of 139,704 individual CoRoT photometric observations spanning an interval of 56 days, i.e., 5 orbital periods. The spectral domain of CoRoT enforces the range from 370 to 950 nm, the average time sampling was 32 s and roughly 10% of the datapoints were deleted because they were extreme outliers. An estimate of the noise level of the light curve, computed as the average of the periodogram between 80 and 120 d$^{-1}$ is 60 μmag. In addition to the CoRoT data, we critically compiled and homogenized all published photoelectric observations with known dates of observations as well as all available times of minima known to us and derived 6 new times of primary minima from the CoRoT light curve. Table 3 lists the 6 new CoRoT minima. The published visual, photographic, photoelectric and CCD times of minima, reproduced in Table A1, were obtained from the General Search Gateway of the Variable-Star Section of the Czech Astronomical Society where also references to original observers can be found.

3.1 Time-series analysis and new ephemeris

Fig. 1 shows the complete set of CoRoT observations vs. HJD. We converted CoRoT fluxes (F) to magnitudes (m) using $m = -2.5 \log F + C_0$, with C_0 a calibration constant. We derived C_0 through a comparison between CoRoT magnitudes and visual magnitudes from literature for all constant stars in the CoRoT field of AU Mon. This gives a value of $C_0 = 23.16 \pm 0.05$ mag.

First, we verified that Lorenzi’s ephemeris (1) can reconcile both the compiled published photometry and the CoRoT data. Consequently, we used his ephemeris for the initial analyses. In the final modelling of photometry and radial velocities (RV hereafter) with the PROEBE programme, described in Sect. 5, we derived the following improved orbital ephemeris
Figure 1. The complete CoRoT light curve of AU Mon. The upper panel shows an enlarged segment of the curve with very clear rapid non-orbital variations. The noise on the data is smaller than the symbol.

\[T_{\text{min}} = \text{HJD}2454136.6734(2) + 11\text{d}1130374(1) \times E. \]

Figure 2. Original V-band light curve phased against the period of 11.1130374 days.

We collected all the available photometric observations of AU Mon and put them onto a comparable photometric system. The journal of all observations is shown in Table 4, the data itself can be found in Table B1. We converted the \(u bv \) data to Johnson \(UBV \) using the transformation derived by Harmanec & Božić (2001). The Hipparcos data were transformed to the \(V \) magnitude of the Johnson system using the transformation formula derived by Harmanec (1998). Fig. 2 shows the phased V light curve based on all the published observations we could collect from the literature, including the 2698 observations provided by Lorenzi (1980b, 1985). We can observe a systematic shift between two extreme states of the maximum light (at the levels of 8.2 and 8.4 mags respectively) as well as of the primary minima (at the levels of 9.0 and 9.2 respectively). This effect is clearly due to the long-term periodicity reported by Lorenzi (1980a, 1985).

Subsequently, using subsets of V data sorted into narrow orbital-phase bins, as well as all the V data outside of the phase of primary minimum, we carried out a period search using the PDM (Stellingwerf 1978) and the CLEAN (Roberts et al. 1987) methods. Both algorithms yielded the same value of \(P_{\text{long}} = 417 \pm 8 \) days. Fig. 3 shows the V magnitude outside minima plotted versus phase of the 417-d period. Our linear ephemeris for the total brightness of the system reads as follows

\[T_{\text{max tot brightness}} = \text{HJD}2443105.1(\pm 1.4) + 416\text{d}9(\pm 8\text{d}7) \times E. \]

This also means that the CoRoT light curve was collected at a phase of total light minimum (in the phase range from 0.46 to 0.59).

The V-band light curves were inspected at the phases of light minima and maxima. The two curves are only shifted for about 0°52 with respect to each other (see Fig. 2) but have the same shape and amplitude, as already concluded by Cerruti-Sola & Lorenzi (1977). This was confirmed by tentative light curve solutions for both curves, which led to the same values of stellar radii and orbital inclination. This result does not support the idea promoted by Peters (1991), that the observed changes could be related to apparent changes in the \(T_{\text{eff}} \) and radius of the B-star’s fake photosphere. If the 417-d variation were caused by some variable third light, then the eclipses should become shallower at the 417-d light maxima. Similarly, a precession of the orbit would lead to a changing orbital inclination. Since none of all these effects is present, we conclude that the long-term variation must be caused by a periodic attenuation of the total light of the binary by some variable circumstellar matter. The reason why we do not see emission lines coming from this circumstellar envelope might be that the envelope is cool and dusty. Probably, this huge envelope will also have a small rotational speed. Thus its emission will be blended with the stronger emission from the circumstellar matter.
Table 4. Journal of available photometry of AU Mon with known times of observations.

<table>
<thead>
<tr>
<th>Station</th>
<th>Time interval (HJD–2400000)</th>
<th>No. of obs.</th>
<th>Passbands</th>
<th>HD of comparison / check star</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42790.3–42879.3</td>
<td>278</td>
<td>V</td>
<td>50109/50346</td>
<td>Lorenzi (1980b)</td>
</tr>
<tr>
<td>2</td>
<td>43023.6–43843.4</td>
<td>2143</td>
<td>V</td>
<td>50109/50346</td>
<td>Lorenzi (1980b)</td>
</tr>
<tr>
<td>3</td>
<td>43877.7–43880.9</td>
<td>195</td>
<td>V</td>
<td>50109/50346</td>
<td>Lorenzi (1980b)</td>
</tr>
<tr>
<td>4</td>
<td>44284.4–44287.4</td>
<td>13</td>
<td>B–V</td>
<td>all-sky</td>
<td>Kilkenny et al. (1985)</td>
</tr>
<tr>
<td>5</td>
<td>44288.3–44289.4</td>
<td>2</td>
<td>UVB</td>
<td>all-sky</td>
<td>Kilkenny et al. (1985)</td>
</tr>
<tr>
<td>6</td>
<td>44677.3–44678.3</td>
<td>2</td>
<td>UVB</td>
<td>all-sky</td>
<td>Kilkenny et al. (1985)</td>
</tr>
<tr>
<td>7</td>
<td>45254.9–45322.8</td>
<td>14</td>
<td>avby</td>
<td>50747/50820</td>
<td>Manfroid et al. (1991)</td>
</tr>
<tr>
<td>2</td>
<td>45343.4–45790.4</td>
<td>82</td>
<td>V</td>
<td>50109/50346</td>
<td>Lorenzi (1985)</td>
</tr>
<tr>
<td>7</td>
<td>47987.4–49056.1</td>
<td>81</td>
<td>Hp</td>
<td>all-sky</td>
<td>Perryman & ESA (1997)</td>
</tr>
<tr>
<td>7</td>
<td>54136.0–54192.8</td>
<td>139704</td>
<td>COR</td>
<td>all-sky</td>
<td>this paper, CoRot</td>
</tr>
</tbody>
</table>

Individual observing stations and photometers distinguished by the running numbers in column “Station”.
1. Torino Observatory 1.04-m reflector, EMI 9502 tube; 2. Torino Observatory 0.60-m reflector, EMI 6256S tube; 3. Cerro Tololo 0.40-m reflector, EMI 6256 tube; 4. South African Astronomical Observatory (SAAO) 1.0-m & 0.5-m telescopes, EMI 6256 & 9659 tubes; 5. European Southern Observatory La Silla telescope; 6. Hipparcos Satellite; 7. CoRoT Satellite.

