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A N A L O G U E  O F  T H E  D U IS T E R M A A T -V A N  D E R  
K A L L E N  T H E O R E M  F O R  G R O U P  A L G E B R A S

WENHUA ZHAO AND ROEL WILLEMS

A b s t r a c t .  Let G be a group, R an integral domain, and VG the 
R-subspace of the group algebra R[G] consisting of all the elements 
of R[G] whose coefficient of the identity element 1G of G is equal to 
zero. Motivated by the Mathieu conjecture [M], the Duistermaat- 
van der Kallen theorem [DK], and also by recent studies on the 
notion of Mathieu subspaces introduced in [Z4] and [Z6], we show 
that for finite groups G, VG under certain conditions also forms a 
Mathieu subspace of the group algebra R[G]. We also show that for 
the free abelian groups G = Zn (n > 1) and any integral domain 
R of positive characteristic, VG fails to be a Mathieu subspace of 
R[G], which is equivalent to saying that the Duistermaat-van der 
Kallen theorem [DK] cannot be generalized to any field or integral 
domain of positive characteristic.

1. In tro d u c tio n

L et’s first recall the following notion introduced recently by the first 
author in [Z4] and [Z6], which can be viewed as a natural generalization 
of the notion of ideals.

D efin itio n  1.1. Let R  be a com m utative ring and A  an associative 
R-algebra. A  R-submodule or R-subspace M  o f A  is said to be a left 
(r e s p r ig h t ;  two-sided) M athieu subspace o f A  i f  fo r  any a ,b ,c  G A 
with am G M  fo r  all m  > 1, we have bam G M  (resp., amb G M ; 
bamc G M ) when m  ^  0, i.e., there exists N  >  1 such that bam G M  
(resp., amb G M ; bamc G M ) fo r  all m  >  N .

Two-sided M athieu subspaces will also simply be called M athieu 
subspaces. A R-subspace M  of A is said to be a pre-two-sided M athieu
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2 WENHUA ZHAO AND ROEL WILLEMS

subspace of A if it is both  left and right M athieu subspace of A . Note 
th a t the pre-two-sided M athieu subspaces were previously called two­
sided M athieu subspace or M athieu subspaces in [Z4].

The introduction of the notion of M athieu subspaces in [Z4] and 
[Z6] was mainly motivated by the studies of the Jacobian conjecture 
[K] (see also [BCW] and [E1]), the M athieu conjecture [M], the van­
ishing conjecture [Z1], [Z2], [Z5], [EWiZ] and more recently, the image 
conjecture [Z3] as well as many other related open problems. For some 
recent developments on M athieu subspaces, see [Z6], [FPYZ], [EWrZl], 
[EWrZ2], [EZ] and [Z7]. For a recent survey on the the image conjecture 
and i t ’s connections with some other problems, see [E2].

The notion was named after Olivier M athieu in [Z4] due to his con­
jecture mentioned above, which now in terms of the new notion can be 
re-stated as follows.

C o n je c tu re  1.2. (T h e  M a th ie u  C o n je c tu re )  Let G be a compact 
connected real L ie group with the Haar measure a . Let A  be the algebra 
of complex-valued G -finite functions on G, and M  the subspace o f A  
consisting o f f  G A such that f G f  da  =  0. Then M  is a M athieu  
subspace o f A .

J. Duisterm aat and W. van der Kallen [DK] proved the M athieu  
conjecture for the case of tori, which now can be re-stated as follows.

T h e o re m  1.3. (D u is te rm a a t a n d  v an  d e r  K allen ) Let z  =  ( z \ , z 2, 
. . . ,z n) be n  com m utative free variables and V  the subspace o f the Lau­
rent polynomial algebra C[z-1 , z] consisting o f the Laurent polynomials 
with no constant term. Then V  is a M athieu subspace o f C[z-1 ,z].

Note th a t despite its innocent looking, the proof of the theorem above 
is surprisingly difficult. The proof in [DK] uses some heavy machineries 
such as toric varieties, resolutions of singularities, etc.

To discuss the main motivations and results of this paper, we start 
with the following observation on the Duistermaat-van der Kallen The­
orem above.

Let G be the free abelian group Zn (n >  1). Then the Laurent 
polynomial algebra C[z-1 , z] can be identified in the obvious way with 
the group algebra C[G]. Under this identification, the subspace V  C 
C[z-1 ,z] in the theorem corresponds to the subspace VG of the group 
algebra C[G] consisting of the elements of C[G] whose “constant term ” 
(i.e., the coefficient of the identity element 1G of G) is equal to zero. 
So, we are naturally led to the following (open) problem.

