The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/83257

Please be advised that this information was generated on 2018-12-10 and may be subject to change.
Social ties, knowledge spillovers and regional convergence

Tom Gosens
Albert de Vaal

Nijmegen Center for Economics (NiCE)
Institute for Management Research
Radboud University Nijmegen

P.O. Box 9108, 6500 HK Nijmegen, The Netherlands
http://www.ru.nl/nice/workingpapers
Social ties, knowledge spillovers and regional convergence

Tom Gosens (VU University Amsterdam)
Albert de Vaal (Radboud University Nijmegen)*

December 2010

Abstract

We take the Fujita & Thisse (2003) growth-cum-geography model to investigate the effect of migration and enduring social relationships on regional production and growth. We assert that migration is an important factor to overcome the distance decay effect of cross-regional knowledge spillovers, while social ties determine the extent to which this is the case. Our results show that when migration and social ties are important for generating knowledge spillovers, the full agglomeration of high-skilled R&D workers is not at all certain. The equilibrium with an equally dispersed high-skilled labour force is a stable migration equilibrium, while regions with a larger initial share of high-skilled workers will only attract more workers when migration rates are not too high.

1 Introduction

The importance of knowledge spillovers is well understood in the literature on regional growth disparities. Knowledge spillovers are seen key to generating growth and explaining growth differences across regions. The extent to

*Corresponding author. Address: A. de Vaal, Nijmegen School of Management, Department of Economics, P.O. Box 9108, 6500 HK Nijmegen, the Netherlands. Email: a.devaal@fm.ru.nl
which knowledge spills over across regions is typically related to geographical distance. Empirical evidence suggests that knowledge spillovers seem to be geographically localized (e.g. Jaffe et al., 1993; Asheim and Gertler, 2005), which has been taken up in the literature by adding distance decay effects to the extent to which knowledge can cross regional boundaries. In the new-economic-geography-cum-growth literature this has amounted to a parameterization of regional knowledge spillovers that allows for a specification where knowledge spillovers are purely local ('local spillover models') and specifications that exhibit perfect interregional knowledge spillovers ('global spillover models').

One possible explanation for the localization of knowledge spillovers is the fact that the transmission of knowledge is enhanced by the geographical proximity of the sender and the receiver. In particular the transmission of non-codified knowledge would require direct interaction to be effective, which is obviously easier when one is (geographically) close. The importance of being proximate becomes even greater when taking into account sociological views on human interaction, where the ease of interaction and mutual understanding is related to a shared sense of social belonging. Groups of persons that are geographically close from their "own imagined community" (Anderson, 1983), in which specific rules for communication and behaviour exist. Belonging to such a community increases interaction and mutual understanding.

Migration is one channel that enhances the cross-border transmission of knowledge. The literature on migration emphasizes that migration is a potential benefit for receiving regions ('brain gain'), where it would pose a cost for sending regions ('brain drain'). When highly-educated individuals move from one country or region to another, this is a logical assessment. However, if one takes into account that learning from others require mutual under-

1See Baldwin et al. (2003) for an overview.
2Kuznetsov and Sabel (2006) show that sending regions may benefit from positive knowledge spillovers after migrants have returned home. See Katseli et al. (2006) for a general review of empirical findings on the knowledge effects for sending countries, among other things. The literature on the effects of migration on host countries has focused on the potentially negative effects on employment and wages, in particular of low-skilled workers in advanced countries (e.g. Friedberg and Hunt, 1995; Borjas, 1999).
standing, a picture emerges that mitigates the one-way flow of knowledge.

First, migration plays a role in reducing the distance between regions. This can be understood by the framework developed by Paasi (1996) that relates socio-spatial integration to regional identities. His framework combines one’s original identity (“we” and “other”) with one’s current location (“here” and “there”), yielding four options of socio-spatial integration. The first two options deal with original residents of both “here” and “there”, while the other two deal with migrants, who have entered the other region. In time, migration implies that the regional identities of the two regions become interwoven, which reduces the distance between them, facilitating cross-border learning. The effect of migration in this respect will be particularly strong when regional identities are not proximate, which we believe is highly correlated with geographical distance.