Table 5. Radial velocities measured from the FEROS (FE), SOPHIE (SO) and FOCS (FO) data. The RVs of the G-star were derived via 1-D cross-correlation of suitable parts of the red wavelength region while the B-star RVs were derived near 4000 Å using a 2-D TODCOR-type cross-correlation. The last three RV columns are the measurements carried out in SPEFO – see the text for details. The last column denotes the instrument.

<table>
<thead>
<tr>
<th>HJD - S/N</th>
<th>RV_B (km s⁻¹)</th>
<th>RV_G (km s⁻¹)</th>
<th>RV_Hel (km s⁻¹)</th>
<th>RV_SO (km s⁻¹)</th>
<th>RV_Ha L</th>
</tr>
</thead>
<tbody>
<tr>
<td>104.6490</td>
<td>-7.657± 6.54</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>Fe</td>
</tr>
<tr>
<td>105.6557</td>
<td>-16.825± 6.54</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>Fe</td>
</tr>
<tr>
<td>110.6320</td>
<td>-7.657± 6.54</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>Fe</td>
</tr>
<tr>
<td>106.8208</td>
<td>-16.825± 6.54</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>Fe</td>
</tr>
<tr>
<td>107.7008</td>
<td>-16.825± 6.54</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>Fe</td>
</tr>
<tr>
<td>108.7038</td>
<td>-16.825± 6.54</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>Fe</td>
</tr>
<tr>
<td>108.8141</td>
<td>-16.825± 6.54</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>Fe</td>
</tr>
<tr>
<td>108.8739</td>
<td>-16.825± 6.54</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>Fe</td>
</tr>
<tr>
<td>109.6744</td>
<td>-16.825± 6.54</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>78.2± 4.4</td>
<td>Fe</td>
</tr>
</tbody>
</table>

4 Mr. J. Krpata passed away on February 6, 2009.
emission and the measurements were carried out only when a reliable setting was possible.

The RV curve of the G-star is well defined and appears sinusoidal. To check on the presence of a possible small eccentricity, we first derived trial solutions for an elliptical orbit using the programs SPEL (unpublished, written by the late Dr. Jiri Horn) and FOTEL (Hadrava 1990, 2004a). We therefore derived e = 0.045 ± 0.006, which is significant. However, we do believe that the orbit is circular and the eccentricity is spurious, caused by a small difference between the photocentre of the Roche-lobe filling star and its centre of gravity and/or by the Rossiter - McLaughlin effect (as detailed in Sect. 6). It was pointed out by Harmanec (2001, 2003) that any disturbance of the sinusoidal shape of the RV curve which is symmetric with respect to the systemic velocity must lead to a formally eccentric orbit with a longitude of periastron of either 90° or 270°. This is exactly what we found. Note also that for these orientations of the binary orbit, the photometric minima are separated for exactly one half of the orbital period so that even very accurate photometry cannot provide an additional test.

Using FOTEL (Hadrava 1990, 2004a), we therefore derived a trial circular-orbit solution for the G star, which is compared to formal solutions for the RVs of the Ha emission wings and He I 5876 Å absorption in Table 6. The epoch of the primary minimum derived from the G-star RVs agrees with that of (photometric) ephemeris (2). In contrast to this, the RV curve of the He I 5876 Å absorption and Ha emission are mutually similar but shifted in phase with respect to the clean anti-phase orbital motion of the G-component. Popper (1989) also suggested such behaviour. All this is the situation reminiscent of another W Ser star with a similar orbital period of 1259 days, namely β Lyr, where such a behaviour is due to the fact that the absorption and emission lines originate in bipolar jets emanating from the region of interaction of the gas streams (Harmanec et al. 1996). This may imply that we do not see real photospheric lines of the hot mass-gaining star of AU Mon.

4.2 Mass ratio and secondary mass

To cope with the above problem, we attempted to obtain some estimate of the mass ratio independent of the B-star’s RV curve. Since the contact components of semi-detached binaries usually rotate synchronously with their revolution (see e.g. Harmanec 1988), we made this assumption also for AU Mon and used the procedure devised by Andersen et al. (1989) as detailed in the Appendix of Harmanec (1990) to obtain an independent estimate of the mass ratio (q), component masses and the radius (R_G) of the Roche-lobe filling secondary. Its principle lies in the fact that the relative dimensions of the Roche lobe depend solely on the binary mass ratio q while the absolute radius of the spin-orbit synchronized secondary is uniquely given by its equatorial rotational velocity, inclination i of its rotational axis (assumed to be identical to the inclination of the orbit) and by the rotational (~orbital) period. The binary separation is given by the third Kepler law so that there is only one mass ratio for which the secondary is just filling the corresponding Roche lobe. We assumed a circular orbit, K_G = 157 ± 1 km s⁻¹ and a range of orbital inclinations from 77° to 83° (see Sect. 5). We took

![Figure 4. The RV curves of the late-type G-spectrum (black dots), B-spectrum (open circles) and the Hα emission wings (red dots) measured in SPEFO. One can see that the B-spectrum RV, based on the He I 5876 Å, and that of the Ha emission wings, define similar RV curves which are both shifted in phase with respect to the expected RV curve of the G-component.](image-url)
the uncertainties of the parameters K_G, $v\sin i$, and P_{orb} (used in the procedure) into account to provide the error estimates of the resulting values of q, M_G, and R_G. The results are listed in Table 7. The mass ratio of AU Mon equals $q = 0.17 \pm 0.03$. Our results agree with Vivekananda Rao & Sarma (1998, see Table 2). Sahade et al. (1997) found a mass ratio of $q = 0.29$ which is much larger compared to any other study. This is due to their usage of the value of K_B, which is probably too optimistic. As Fig. 7 shows, their B-spectrum RVs, from phase 0.0 to 0.5, are much more negative than any other recorded RVs. Moreover, our separate circular-orbit solutions for their B- and G-spectrum RVs give systemic velocities of $1.6 \pm 2.1 \text{ km s}^{-1}$, and $5.4 \pm 3.3 \text{ km s}^{-1}$, differing quite substantially from the systemic velocity found by us and in all other previous studies.