P ro b le m  1.4. Let R  be a com m utative ring and G a group. Let VG 
be the R-subspace o f the elements o f the group algebra R[G] with no
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“constant te rm ”, i.e., the coefficient o f the identity  elem ent 1Q of G is 
equal to zero. Then under what conditions on R  and G, VQ form s a 
M athieu subspace o f the group algebra R[G] ?

The problem above not only provides a different point of view to get 
further understanding on the remarkable Duistermaat-van der Kallen 
Theorem, but also gives a family of candidates for M athieu subspaces, 
which may provide some new understandings on the still very myste­
rious notion of M athieu subspaces. This makes the problem itself very 
interesting and worthy to investigate.

One of the main results of this paper is th a t for any finite group G 
and an integral domain R  of characteristic p  =  0 or p  > |G| (the order 
of G), the R-subspace VQ does form a M athieu subspace of R[G] (see 
Theorem 3.5), i.e., Problem 1.4 in this case can be solved completely.

However, for the case th a t 0 <  char. R  =  p < |G|, the situation 
becomes much more subtle. For example, the magic condition p  \  |G| 
for the group algebras of finite groups G  (e.g., see [P]) does not resolve 
the difficulty completely, i.e., under this condition VQ still may or may 
not be a M athieu subspaces of R[G] (e.g., see Theorem 4.1 and Example
4.2).

In this paper, we first study Problem 1.4 for the group algebras 
of finite groups G over integral domains R  of any characteristics. In 
particular, besides the main result mention above, for finite abelian 
groups we also give a complete solution of Problem 1.4 for the case 
th a t the base integral domain R  satisfies certain primitive root of unity 
conditions (see Theorems 3.5 and 4.1), e.g., when R  is an algebraically 
closed field.

We then show th a t for the group algebras of the free abelian groups 
G =  Z n (n > 1) over any integral domain R  of positive characteristic, 
VQ is not a M athieu subspace of R[G], by showing th a t an example sug­
gested by Arno van den Essen does provide a desired counter-example. 
Consequently, it follows th a t the Duistermaat-van der Kallen theorem, 
Theorem 1.3, cannot be generalized to the Laurent polynomial algebra 
R[z-1 , z] over any field or integral domain R  of positive characteristic.

The arrangement of this paper is as follows.
In Section 2, we recall some general results on M athieu subspaces 

obtained in [Z4] and [Z6], which will be needed later in this paper. In 
Section 3, we prove some results on Problem 1.4 for the group algebras 
of finite groups G over arbitrary commutative rings or integral domains. 
In particular, we show in Theorem 3.5 th a t when the base ring R  is an 
integral domain of characteristic p  =  0 or p > |G|, the subspace VQ is 
always a M athieu subspace of R[G].
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In Section 4, we focus on the group algebras of finite abelian groups 
G over integral domains R  of characteristic p  > 0. The main results 
of this section is Theorem 4.1, which combining with Theorem 3.5 
provides a complete solution of Problem 1.4 for the group algebras of 
finite abelian groups G over the integral domains R  which satisfies a 
primitive root of unity condition, e.g., when R  is an algebraically closed 
field.

In Section 5, we consider Problem 1.4 for the group algebras of the 
free abelian groups Zn (n >  1) over an integral domain R  of charac­
teristic p  > 0. We prove th a t VQ in this case fails to be a M athieu 
subspace of R[Zn] by showing th a t the example in Lemma 5.2, which 
was suggested by Arno van den Essen to the authors, does provide a 
desired counter-example.

2. Som e R e su lts  on  M a th ie u  S u b sp aces

In this section, we recall some general facts on M athieu subspaces 
which will be needed later in this paper. Although all the results be­
low with certain modifications hold for all types of M athieu subspaces 
(one-sided, pre-two-sided, etc.) We here only focus on the two-sided 
case, which by Corollary 3.2 in the next section will be enough for our 
purpose.

Throughout this paper, unless stated otherwise, R  and K  always 
stand respectively for a unital commutative ring and a field of any 
characteristic, and A a unital algebra over R  or K .

Following [Z6], we define for any R-subspace V  of a R-algebra A the 
radical, denoted by V V ,  to be the set of a G A  such th a t am G V  when 
m  »  0.

We start with the following equivalent formulation of M athieu sub­
spaces, which was given in Proposition 2.1 in [Z6].

P ro p o s it io n  2.1. Let A  be a R-algebra and V  a R-subspace o f A .  
Then V  is a M athieu subspace o f A  i f f  fo r  any a G \ / V  and b,c  G A ,  
we have bamc G V  when m  ^  0.

The following characterization of the M athieu subspaces with alge­
braic radicals was also proved in Theorem 4.2 in [Z6].

T h e o re m  2.2. Let A  be a K-algebra and V  a K-subspace o f A  such 
that \ / V  is algebraic over K  {i.e., every elem ent o f \ / V  is algebraic 
over K ). Then V  is a M athieu subspace o f A  i f f  fo r  any idem potent 
e G V  (i.e., e2 =  e), we have (e) C V , where (e) denotes the ideal o f A  
generated by e.
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The next proposition is easy to check directly (or see Proposition 2.7 
in [Z6 ]).

P ro p o s it io n  2.3. Let I  be an ideal of A  and V  a R-subspace of A  such 
that I  C V . Then V  is a Mathieu subspace of A  i f f V / I  is a Mathieu 
subspace of the quotient algebra A / I .

Finally, le t’s recall the following family of M athieu subspaces of the 
polynomial algebra K[z\ in n  variables z :=  (z\, z2, •••, zn), which was 
given in Proposition 4.6 in [Z4].

P ro p o s it io n  2.4. Let n, d > 1 and R  an arbitrary integral domain. 
Let S  =  {y \ , V2 , C R n (with d distinct elements) and 0 ^  Ci E R
(1 <  i < d). Denote by V  the subspace of f ( z )  G R[z\ such that

d

(2.1) J 2 cif(v i)  =  0.
i=  1

Then V  is a Mathieu subspace of R[z] iff  for any non-empty subset 
J  C {1, 2 ,..., d}, we have 1

(2 .2 ) 5 > ^ 0 .
ieJ

Note th a t the proposition above was only proved in [Z4] under the 
condition th a t R  is a field. But, it is easy to see th a t the same proof 
actually goes through equally well for all integral domains.

3. Som e G e n e ra l R e su lts  for th e  C ase  o f F in i te  G ro u p s

Throughout the rest of this paper, unless stated otherwise, G stands 
for a finite group, R  a commutative ring, and K  a field of any character­
istic. We denote by R[G] and K[G\ the group algebra of G over R  and 
K ,  respectively Furthermore, we also fix the following terminologies 
and notations.

i) We denote by 1 or 1G the identity element of the group G and 
also the identity element of the group algebra R[G]. 

ii) For any u G R[G], we denote by C onst(u) the coefficient of \q  
of u, and call it the constant term  of u. 

in)  The set of all the elements of R[G] with no constant term  will 
be denoted by V g , r ,  or simply by VQ if the base ring R  is clear 
in the context.

iv) W hen R  is an integral domain, by the characteristic of R  (de­
noted by char. R) we mean the characteristic of the field of 
fractions of R.

^Note tha t Eq. (2.2) in [Z4] had been misprinted.
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Next, we start with the following equivalent formulation of Problem
1.4 for the group algebras of finite groups.

P ro p o s it io n  3.1. Let R  be any commutative ring and G a finite group. 
Then Vg is a Mathieu subspace of any fixed type of R[G] iff  all elements 
of \/V g are nilpotent.

Proof: First, it is easy to see tha t the (-<=) part follows directly from 
the assumption and Definition 1.1.

For the (=^) part, here we only give a proof for the left M athieu 
subspace case. The proofs of the other three cases are similar.

Assume th a t Vg is a left M athieu subspace and let u G \/Vg- Re­
placing u by a positive power of u, if necessary, we may assume that 
um G Fg for all m  > 1.

Now, since G is finite, by Definition 1.1 there exists N  > 1 such tha t 
g~lum G Vg for all g G G and m  > N .  In particular, for each g G G, 
the constant term  of g~lu N, which is the same as the coefficient of g 
in u N, is equal to 0 , whence u N =  0 , i.e., u is nilpotent.

Another way to show the (=>) part is as follows.
Assume otherwise and let u G v ^ g  such th a t u m ^  0 for all m  >  1. 

Since G is finite, there exists g G G such th a t the coefficient of g in 
um is nonzero for infinitely many m  > 1. Then the constant term  of 
g~1um is nonzero for infinitely many m  > 1. Then by Definition 1.1 
Vg is not a M athieu subspace of R[G], which is a contradiction. □

Two immediate consequences of Proposition 3.1 are the following 
two corollaries.

C o ro lla ry  3.2. Let R  and G be as in Proposition 3.1. Then Vg is 
a Mathieu subspace of any fixed type of R[G] iff Vg is a (two-sided) 
Mathieu subspace of R[G).

Therefore, throughout the rest of this paper we may and will focus 
only on the two-sided case.

C o ro lla ry  3.3. Let R  and G be as in Proposition 3.1. Assume that 
Vg is a Mathieu subspace of R[G). Then Vg contains no nonzero idem- 
potent of R[G].