4.3 Spectra disentangling and spectral type classification

To separate the spectra of both binary components in an objective way, we used the disentangling procedure developed by Hadrava (1995, 1997, 2004b, see references therein – Release 2.12.04 of the KOREL programme made available to YF). The disentangling was applied to different parts of the spectra. The orbital period was fixed at the value derived by Lorenzi (1980a, see ephemeris (1) of the present paper) and a circular orbit was assumed.

Within the parameter range we investigated, the disentangled spectra were sufficiently stable to permit to derive the projected rotation velocity and the effective temperature of both stars. We therefore disentangled the 5500–5700 Å, 6125–6275 Å, and the 4000–4200 Å wavelength intervals. Eleven isolated lines were selected in the secondary’s spectrum and two in the primary spectrum, and we estimated the components’ $v\sin i$ by measuring the position of the first zero of the line profiles Fourier transform (Royer et al. 2002).

The values we found are given in Table 7 and are in good agreement with those measured by Glazunova et al. (2008), who tried to avoid the effects linked to the presence of the companion and of the circumstellar matter. Though our result for the primary is somewhat smaller, the difference is not significant regarding the scatter and the small number of lines available in fast rotating early-type stars to carry out such kind of analysis. We then compared the component spectra to synthetic ones, computed for different effective temperatures by means of the ATLAS LTE model atmospheres (Castelli et al. 1997; Castelli & Kurucz 2003) and the SYNSPEC (Hubeny & Lanz 1995) programme. This comparison was done in the red wavelength ranges for the secondary, while we mainly focused on the bluest range for the primary. Since the studied spectral ranges do not show any strong log(g)-dependence, the surface gravity of the secondary (expected to be evolved) was fixed to $\log g = 2.5$.

Furthermore, we assumed a microturbulence of 2 km s^{-1} and a solar chemical composition. Since we used the hydrogen and helium stark-broadened line profiles for the B-star, our conclusions are in this case not significantly affected by these assumptions. For the G-star, spectra for different iron content (i.e. within 0.2 dex of the solar abundance) and within 2 km s^{-1} of the adopted microturbulent velocity were computed and analysed. The differences between the models with different iron abundances were found to be smaller than those obtained by using different effective temperatures within the estimated error bar of 250 K. Usually a change in microturbulence affects more significantly the spectrum. However, the weaker lines which are present in the different wavelength ranges we have analyzed, and falling in the linear part of the curve of growth, are not affected by a change in microturbulence. These lines were also used to estimate the effective temperature of the G-star and a good agreement was found between synthetic and observed spectra.

In Fig. 5, one can see the comparison between the disentangled and synthetic spectra for a selected wavelength range for the two components. The luminosity ratios we estimated in different wavelength domains are plotted in Fig. 6, while the astrophysical parameters we obtained are listed in Table 7. As a byproduct of the disentangling procedure we obtained the RVs for both components (see Fig. 7). For comparison matters, we further assumed a non-perturbed stellar evolution and a solar-like metallicity. To determine the mass, radius, and equatorial rotation velocity at orbit synchronization of the B-star we made use of the evolutionary tracks calculated by Schaller et al. (1992). We interpolated the mass and radius from the evolutionary tracks for the B-star at $T_{\text{eff}} = 5750 \text{ K}$ and 15000 K respectively. The absorption lines around 4070 Å are coming from an A0 spectrum (extended photosphere) and are best reproduced with a spectrum of 10000 K.

![Figure 5](image.png)

Figure 5. Comparison between synthetic spectra computed for different effective temperatures and the observed disentangled spectrum (black dots) of the cool G-component (upper panel) and the B-component (lower panel). The best fitting temperatures for the G and B-star are 5750 K and 15000 K respectively. The absorption lines around 4070 Å are coming from an A0 spectrum (extended photosphere) and are best reproduced with a spectrum of 10000 K.
The expected wavelength dependence of the relative luminosity of the G-star to the total light of the system. We assumed effective temperatures of 15000 K and 5750 K for the B primary and the G secondary, respectively. The full line is based on Kurucz' models. The light contribution at wavelengths of 15000 K and 5750 K for the B primary and the G secondary, respectively. The full line is based on Kurucz’ models. The light contribution at 6150 Å was fixed at 0.2. The luminosity ratio was estimated from detailed comparisons of the observed and synthetic spectra at several distinct wavelength regions and these values are shown by black dots with errors. The black square with an error box represents the luminosity ratio in the V band based on the PHOEBE solution.

4.4 Determination of RVs from whole segments of spectra

Since the motion of the circumstellar matter seems to be phase-locked with the orbital motion of the B-star, and the companion is a G-star with many weak but sharp spectral lines, the radial velocity determination for the G-star is quite straightforward. To avoid systematic effects due to the presence of spectral lines belonging to the B-star, we concentrated on the 5500-5850 Å wavelength region and carried out a 1-D cross-correlation of the observations with a synthetic spectrum computed for the stellar spectral classes derived in Sect. 4.3. These wavelength regions and these values are shown by black dots with errors. The black square with an error box represents the luminosity ratio in the V band based on the PHOEBE solution.

Due to the orbiting circumstellar matter and the fewer lines present in the spectrum of early-type stars, the RVs of the B primary are much more difficult to measure. The systematic study of the whole available wavelength range shows a large scatter due to: 1. the lack of spectral lines, 2. the presence of a third spectrum related to the matter orbiting the primary B-star (and showing lines generally formed in AO stars) or and due to bipolar jets or disk/stream interactions (see Sect. 4.1). The best wavelength region candidate for the measurement of the primary’s radial velocities is the one that encompassed the HeI 4009 and 4026 Å lines where the effects of the (cooler) third (‘AO’) spectrum seem to be absent. Note that the G-star is more than 3 magnitudes fainter at these wavelengths according to Fig. 6. Still, to reduce any systematic effect due to the faint G-star spectrum, we used a TODCOR-like procedure (Zucker & Mazeh 1994) using templates that reflect the spectral types of the components (see Sect. 4.3). This operation was carried out several times using different templates for the primary, with the astrophysical parameters falling within 1-sigma of the estimated values in order to have an estimate of the accuracy of the procedure. The results are given in Table 5 and compared to other published measurements in Fig 7.

We also derived FOTEL circular-orbit solutions for these RVs. The results are shown in Table 6. One can see that the solution for the G-star agrees reasonably well with that based on the directly measured RVs (see Table 6). The solution for the B-star RVs again shows a phase shift with respect to the expected instant of the primary minimum and a significantly lower systemic velocity. The K-value for the B-star agrees within the errors with the K-value estimated from our principal analysis (see Table 6). Nevertheless, because of the phase- and systematic velocity shift, we will not use the RV curve of the B-star in the determination of the binary physical properties.