Proof: Assume otherwise. Let e G Vg be a nonzero idempotent, 
i.e., e2 =  e /  0. Then for any m  > 1, we have em = e G VGl whence 
e G \ / V g -  But, since e is clearly not nilpotent, by Proposition 3.1 V g  

is not a M athieu subspace of R[G], which is a contradiction. □

W hen the base ring R  is a field, we show next th a t the converse of 
Corollary 3.3 actually also holds.
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P ro p o s it io n  3.4. Let K  be a field and G a finite group. Then Vq is 
a Mathieu subspace of K[G] i f fV c  contains no nonzero idempotent of 
K[G).

Proof: The (=>) part is a special case of Corollary 3.3. To show 
the (-<=) part, note th a t K[G\ is algebraic over K , since it is of finite 
dimension over K .  In particular, the radical \JVq of Vq is algebraic 
over K .  Then by Theorem 2.2, Vg is a M athieu subspace of K[G\. □

Next, we show th a t Problem 1.4 can be solved for the group algebras 
of all finite groups G over integral domains R  such th a t char. R  =  0 or 
char. R  = p > |G|.

T h e o re m  3.5. Let G be a finite group and R  an integral domain such 
that char. R  =  0 or char. R  =  p  > |G |. Then Vg is a Mathieu subspace 
of R[G].

Proof: Let u G \/Vg- Then by Proposition 3.1 it suffices to show 
th a t u is nilpotent. Note th a t by replacing u by a positive power of
u, if necessary, we may assume um G Vg, i.e., Const (um) =  0, for all 
m  > 1.

Let n : R[G\ —> End# (i?[G]) be the R-algebra homomorphism which 
maps each v G R[G] to the i?-endomorphism m v G End#(i?[G]) defined 
by the left multiplication by v on R[G]. Then it is easy to check tha t 
for any v G R[G], the trace of the linear map ¡i{v) =  m v is equal to 
|G| Const (w). Consequently, for the u G \/Vg  fixed at the beginning 
and any m  > 1 , the trace of the m -th power (/j,(u))m = ¡i{um) of the 
linear transform ation ¡i{u) is equal to zero.

On the other hand, since char. R  = 0 or char. R  = p  > |G|, it is 
well-known in linear algebra th a t in this case the linear transform ation 
li(u) must be nilpotent, i.e., (/j,(u))m = ¡i{um) =  0 for m  0. Since n 
is clearly injective (e.g., by applying ¡i(v) to 1 G R[G] for all v G R[G]), 
we also have um = 0  when m^$> 0 , i.e., u is nilpotent, as desired. □

One remark on Theorem 3.5 is tha t when the conditions char. R  =  0 
and char. R  = p  > |G| fail, i.e., when 0 <  char. R  = p < |G|, the 
situation for Problem 1.4 becomes much more complicated.

For instance, as shown by the next lemma and also by Theorem 4.1 in 
Section 4, the magic condition p \  |G| for the theory of group algebras 
R[G] of finite groups G (e.g., see [P]) does not resolve the difficulty 
completely for Problem 1.4.

L em m a  3.6. Let G be any finite group with |G| >  2, and R  an integral 
domain of char. R  =  p  > 0. Assume p  \ (|G| — 1) (hence, p  \  |G |). Then 
Vg is not a Mathieu subspace of R[G].
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Proof: Let u = — g G VQ and v = I g — u = 1 — u. Note
th a t v is the sum of all the distinct elements of G in R[G]. Hence, for 
any g G G, we have vg = gv =  v. Consequently, we have v 2 = \G\v, 
which in terms of u is the same as

(1 — u ) 2 =  1 — 2  u + u 2 = |G|(1 — u).

Solving u 2 from the equation above, we get

(3.1) u 2 =  (|G| — 1) — (|G| — 2)u.

Since p  | ( |G| — 1), we have (|G| — 1) =  0 and (|G| — 2 ) =  —1 . Then 
by Eq. (3.1), we have u 2 =  u. Since « /  0, by Corollary 3.3 Vg is not 
a M athieu subspace of R[G]. □

Next, we show the following lemma th a t will be needed later.

L em m a  3.7. Let R  be any commutative ring and G any group (not 
necessarily finite). Assume that Vg is a Mathieu subspace of R[G). 
Then for each subgroup H  of G , Vh is a Mathieu subspace of R[H).

Proof: Assume otherwise. Let H  be a subgroup of G such th a t Vh 
is not a M athieu subspace of R[H]. Then by Definition 1.1 and the 
definition of Vh, there exist u ,v  G R[H] such th a t C onst(um) =  0 for 
all m  > 1, but Const (umv) ^  0 for infinitely many m  >  1.

Since R[H] C R[G], we have u, v  G R[G], and u m G VG for all m  > 1, 
but umv Vg for infinitely many m  >  1. Hence, Vg is not a M athieu 
subspace of R[G], which is a contradiction. □

C o ro lla ry  3.8. Let R  and G be as in Lemma 3.1 and H  a subgroup 
of G. Assume that Vh is not a Mathieu subspace of R[H). Then Vg is 
not a Mathieu subspace of R[G).