5 MODELLING OF THE LIGHT AND RV DATA

In order to derive physical properties from the combined light and radial velocity curves, we used the PHOEBE programme, release 0.31dev (with phoebegui-cairo, Prsa & Zwitter 2005) built on the 2003 WD method (Wilson & Devinney 1971; Wilson 1990), to perform the linearised least-squares analyses with the differential corrections approach. We assumed a semi-detached system configuration (using Mode 5) and no third light nor spots were included. From previous considerations, we decided to rely only on the spectroscopic estimation of the mass ratio and the RVs of the G-star for this modelling. We also fixed the effective temperature of the G-star at the value of 5750 K, since this value was reliably derived from the disentangled spectra (see Sect. 4.3).

The orbital period of 11^113037 was initially fixed. For the bolometric albedos, A_B and A_G, and the gravity darkening coefficient, G_B, we used their theoretical values corresponding to the type of atmosphere and to the spectral types of both stars (see e.g. Vučković et al. 2007). For the gravity darkening coefficient G_G, we had to adopt a value of 0.9, i.e. much higher than the theoretical value of 0.32, to obtain a satisfactory fit with the data. This value...
ties (standard deviations) resulting from the combined PHOEBE solution for AU Mon were used. The CoRoT limb darkening coefficients were derived from Castelli & Kurucz (2004) for the Johnson limb darkening coefficients. The systemic velocity, y, and the eccentricity, e, were all set as adjustable parameters. For the asynchronicity parameter, FB, we used 4 ± 1 since the projected rotational velocity of the primary component appears to be ≈ 4 times the estimated synchronous velocity (which amounts to 30 ± 15 km s⁻¹ if we adopt the B-star’s radius from the solution presented below). We also checked whether leaving FB as a free parameter improved our model. This was not the case.

Table 8. Parameters of AU Mon together with their formal 3σ uncertainties (standard deviations) resulting from the combined PHOEBE solution for photometry and RVs.

\begin{tabular}{lll}
Parameter & Value & Uncertainty \\
\hline
HJD0 (2450000.+) & 4136.6734 & 0.0002 \\
P_\text{orb} (d) & 11.130374 & 0.000001 \\
i (°) & 78.6 & 0.6 \\
q & 0.17± & 0.03 \\
y (km s⁻¹) & 17.8 & 0.6 \\
A(R_b) & 42 & 1 \\
e & 0.01 & 0.03 \\
T_{eff,B} (K) & 14595 & 900 \\
T_{eff,G} (K) & 5750± & – \\
Ω_B & 7.8 & 0.9 \\
Ω_G & 2.12 & 0.06 \\
F_B & 4.8 & 0.9 \\
[(L_B/(L_B + L_G)]_V & 0.82 & 0.09 \\
[(L_B/(L_B + L_G)]_\text{CoRoT} & 0.84 & 0.09 \\
G_B & 1.0± & – \\
G_G & 0.9± & – \\
A_B & 1.0± & – \\
A_G & 0.5± & – \\
x_B (V) & 0.458± & 0.001 \\
x_G (CoRo) & 0.304± & 0.001 \\
x_B (V) & 0.465± & 0.001 \\
x_G (CoRo) & 0.542± & 0.001 \\
y_B (V) & 0.236± & 0.001 \\
y_G (CoRo) & 0.195± & 0.001 \\
y_B (V) & 0.243± & 0.001 \\
y_G (CoRo) & 0.243± & 0.001 \\
\hline
Roche Radii [in units of orbital separation] \\
r_B (pole) & 0.12 & 0.02 \\
r_B (point) & 0.14 & 0.02 \\
r_B (side) & 0.14 & 0.02 \\
r_B (back) & 0.14 & 0.02 \\
r_G (pole) & 0.22 & 0.02 \\
r_G (point) & 0.31 & 0.02 \\
r_G (side) & 0.23 & 0.02 \\
r_G (back) & 0.26 & 0.02 \\
\hline
Absolute dimensions \\
log g_B & 3.78 & 0.09 \\
log g_G & 2.50 & 0.03 \\
M_{bol,B} (mag) & -3.1 & 0.6 \\
M_{bol,G} (mag) & -0.25 & 0.11 \\
M_B (M_\odot) & 7.0 & 0.5 \\
M_G (M_\odot) & 1.2 & 0.3 \\
R_B (R_\odot) & 5.6 & 0.8 \\
R_G (R_\odot) & 10.0 & 0.8 \\
\end{tabular}

* assumed from spectroscopy
* adopted from spectroscopy

lies very close to the value expected for a radiative envelope. The limb darkening coefficients r and y of the B- and G-stars were taken from Castelli & Kurucz (2004) for the Johnson V curve while new limb darkening coefficients specifically computed for the CoRoT passband, which are now implemented in PHOEBE (rel. 0.31dev), were used. The CoRoT limb darkening coefficients were derived from a specific extension of the tables of van Hamme (1993) for the CoRoT transmission function (Fridlund et al. 2006), and computed by Van Hamme (private communication). The method is described in van Hamme (1993), it is a convolution of the outgoing intensities with the CoRoT transmission curve for different angles. The errors on x(CoR) and y(CoR) coming from this method are 0.001.

The heliocentric Julian epoch of the primary minimum, HJD₀, the effective temperature of the B-star, T_{eff,B}, the inclination, i, the dimensionless potential, \Omega_B, the fractional luminosity of the B-star, \lambda_B, the systematic velocity, \gamma, and the eccentricity, e, were all set as adjustable parameters. For the asynchronicity parameter, FB, we used 4 ± 1 since the projected rotational velocity of the primary component appears to be ≈ 4 times the estimated synchronous velocity (which amounts to 30 ± 15 km s⁻¹ if we adopt the B-star’s radius from the solution presented below). We also checked whether leaving FB as a free parameter improved our model. This was not the case.

For practical reasons mainly, we constructed 10 different subsets from the CoRoT light curve. Given that the CoRoT light curve of AU Mon was largely oversampled, we have split the continuous time-series into 2 × 5 full orbital cycles selecting either even or odd data points in time, thus yielding 2 × 5 different CoRoT data subsets. In this way, no information was lost and we were able to obtain formal errors based on 10 independent subsets of the data. Thus, the 10 CoRoT data subsets, all the compiled V-magnitude photoelectric observations and the 1D cross-correlation RVs of the G-star from Table 5 were used in an iterative procedure to search for a consistent model. Of course the CoRoT data are of much higher quality compared to the V-band light curve which is reflected in the scatter (uncertainties) on the data.