As an application of Lemma 3.7 or Corollary 3.8, we derive the fol­
lowing necessary condition for VQ to be a M athieu subspace of R[G] 
over integral domains R  of positive characteristic.

P ro p o s it io n  3.9. Let R  be an integral domain of characteristic p > 0 
and G an arbitrary finite group. Write |G| =  prd for some r > 0 and 
d > 1 vnth p \  d. Assume that R  contains a primitive d-th root of unity 
and Vg is a Mathieu subspace of R[G). Then for each prime divisor q 
of \G\, we have p  >  q.

Proof: Assume otherwise and let q be a prime divisor of | G | such 
th a t p < q. Then we have q \ d, whence R  also contains a primitive q-th  
root of unity.
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Write |G| =  qsn  with s ,n  > 1 such th a t q \  n. Then by the well- 
known Sylow’s theorem in the theory of finite groups (e.g., see p. 105, 
Theorem 2.11.7 in [He]), G has at least one q-Sylow subgroup H , i.e., 
a subgroup H  of G with |H  | =  qs.

Now, pick up any non-identity element h £  H . Then h has order 
qk for some 1 <  k <  r. Let g =  h if k = 1 ;  and g =  hk-1 if k  >  2. 
Then g has order q and hence, generates a cyclic subgroup Cq of G of 
order |Cq| =  q. Then by Theorem 4.1 to be proved in Section 4 , VCq is 
not a M athieu subspace of R[Cq]. Hence, by Corollary 3.8 VG is not a 
M athieu subspace of R[G] either, which is a contradiction. □

Finally, we point out tha t when the finite group G in Proposition 
3.9 is abelian, a much stronger condition will be given in Theorem 4.1 
of the next section.

4. T h e  C ase  for F in i te  A b e lian  G ro u p s

In this section, we study Problem 1.4 for finite abelian groups over 
certain integral domains. The main result of this section is the following 
theorem.

T h e o re m  4.1 . Let R  be an integral dom ain o f characteristic p  > 0, 
and G a fin ite  abelian group with |G| =  p rd fo r  some r > 0 and d > 1 
with p  \  d. A ssum e that R  contains a prim itive d-th root o f unity. Then  
VG is a M athieu subspace o f R[G] i f f  p  > d.

Two remarks on Theorem 4.1 are as follows.

First, when the integral domain R  has char. R  =  0 (or char. R  =  
p >  |G |), Problem 1.4 has been solved by Theorem 3.5, together with 
which Theorem 4.1 provides a complete solution of Problem 1.4 for 
the group algebras of all finite abelian groups when the base integral 
domain R  satisfies the primitive root of unity condition in Theorem
4.1, e.g., when R is an algebraically closed field.

Second, from the example below we see th a t the d-th primitive root 
of unity condition on the integral domain R  in Theorem 4.1 is necessary.

E x a m p le  4.2. Let F 3 be the field with three elements. Note that F3 
obviously does not contain any prim itive 5th root o f unity. But, VZ5 is 
a M athieu subspace o f F 3[Z5 ], although char. F 3 =  3 < d  =  5.

Proof: Assume otherwise. Then by Proposition 3.4, there exists a 
nonzero idempotent f  £ VZ5. By identifying the group algebra F 3[Z5] 
with the quotient algebra F 3[t]/(t5 — 1) of the polynomial algebra F 3[t] 
in one variable t, we may write f  =  c1t  +  c2t2 +  c313 +  c4t4. Then it is
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easy to check th a t the following equations hold:

Const (ƒ2) =  2(cic4  +  c2 c3), 

ƒ 3 =  c3 i 3 +  c^t +  Cgi4 +  c^t2.

Since ƒ 2 =  ƒ 3 =  ƒ G VzB, hence we also have

(4.1)  c ic 4  =  - C 2 C3 ,

(4.2) ci =  c|; c2 =  cl] c3 = c3; c4 =  cf.

From the four equations in Eq. (4.2), it is easy to see th a t if one of 
the Ci s is equal to zero, then so are all the q ’s. Since ƒ 7  ̂ 0, we see 
th a t all the Ci s are nonzero.

By combining equations in Eqs. (4.1)-(4.2), it is also easy to see th a t 
(C2 C3 ) 3 =  — (C2 C3 ), whence (C2 C3 ) 2 =  —1. However, the base field F 3 

contains no square root of —1. Hence, we get a contradiction. □

Next, we will devote the rest of this section to give a proof for The­
orem 4.1. First, we need to show the following reduction lemma.