First, we simultaneously modelled each individual CoRoT data subset with the past V-band light curve. In this step we used equal weights both for the CoRoT and the V-band data. This rapidly converged towards one possible light curve model obtained from averaging over the 10 found solutions. The mean parameters (computed with standard errors) were then adopted as the starting values for the next step in the modelling. Next, we simultaneously modelled each individual CoRoT data subset and the past V-band light curve together with the cross-correlation RVs of the G-star. The weights we assigned in this step to the photometry are now inversely proportional to the square of the r.m.s. errors for each dataset. This means that the CoRoT data were given a much larger weight (0.98) than the V-band data (0.02) throughout these calculations. The reduced \chi²-values for each modelling approximated the value \chi² = 1.4 for the CoRoT subsets, the fit for the V-band light curve had a value of \chi² = 2.1. Again, an improved light curve and RV model was obtained from averaging over the 10 found solutions.

Finally, we improved the orbital period and the epoch of primary minimum, HJD₀, of AU Mon using PHOEBE and our best-fit model: we simultaneously fitted all the data with the orbital period and HJD₀ set as the only free parameters. This yielded a period of 11.130374(1), which is almost the same as the orbital period determined by Lorenzi (1980b) and which we adopted as a fixed parameter in our final modelling. The final value for HJD₀ is HJD₀ = 2454136.6734(2). We checked whether inclusion of third light in the modelling would improve our solution. This was not the case. We also verified that, when leaving the mass ratio q as a free parameter, its value was fully consistent with our spectroscopic estimate of q.

The mean parameters (with estimated uncertainties) and the resulting physical properties of both components are listed in Ta-
The true uncertainties will be larger because they depend on unknown systematic uncertainties and parameter dependencies which were not treated here. The observed V and CoRoT light curves and the synthetic model are shown in Fig. 8. There is a very good agreement between the CoRoT observations and the best-fit model: the mean residual value in all the subsets is of the order of 0.02 mag (Fig. 9), though somewhat larger near the phase of primary minimum. We note however that the expected effective temperature for a normal main-sequence B-star with a mass of 7 solar masses would be higher than 15000 K we obtained, in the order of 20000-21000 K. The radius of 5.6 solar radii also appears too large, even for the mass of 7 solar masses, it should be of the order of 4 solar radii. This may indicate that also from photometry one measures the outer radius of the optically thick pseudophotosphere, rather than the true radius of the B star. Seen roughly equator-on, such a pseudophotosphere would also have a lower effective temperature. Fig. 7 shows the PHOEBE model for the RVs of the G-star. Fig. 10 illustrates the configuration of the binary at three different orbital phases.

6 CHARACTERIZATION OF THE ROSSITER-MCLAUGHLIN EFFECT OF THE G-STAR

As already mentioned in Sect. 4.1, the RV curve of the G-star shows a small Rossiter-McLaughlin (RM) effect (Rossiter 1924; McLaughlin 1924) at phase 0.5. This red-blue-shifted distortion at the secondary eclipse is due to selective blocking of the light of the rotating star during an eclipse. When the primary star covers the blueshifted (redshifted) half of the stellar disk, the integrated light of the secondary appears redshifted (blueshifted). Because of this selective blocking of the stellar surface during the eclipse, a skewed line profile is created. This change in line profile shape results in a shift in RV, which in turn results in the redshift-blueshift distortion seen during the eclipse. The effect mainly depends on the projected rotation velocity of the star, the ratio of stellar radii, the orbital inclination, and the limb darkening. To analyse this effect we have subtracted the orbital solution (solid curve in Fig. 7) from the RV measurements of the G-star. The orbit-subtracted RV residuals are shown in Fig. 11. We used the analytical description of this effect given in Giménez (2006) to simulate the RM effect. The ratio of the stellar radii r_B/r_G, the inclination and the radius of the G-star...
CoRoT photometry and high-resolution spectroscopy of the interacting eclipsing binary AU Mon

Relative to the size of the orbit r_G were taken from our final orbital solution. The equatorial rotational velocity of the star was set to $44 \pm 4 \text{ km s}^{-1}$. The rotational axis of the G-star is assumed to be perpendicular to the orbital plane.

The result of our best fit is seen in Fig. 11. With our current input parameters we cannot fully explain the RM effect. A possible explanation is that we are primarily not dealing with rotational effects but with the fact that the photocentre and gravity centre of the Roche-lobe filling star (G-star) are not identical and coinciding. Wilson et al. (1985) pointed out that this could also cause such distortions in the RVs during an eclipse. Another explanation comes from the fact that we have circumstellar matter together with matter circulating from the G to the B-component which has not been taken into account in the calculations. In order to check this, we have set the relative radius of the G-star r_G as a free parameter. The result is that we could fit the RM effect if we increase r_G to 0.44 A (see Fig. 11).

7 VARIATIONS ON OTHER TIME SCALES

As Fig. 9 clearly shows, a systematic pattern of rapid light changes which is most pronounced near the phases of primary eclipse was detected by CoRoT at every orbital cycle. This is also the reason why the O-C’s calculated from our final ephemeris for these minima are significantly larger than their accuracy (see Table 3). The fast changes near the primary eclipse are reminiscent of what Pavlovski et al. (2006) found for W Cru (most evident in the U-filter). In accordance with them, we propose that the variations are due to a non-uniform brightness distribution, probably seated in the accretion disk. We also note that the Hα profiles from very similar orbital phases but from two different orbital cycles differ from each other – see Fig. 12. For instance, the additional red-shifted absorption feature is more pronounced in the first cycle than in the last one.

As already mentioned in Sect. 2.2, Peters (1994a,b) suggested that the cyclic variations in the mass transfer rate could be due to pulsations of the mass-losing secondary. In order to investigate this we performed a frequency analysis on the residuals of the light curve after subtracting our final PHOEBE model shown in Fig. 8.

The periodogram of the residual data set is completely contaminated by the binary orbital frequency and its harmonics. As can be seen in Figs 8 and 9, the residuals of the CoRoT data near the phase of primary minimum show much larger variations than the residuals outside eclipse. This periodicity is due to the fact that the primary minima are not completely well fitted, thus introducing a strong signal with the orbital frequency of 11.11303 days. In order to avoid this we did not consider the residuals during the phase of primary eclipse and recomputed the Fourier Transform (FT). The result is shown in Fig. 13.

The residuals from the PDM-prewhitening procedure were analysed using the Short Time Fourier Transform (STFT) with a Hamming window (Harris 1978). The result can be seen in Fig. 14. The STFT was calculated using a window width of 10 days, and evaluated in 100 equidistant time points. The peaks at 10.4 (f1) and 8.3 d^{-1} (f2) are clearly visible as nearly continuous frequency bands. A short drop in amplitude is noticeable in the 8.3 d^{-1} frequency band around day $\tau = 38 d$. The power excess at lower fre-
Table 9. Frequencies found in the residuals together with their S/N ratio (we refer to the text for explanation). The error estimate (Montgomery & O'Donoghue 1999) for the frequencies is ±0.0002 d⁻¹. The error on the amplitude is 0.01 mmag.

<table>
<thead>
<tr>
<th>ID</th>
<th>Frequency</th>
<th>Amplitude</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(d⁻¹)</td>
<td>(µHz)</td>
<td></td>
</tr>
<tr>
<td>f₁</td>
<td>10.4081</td>
<td>120.46</td>
<td>0.34</td>
</tr>
<tr>
<td>f₂</td>
<td>8.3033</td>
<td>96.10</td>
<td>0.25</td>
</tr>
</tbody>
</table>

The frequency cannot be attributed to one or several stable frequencies. Instead, the time-dependent behaviour of low frequencies with short-living amplitudes are visible, resulting in a smeared out region of power excess in a full Scargle periodogram (see middle panel of Fig. 13). It is difficult to draw firm conclusions about the origin of these features, due to the added uncertainties from the PDM-prewhitening method in this frequency band. However the two frequencies in Table 9 are unaffected by our PDM-prewhitening method, and are definitely present in the Scargle periodogram.

Their characteristics are listed in Table 9. Since these frequencies are not detectable in the spectra, we cannot directly assign a physical origin to them. The frequencies f_1 and f_2 are likely to originate from the B-star because it produces ~ 82% of the light and it concerns isolated frequency peaks. Although, theory does not predict such pulsations for B-stars (see e.g. Miglio et al. 2007), such frequencies have also been detected in CoRoT data of the Be star HD 49330 (Huat et al. 2009). This result puts AU Mon in the neighbourhood of the sample of semi-detached Algol-type eclipsing binaries with an oscillating mass accreting component (oEA stars, with RZ Cas as the best studied object Mkrtichian et al. 2007). AU Mon cannot be fully classified as an oEA star, because oEA stars are at the end of the mass transfer regime which is still not the case for AU Mon.

On the other hand, theory predicts that the G-star should produce solar-like oscillations (see e.g. Houdek & Gough 2002; Samadi et al. 2007). Since we know the mass, radius and T_{eff} of the star, we predict $v_{\max} = M_{\odot}/R_{\odot}^3 (T_{\text{eff}}/5777)^{0.5} \times 3050 \approx 34 \mu\text{Hz} (= 2.94 \text{d}^{-1})$ to be the frequency at which to expect such oscillations (Kjeldsen & Bedding 1995). This value is in agreement with the location of the power excess in the Scargle periodogram of AU Mon (middle panel of Fig. 13). The amplitude of the power excess is not in disagreement with the amplitudes of the discovered solar-like oscillations in the CoRoT data of red giants (De Ridder et al. 2009) taking into account the flux contribution of the G-star. Due to lack of mode identification and uncertainty on the origin of the oscillations, we are unable to exploit the detected frequencies seismically without additional spectroscopic information about them.

8 UNDERSTANDING THE LONG-TERM LIGHT VARIATIONS

Other cases than AU Mon exist in which the discovery of long-term periodic or at least cyclic brightness variations (reminiscent of AU Mon) have been claimed, namely those cases where systematic photometry in a calibrated photometric system has been carried out or where interacting binaries with Balmer emission lines and hot mass-gaining components are discussed. Probably the first reports of such a behaviour are RX Cas (Kalv 1979), TV Cas = HD 1486 (Walter 1979) and V505 Sgr = BD−14°5578 (Walter 1981). However, the latter two systems exhibit only very faint single-peaked Hα emission and their long-term variations are probably related to the presence of distant third components in these systems (Richards & Albright 1999; Vesper et al. 2001).

In Table 10, we provide basic information on galactic emission-line systems with cyclic long-term variability known to us. During the past five years, similar systems were also dis-
covered and studied rather intensively in the Magellanic Clouds (Mennickent et al. 2003, 2005b, a, 2006, 2008). In spite of all effort, the true cause of the long-term cyclic changes remains unexplained, although several different interpretations were put forward: Kalv (1979) interpreted the 516-d periodicity of RX Cas as pulsation of the Roche-lobe filling star. Harmanec et al. (1996) considered the possibility that the 282-d cycle of β Lyr is a beat period between the orbital period and rapid changes with a cycle of 417 d which they detected in spectroscopy. They also pointed out some similarity with the 164-d cycle of V1343 Aql = SS 433, a massive 13 M\odot X-ray binary with bipolar jets. Wilson & van Hamme (1999) also studied β Lyr. They concluded that neither apsidal advance nor precession can account for the 282-d light variation. They were unable to exclude pulsations of the disk as the cause. As already mentioned, Peters (1991) concluded that the optical brightness variations of AU Mon are due to a 1200 K variation in the photospheric effective temperature of the B primary.

Mennickent et al. (2003) reported the discovery of eclipsing binaries with long-term periodic brightness changes from OGLE photometry of the Magellanic Clouds. Mennickent et al. (2003) pointed out that the light maxima of the long cycles are always accompanied by a mild reddening of the objects in question. Mennickent et al. (2005b) concluded that the long brightness changes are often cyclic rather than strictly periodic ones. Subsequently, Mennickent et al. (2008) concluded that the long-term variations must be due to variations in circumbinary matter as we found for AU Mon. They suggested that the system experiences supercycles of mass outflow which lead to replenishment of the circumbinary envelope.

AU Mon may become a key object to study the true nature of the long-term brightness changes since it is bright and the amplitude of the 417-d period is large. In spite of our effort to collect and homogenize existing photometry, available material on colour variations is, unfortunately, very scarce. In Fig. 3 we compare the V magnitude and B - V and U - B colour changes along the 417-d cycle for all observations we were able to transform into comparable UBV magnitudes. Unfortunately, there is no colour information near phases of the brightness maximum. A plot of both colour indices vs. time shows that there could also be colour variations on longer time scales, than those related to the 417-d cycle. If this is a more general pattern, this could perhaps also explain somewhat contradictory reports on the colour behaviour of various objects studied by Mennickent and his collaborators. Clearly, future systematic calibrated multicolour photometry of AU Mon over the whole 417-d cycle is very desirable.