L em m a  4.3. Let R  be an integral domain of characteristic p > 0 and 
H  a finite abelian group. Let q =  pr for some r >  1 and G = H  x  Z q. 
Then Vh is a Mathieu subspace of R[H] iff Vq is a Mathieu subspace 
of R[G\.

Proof: For convenience, we identify Z,q with the multiplicative cyclic 
group Cq with g-element. We also identify H  and Cq with the subgroups 
H  x { lo , } and { 1  h }  x  Cq of G, respectively.

Under these identifications, G is also the inner product of its sub­
groups H  and Cq, and the group algebras R[H) and R[Cq\ become 
subalgebras of R[G]. Then the (-<=) part of the lemma follows immedi­
ately from Lemma 3.7.

To show the (=>) part, pick up any u  G ^/Vq. Then by Proposition
3.1, it suffices to show th a t u is nilpotent. To do so, replacing u by 
a positive power of u, if necessary, we assume th a t um G Vg for all 
m  >  1 .

Write u =  CM with a s G R[H] for each s G Cq. Note th a t for

any k >  1 and s G Cq, we have sq = 1 cq, since \Cq\ =  q. Then by the 
conditions tha t char. R  = p > 0 and q is a positive power of p, for any 
k > 1  we also have

v?  =  E  = E  e jw -
Ŝ iCq Ŝ iCq
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i  kMoreover, since um G Vg for all m  > 1, we have (uq) = uq G 

FL[H)C\Vg =  Vh for all k > 1, whence uq G \/Vn.  Since by assumption 
Vh is a M athieu subspace of R[H], applying Proposition 3.1 to the 
group algebra R[H) we see th a t uq is nilpotent, whence so is u. □

Next, le t’s recall the following well-known fundamental theorem of 
finite abelian groups.

T h e o re m  4.4. Any finite abelian group can be written as a direct prod­
uct of cyclic groups whose orders are powers of primes.

For the proof of the theorem above, see any abstract algebra text 
book (e.g., see Th.2.2, Ch.II, [Hu]).

Note th a t by applying Theorem 4.4 and Lemma 4.3 (inductively), 
it is easy to see tha t we may actually assume th a t the exponent r 
in Theorem 4.1 is equal to zero, i.e., it suffices to show the following 
lemma.

L em m a  4.5 . Let G be a finite abelian group and R  an integral domain 
of characteristic p > 0 such that p \  d:=  |G |. Assume that R  contains 
a primitive d-th root of unity. Then Vg is a Mathieu subspace of R[G] 
i f fp  > d = \G \ .

From now on and throughout the rest of this section, we let G and 
R  be as in the lemma above.

Note first th a t when d =  |G| =  1, we have Vg =  {0}, which is 
obviously a M athieu subspace of R[G]. Hence, Lemma 4.5 holds in 
this trivial case. So we will assume d =  |G| >  2 .

Note also th a t by Theorem 4.4, we may (and will) further assume 
th a t the abelian group G is given by

(4.3) G =  Z ^  x Zd2 x • • • x Zdn

for some n > 1  and di >  2  ( 1  <  i < n).
But, here we do not need to assume th a t the integers di >  2 (1 < 

i < n )  are powers of primes.
In order to study the group algebra R[G] of G in Eq. (4.3), we need 

to write the factor groups Z ^ (1 <  i < n) in Eq. (4.3) as multiplicative 
groups H i  with a fixed generator e* G H i,  i.e., for each 1 <  i <  n ,  we 
let

(4.4) Hi = {e^ \ 0 < k < di — 1} ^  Zd..

For convenience, for each 1 < i < n, we also identify Hi (implicitly) 
w ith the subgroup of G in Eq. (4.3) consisting of all the n-tuples whose 
j - th  (j ^  i) component being the identity element of Hj ~  Z N o t e



12 WENHUA ZHAO AND ROEL WILLEMS

th a t under this identification, we have Hi C G, whence G is also the 
inner product of the subgroups Hi ( 1  <  i < n), i.e., with the abusive 
notations fixed above, we have

(4.5) G = H x • H 2 • • • Hn =  H x x H 2 x • • • x Hn 

Furthermore, we also need to introduce the following two sets:

(4.6) D:={/3 = (/?!,& , ...,/3n ) G IC  I 0 <  Pi < dt -  1}

(4.7) S:=  {a = (a\, a2, ..., an) E R n \ = 1} .

Note th a t since R  contains a primitive d-th  root of unity, R  also 
contains a primitive di-th  (1 <  i < n) root of unity, since di \ d. Then 
from Eqs. (4.6) and (4.7), we have \S\ = d = \D\ = \G\.

Next, with the notations fixed above we give an equivalent formula­
tion of Lemma 4.5 in terms of the polynomial algebra R[z\ over R  in n 
variables z :=  (z\, z2, ..., zn).