We tentatively suggest that the long-term brightness changes of AU Mon must be associated with some circumbinary matter and it is plausible to assume that the bulk of such material is associated with putative bipolar jets for which we find indirect support from the shift of the RV curves of some spectral lines associated with the B-star. Bisikalo et al. (2000) showed via hydro calculations for β Lyr that when the encircling stream hits the denser primary stream from the mass-losing star, it gets bended and goes out of the orbital plane resulting in jet-like structures. Peters (2007) reported probable detections of bipolar jets of very hot plasma, perpendicular to the orbital plane, for three other hot interacting binaries: TT Hya, V356 Sgr and RY Per. However, Miller et al. (2007) studied circumstellar matter of TT Hya and argued against jets. The variations themselves could have two possible causes: either cyclic changes in the mass outflow from the binary as suggested by Mennickent et al. (2008) or precession of the binary orbit which would change the attenuation of the binary due to changing projection effects of jets. This latter idea seems improbable, however, in the light of our finding that the light curve from the maxima and minima of the 417-d period lead to the same binary elements including the orbital inclination. It is clear that continuing systematic observations of AU Mon, including spectro-interferometry and polarimetry, could help to understand the nature of the remarkable changes of these interesting objects.

9 SUMMARY

Our analyses of very accurate CoRoT space photometry, past Johnson V photoelectric photometry and high-resolution échelle spectra led to the determination of improved fundamental stellar properties of both components of the massive and interacting system AU Mon. We derived new and accurate ephemerides for both the orbital motion (with a period of 111130374) and the long-term, overall brightness variation (with a period of 41659). It is shown that this long-term variation must be due to attenuation of the total light by some variable circumbinary material. We derived the binary mass ratio $M_G/M_B = 0.17\pm0.03$. Using this value of the mass ratio as well as the radial velocities of the G-star, we obtained a consistent and coherent light curve solution and a new estimate of the stellar masses, radii, luminosities and the effective temperatures.

We must point out that our final model does not include the gas stream and accreting matter on the B-star. It would be interesting to consider such complications in any future modelling of the binary. We also report the discovery of rapid and periodic light changes visible in the high-quality residual CoRoT light curves. The rapid light changes visible in the residuals near primary minima repeat at every orbital period. They are probably due to a non-uniform brightness distribution, seated in the accretion disk. Outside the primary minima of the CoRoT light curve we detect two frequencies, they are in the expected frequency domain of B-stars. Complementary interferometric and polarimetric observations will be needed to even better understand the geometry and the nature of the circumbinary matter in AU Mon.

ACKNOWLEDGEMENTS

The authors acknowledge critical remarks and useful suggestions by Dr. Johannes Andersen on an earlier version of the paper. YF...
thanks P. Hadrava for making his KOREL computer code (Release 2.12.04) available to him. We also thank P. Hadrava for the use of his FOTEL computer code. This research has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement n°227224 (PROSPERITY), as well as from the Research Council of K.U.Leuven grant agreement GOA/2008/04. MB is Postdoctoral Fellow of the Fund for Scientific Research, Flanders. The research of PH was supported by the 2013)/ERC grant agreement n°227224 (PROSPERITY), as well the use of his FOTEL computer code. This research has received public. The FEROS data are being obtained as part of the ESO in astrophysics.

finally, we thank Andrea Miglio for valuable discussions on stellar oscillations.

REFERENCES

Bisikalo D., Matsuda T., 2007, IAU Symposium, 240, 356
Bisikalo V. V., Bovarchuk A. A., Harmanec P., Hadrava P., Kuznetsov O. A., 2000, ASPC9, 214, 697
Castelli F., Kurucz R. L., 2003, IAU Symposium, 210, 20P
Fridlund M., Baglin A., Lochard J., Conroy L., 2006, ESA Special Publication, 1306
Hadrava P., 1990, Contributions of the Astronomical Observatory Skalnaté Pleso, 20, 23
—, 1995, A&AS, 114, 393
Harmanec P., 1988, Bulletin of the Astronomical Institutes of Czechoslovakia, 39, 329
—, 2001, Publications of the Astronomical Institute of the Czechoslovak Academy of Sciences, 89, 9
—, 2002, Astronomische Nachrichten, 323, 87
—, 2003, Publ. Canakkale Onsekiz Mart Univ., 3, 221
Hoffmeister C., 1931, Astronomische Nachrichten, 242, 129
Kalp V., 1979, Tartu Astrofisika Observatooriumi Toateed, 58, 3
Kuznetsov O. A., 2000, ASPCS, 214, 697
—, 1982, Acta Astronomica, 32, 431
—, 1985, Information Bulletin of Variable Stars, 2704, 1
Mennickent R. E., Assmann P., Pietrzyński G., Gieren W., 2005a, ASPC, 335, 129
CoRoT photometry and high-resolution spectroscopy of the interacting eclipsing binary AU Mon

AS, 389, 1605
Miller B. P., Budaj J., Richards M. T., 2005, AAS, 37, 486
Montgomery M. H., O’Donoghue D., 1999, Delta Scuti Star Newsletter, 13, 28
Perryman M. A. C., ESA, 1997, The HIPPARCOS and TYCHO catalogues, 1
Peters G. J., 1988, IUE Proposal, 3160
—, 1994a, IUE Proposal, 4820
—, 1994b, ASPC, 56, 384
Peters G. J., Polidan R. S., 1982, IAU Symposium, 98, 405
Polidan R. S., Peters G. J., 1982, Advances in Ultraviolet Astronomy, 534
Škoda P., 1996, ASPC, 101, 187
Walter K., 1979, A&AS, 37, 493
This paper has been typeset from a TEX/ LATEX file prepared by the author.

APPENDIX A: TIMES OF MINIMA

APPENDIX B: AVAILABLE PHOTOLELECTRIC DATA

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:
Table B1. Available photoelectric observations of AU Mon.

This paper has been typeset from a TEX/ LATEX file prepared by the author.
Table A1. Visual, photographic, photoelectric and CCD times of minima. The times were adopted from the General Search Gateway of the Variable-Star Section of the Czech Astronomical Society (http://var.astro.cz/gsg). The O-C values were calculated with our new ephemeris (2) for AU Mon. The third column lists the type of observation. vis: visual; pg: photographic; pe: photo-electric.

<table>
<thead>
<tr>
<th>Time (HJD-2400000)</th>
<th>O-C</th>
<th>Type</th>
<th>Time (HJD-2400000)</th>
<th>O-C</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>26743.160</td>
<td>0.124</td>
<td>vis</td>
<td>37378.364</td>
<td>0.151</td>
<td>pg</td>
</tr>
<tr>
<td>26743.390</td>
<td>0.354</td>
<td>pg</td>
<td>37400.351</td>
<td>-0.088</td>
<td>pg</td>
</tr>
<tr>
<td>26765.320</td>
<td>0.058</td>
<td>pg</td>
<td>37578.633</td>
<td>0.385</td>
<td>pg</td>
</tr>
<tr>
<td>26976.400</td>
<td>-0.010</td>
<td>vis</td>
<td>37667.505</td>
<td>0.353</td>
<td>pg</td>
</tr>
<tr>
<td>26987.530</td>
<td>0.007</td>
<td>vis</td>
<td>38322.601</td>
<td>-0.220</td>
<td>pg</td>
</tr>
<tr>
<td>27076.430</td>
<td>0.003</td>
<td>vis</td>
<td>38378.568</td>
<td>0.182</td>
<td>pg</td>
</tr>
<tr>
<td>27120.890</td>
<td>0.011</td>
<td>vis</td>
<td>38411.508</td>
<td>-0.217</td>
<td>pg</td>
</tr>
<tr>
<td>27487.583</td>
<td>-0.027</td>
<td>vis</td>
<td>38467.353</td>
<td>0.062</td>
<td>pg</td>
</tr>
<tr>
<td>27843.110</td>
<td>-0.117</td>
<td>vis</td>
<td>38856.363</td>
<td>0.116</td>
<td>pg</td>
</tr>
<tr>
<td>27887.631</td>
<td>-0.048</td>
<td>vis</td>
<td>39200.388</td>
<td>-0.363</td>
<td>pg</td>
</tr>
<tr>
<td>27932.230</td>
<td>0.099</td>
<td>pg</td>
<td>39945.411</td>
<td>0.086</td>
<td>pg</td>
</tr>
<tr>
<td>28209.912</td>
<td>-0.045</td>
<td>vis</td>
<td>40478.609</td>
<td>-0.141</td>
<td>pg</td>
</tr>
<tr>
<td>28498.919</td>
<td>0.023</td>
<td>vis</td>
<td>40656.362</td>
<td>-0.197</td>
<td>pg</td>
</tr>
<tr>
<td>28543.377</td>
<td>0.029</td>
<td>vis</td>
<td>41056.332</td>
<td>-0.296</td>
<td>pg</td>
</tr>
<tr>
<td>28921.155</td>
<td>-0.037</td>
<td>vis</td>
<td>41334.391</td>
<td>-0.063</td>
<td>pg</td>
</tr>
<tr>
<td>28954.480</td>
<td>-0.051</td>
<td>vis</td>
<td>41356.438</td>
<td>-0.242</td>
<td>pg</td>
</tr>
<tr>
<td>28965.656</td>
<td>0.012</td>
<td>vis</td>
<td>41367.466</td>
<td>-0.327</td>
<td>pg</td>
</tr>
<tr>
<td>30021.380</td>
<td>-0.002</td>
<td>pg</td>
<td>41390.355</td>
<td>0.335</td>
<td>pg</td>
</tr>
<tr>
<td>30810.400</td>
<td>-0.008</td>
<td>pg</td>
<td>42090.373</td>
<td>0.232</td>
<td>pg</td>
</tr>
<tr>
<td>31910.610</td>
<td>0.011</td>
<td>pg</td>
<td>42790.2350</td>
<td>-0.027</td>
<td>pe</td>
</tr>
<tr>
<td>32888.560</td>
<td>0.014</td>
<td>pg</td>
<td>42801.3602</td>
<td>-0.015</td>
<td>pe</td>
</tr>
<tr>
<td>33266.400</td>
<td>0.011</td>
<td>pg</td>
<td>42868.1210</td>
<td>0.068</td>
<td>pe</td>
</tr>
<tr>
<td>33533.160</td>
<td>0.058</td>
<td>pg</td>
<td>42879.2360</td>
<td>0.069</td>
<td>pe</td>
</tr>
<tr>
<td>34444.380</td>
<td>0.009</td>
<td>pg</td>
<td>43123.653</td>
<td>-0.000</td>
<td>UBV</td>
</tr>
<tr>
<td>34811.100</td>
<td>-0.001</td>
<td>pg</td>
<td>43190.332</td>
<td>0.001</td>
<td>UBV</td>
</tr>
<tr>
<td>35044.500</td>
<td>0.025</td>
<td>pg</td>
<td>43201.449</td>
<td>0.005</td>
<td>UBV</td>
</tr>
<tr>
<td>35900.386</td>
<td>0.207</td>
<td>pg</td>
<td>48502.220</td>
<td>-0.143</td>
<td>V</td>
</tr>
<tr>
<td>37367.333</td>
<td>0.233</td>
<td>pg</td>
<td>51513.5290</td>
<td>-0.468</td>
<td>ccd</td>
</tr>
</tbody>
</table>

Table B1. Excerpt of the available photoelectric observations of AU Mon. The full Table is available as Supporting Information.

<table>
<thead>
<tr>
<th>Time (HJD-2400000)</th>
<th>V (mag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45343.4114</td>
<td>8.380</td>
</tr>
<tr>
<td>45346.3339</td>
<td>9.137</td>
</tr>
<tr>
<td>45346.4262</td>
<td>9.048</td>
</tr>
<tr>
<td>45351.4059</td>
<td>8.415</td>
</tr>
<tr>
<td>45351.4202</td>
<td>8.418</td>
</tr>
<tr>
<td>45353.3960</td>
<td>8.391</td>
</tr>
<tr>
<td>45354.4253</td>
<td>8.387</td>
</tr>
<tr>
<td>45355.3607</td>
<td>8.385</td>
</tr>
<tr>
<td>45356.3518</td>
<td>8.448</td>
</tr>
<tr>
<td>45357.2635</td>
<td>9.118</td>
</tr>
<tr>
<td>45357.2823</td>
<td>9.151</td>
</tr>
<tr>
<td>45357.3028</td>
<td>9.165</td>
</tr>
<tr>
<td>45357.3205</td>
<td>9.181</td>
</tr>
<tr>
<td>45357.3349</td>
<td>9.180</td>
</tr>
<tr>
<td>45357.3471</td>
<td>9.187</td>
</tr>
<tr>
<td>45357.3600</td>
<td>9.188</td>
</tr>
<tr>
<td>45357.3739</td>
<td>9.185</td>
</tr>
<tr>
<td>45357.3927</td>
<td>9.192</td>
</tr>
<tr>
<td>45357.4045</td>
<td>9.180</td>
</tr>
<tr>
<td>45357.4161</td>
<td>9.169</td>
</tr>
<tr>
<td>45357.4287</td>
<td>9.165</td>
</tr>
<tr>
<td>45357.4403</td>
<td>9.155</td>
</tr>
<tr>
<td>45357.4565</td>
<td>9.147</td>
</tr>
</tbody>
</table>