First, we define and consider the following R-linear functional:

(4.8) JC:R[z\ ->• R

/  ->• )•
a e s

L em m a 4.6. Let G and R  be fixed as above. Then for any a  G D , we 
have

(4-9) £(z“) = in1 0  !ƒ« /  0 .

Proof: If a = 0, then L ( z a) = 1 =  l^l =  d. So we let a / 0 .  
W ithout losing any generality, we assume th a t the first component of 
a  is nonzero, and denote it by k (for short).

Let be a primitive d\-th  root of unity in R. Then we have ^  1, 
since 1 <  k < d\ — 1. Note th a t for each root 1 /  r  G i? of the 
polynomial z f 1 — 1 G R[zi], r is also a root of the polynomial Y^iL^  z\ > 
for z f1 — 1 =  (z\ — 1) E t o 1 z \- Therefore, for the fixed primitive d i-th  
root of unity £i G R, we have

di — 1 di —1 

(4.10) E ( e y  =  E < e f ) £ =  o.
e=o e=o

Now, for each 1 <  i < n, set Ci :=  \ 0 <  t  <  di — 1}, where is 
any fixed primitive di-th  root of unity in R. Then from the definition 
of the set S  in Eq. (4.7), we have S  = C\ x C2 x • • • x Cn. By taking 
the sum L ( z a) = '^2a&scia first over the set Ci, it follows immediately 
from Eq. (4.10) th a t &(za) =  0. □
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Next, we define the following i?-algebra homomorphism:

(4.11) < p:R [z]^R [G ]
Zi —> &i-

Note th a t the kernel of the i?-algebra homomorphism <p above is the 
ideal of R[z\ generated by the polynomials z f 1 — 1 (1 <  i < n). We will 
denote this ideal by /¿*, where d stands for the n-tuple (d\, d2, ..., dn).

The pre-image of Vg C R[G] under the linear map <p is given by the 
following lemma.

L em m a  4.7. With the setting above, we have

(4.12) <P~\VG) =  Ker £ .

Proof: First, let Vo be the i?-subspace of R[z\ spanned by za (0 ^  
a  G D) and V := R  ■ 1 © V0. Then by the definition of <p in Eq. (4.11), 
it is easy to see th a t we have

(4.13) p ~ 1(V g ) =  {ƒ G R [ z \ | ƒ =  r  (m o d lj)  for some r  G Vo}.

Therefore, it suffices to show th a t Ker L  coincides with the set on 
the right-hand side of the equation above.

Now, let ƒ G R[z\. Then there exists a unique r  G V  such th a t 
ƒ =  r  (mod 7^). By Eq. (4.13) we have

(4.14) ¡ e ^ ~ \ v G) r e  V0.

Furthermore, since S  is the zero-set of the ideal I j  in R n , we have 
f(a )  = r(a ) for all a G S. In particular, we have ¿ ( f )  = £ (r )  and 
hence,

(4.15) ƒ G K er£  ^  r G  K er£ .

Write r(z) = J2a&Dc»za ■ Then by Eq. (4.9) we have

£ (r )  =  £(co) +  ^ 2  caL ( z a) = dco.

Since p \  d, we see th a t r  G K er£  iff Co =  0 iff r  G Vo- Then by 
the equivalences in Eqs. (4.14) and (4.15), we have th a t ƒ G p ~ 1(Vg ) 
iff ƒ G K er£ , whence the lemma follows. □

Finally, we can give a proof for Lemma 4.5 as follows, from which 
the proof of the main result Theorem 4.1 will be completed.

Proof of Lemma 4-5: Note th a t the (-<=) part of the lemma follows 
directly from Theorem 3.5, which actually does not need the primitive
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root of unity condition on R  in the lemma. But, with the primitive 
root of unity condition on R  it also follows from the arguments below.

First, we consider the R -homomorphism <p : R[z\ —> R[G] defined in 
Eq. (4.11). Note th a t <p is surjective with the kernel /¿*. Hence, from 
Eq. (4.12) we have I j  C K e r£  and t/?(Ker£) =  Vg-

Therefore, we may identify R[G] with the quotient algebra R[z\/Ij,  
and Vg with Ker L j l^ .  Via these identifications and by Proposition 2.3, 
we have th a t Vg is a M athieu subspace of R[G], iff K e r£  is a M athieu 
subspace of the polynomial algebra R[z\.

Second, by applying Proposition 2.4 to the set S  in Eq. (4.7) with 
Ci =  1 (1 <  i <  d), we have th a t K er£  is a M athieu subspace of R[z\, iff 
for any non-empty subset J  C {1 ,2 , ...,d}, the cardinal number | J\ ^  0 
in R, i.e., | J | ^  0 mod p. Furthermore, it is easy to see th a t the la tter 
property holds iff p > d = \G\.

Finally, by combining the three equivalences above, we see th a t the 
lemma follows. □

5. T h e  C ase  for th e  G ro u p  A lg e b ra  R[IT) w ith  char. R  =  p > 0

In this section, we show th a t Problem 1.4 has a negative answer 
for the group algebras of the free abelian groups Z™ (n > 1) over all 
integral domains R  of positive characteristics. More precisely, we have 
the following proposition.

P ro p o s it io n  5.1. For any integral domain R  of char. R  = p > 0, Vgn 
is not a Mathieu subspace of the group algebra R\Ea}.

Note tha t under the natural identification R[Zra] ~  i?[z_ 1 ,z] (the 
Laurent polynomial algebra in n  variables z =  (z1; z2, ..., zn) over R), 
the proposition above is equivalent to saying th a t for any integral do­
main R  of char. R  = p > 0, the subspace V  of all the Laurent poly­
nomials in i?[z_ 1 ,z] with no constant term  does not form a M athieu 
subspace of the Laurent polynomial algebra R[z~1,z\. In particular, it 
follows th a t the Duistermaat-van der Kallen Theorem, Theorem 1.3, 
cannot be generalized to any field of characteristic p > 0 .

To show Proposition 5.1, note first th a t we may identify Z as the 
subgroup of Z™ consisting of all the elements (a, a , ..., a) G Z™ with a G 
Z. Then by Corollary 3.8, we may actually assume n = 1. Furthermore, 
via the identification R[Z] ~  R[z, z -1] mentioned above, it will be 
enough to show the following lemma. The example in the lemma was 
suggested to the authors by Arno van den Essen.

L em m a  5.2. Let p be a prime and z a free variable. Set ƒ := z~ l +  
zp~l G Z p[z~1,z\. Then the following two statements hold:



i) Const ( f m) =  0 for all m  > I; 
ii) Const (z _ 1 / pfc_1) =  ( — l ) pfc 1 for all k >  1.

In order to prove the lemma above, we need first to show the following 
lemma.

L em m a  5.3. For any prime number p > 0; the following statements 
hold.

i) For any k ,a  g N  such that k > 1 and a < p k — 1, we have

(5.1) ^  ^  = ( —1)“ mod p.

ii) For any integer b > 1, we have

(5.2) ^  mOĈ

Proof: i) Let x  be a free variable. We consider the polynomial 
(x — l)p ~ in the rational function field Z,p(x), for which we have the 
following two equations:
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x a

n k  k  p k  —  1

(5.4) (1 -  x f - 1 = (1 ~  X)” =  i — —  = T  *•.
1 — x  1 — x  '

a=0

Note th a t Eq. (5.4)  above also holds for the case p  =  2, since 1 =  — 1 
in Z 2. Now, by comparing the coefficients of x a in the polynomials on 
the right-hand sides of Eqs. (5 .3)  and (5.4) ,  we see th a t i) follows.

ii) Write b = prn  for some r  >  0 and n  > 1 such th a t p  \  n. In 
particular, we have pr+1 \  b.

We consider the polynomial (x +  I )6*3 G Zp[x]. Note th a t the coef­
ficient of x b in (x +  I )6*3 is equal to (^ ). On the other hand, we also 
have

[x +  1)** =  [x +  l )npr+1 = (xpr+1 + l )n.

Now, assume tha t {^)  ^  0 mod p. Then by the equation above, 
x b appears in the polynomial (xpT+1 + 1)™ with a nonzero coefficient, 
whence b =  p r+1k  for some 1 < k <  n. But this implies p r+l \ b, which 
is a contradiction. □

Proof o f Lem m a 5.2: i) Since ƒ =  z~ l +  zp_1, the constant term  of 
f m (m  > 1) is given by the sum of (™) for all the integers 0 <  b < m
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such th a t — (m — b) +  b(p — 1) =  0, which is the same as m  =  bp. 
Therefore, there is at most one such an integer b, which is m /p  if (and 
only if) p | m. Hence we have

(bp
(5.5) Const (ƒm) =  4 U

0 if p  \  m .
if p | m  and b =  m /p;

Then from the equation above and Eq. (5.2), we see th a t i) follows.
ii) By a similar argument as in i), it is easy to check th a t for any

k >  1, the coefficient of z in f pk-1 is given by (p —i ) , which by Eq. (5.1)
is equal to (—1)pk 1. Hence, we have C onst(z-1 f pk-1) =  (—1)pk 1 for
all k >  1, i.e., ii) holds. □

A ck n o w led g m en ts  The authors are very grateful to Professor Arno
van den Essen for suggesting the example in Lemma 5.2.
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