Second, as both economists (Glaeser et al., 2002; Knack and Keefer, 1997) and sociologists (Granovetter, 1973; Coleman, 1988) have claimed, mutual understanding also strongly depends on the social ties individuals maintain with each other. Strong social ties lower the costs of exchanging information, not only because of access to previously established networks of knowledge, but also since reputations are built when individuals frequently interact. Empirical evidence for this is provided by Singh (2005), Oettl and Agrawal (2008) and Kerr (2008). All of them conclude that enduring social ties between individuals stimulate the spreading of knowledge across regions.³

These insights imply that both migration and social ties are important to overcome the distance decay effect of knowledge spillovers. When people move to another region, mutual understanding will be stimulated through explicit communication with people from the previously denounced “other” region, with social ties being an important moderating factor. This holds both for the receiving region, where migrants bring their knowledge and

³To give one specific example, Agrawal et al. (2008) use patent data to investigate the importance of socially induced knowledge spillovers. They find a substitution effect between spatial proximity and social proximity. While co-location facilitates knowledge spillovers, co-ethnicity plays a significant role in knowledge diffusion when distance increases. The marginal increase in knowledge spillovers between ethnically related inventors living 1,000 miles apart is equal to 5 percent, while a distance of 3,000 miles increases the degree of knowledge spillovers by 13 percent.
communicate about it with the local population, as well as for the sending region. However, social ties will most likely mainly stimulate knowledge transfer to the sending region. Social relationships will be maintained with existing, previously established networks of colleagues, friends and family in the region of origin. With such pervasive networks (still) absent for migrants in the receiving region, this implies that the odds of benefiting from cross-region learning are against the receiving region.

This paper uses a theoretical model to analyse the effect of migration and enduring social relationships on regional production and growth. Our model combines insights of well-established models on growth and migration, yet breaks new ground by incorporating social bonding as an important channel for knowledge spillovers through migration. The basic framework underlying our analysis is the 2-region, 3-sector, 2-factor model by Fujita & Thisse (2003), in which trade costs, migration of high-skilled workers and regional growth jointly determine the spatial division of economic activity across regions. In their analysis, knowledge spillovers are important for regional growth, yet only indirectly related to migration by a standard distance-decay effect. We explicitly model the relationship between migration and knowledge spillovers, making it dependent on the migration rate as well as on the size of the sending region. The former aspect emphasizes that migration is a prime channel for knowledge spillovers to occur; the latter aspect acknowledges that the impact of social ties depends on how many people move and how many stay behind.

Our results show that in such a setting the full agglomeration of high-skilled workers that are engaged in R&D activities is not a straightforward outcome. The equilibrium with an equally dispersed high-skilled labour force is a stable migration equilibrium, while regions with a larger initial share of high-skilled workers will only attract more workers when migration rates are not too high. If migration becomes too high, the advantage in numbers of the larger region is compensated by a disadvantage of benefitting less from knowledge spillovers than the receiving region. When social ties are important in generating knowledge spillovers, the full agglomeration of high-skilled workers in one region is not at all certain. In such a case, growth is
however not optimal, so that the trade-off between reaching optimal growth and equal distribution of economic activity remains.

The structure of the paper is as follows. Section 2 summarizes the main set-up of the Fujita & Thisse (2003) model, as it lays the groundwork for the analysis to come. Section 3 further discusses the importance of social ties for the generation of knowledge and the implications this has for knowledge spillovers across regional borders. This section also proposes how to translate these insights into a modelling framework. Section 4 discusses the implications for convergence and optimal growth of modelling migration as an important channel for knowledge spillovers. Section 5 concludes.

2 The Fujita & Thisse (2003) model

The model we employ to show the importance of migration for regional growth and location of manufacturing is that of Fujita & Thisse, 2003 (henceforth Fujita & Thisse). In this section we will briefly discuss the main structure of their model and we will highlight some of their key equations and results. We use their model because it captures the main elements required for a discussion on the relevance of migration in a geography-cum-growth model. Their framework offers an analytically tractable framework where geography, migration and growth interact to explain regional growth and income disparities in relation to regional agglomeration patterns.4

The Fujita & Thisse model assumes a two-region, three sector economy, with two factors of production. We will label the regions \(r \) and \(s \), mnemonics for receiving and sending region as will become clear later. The two production factors are low-skilled labour (L) and high-skilled labour (H). The division of low-skilled workers across regions is even and fixed, whereas the division of high-skilled workers across regions is endogenous, with \(\lambda_r \) and \(\lambda_s = 1 - \lambda_r \) denoting the respective H-shares of the receiving and sending region. The three sectors are a traditional sector (T-sector), a manufacturing sector and a manufacturing sector.

4Other papers that have highlighted migration in a geography-cum-growth framework are Walz (1996), Baldwin and Forslid (2000) and Hirose (2005). These contributions have in common that they are less tractable than the Fujita & Thissse framework.
sector (M-sector) and an investment good sector (I-sector).

The traditional sector is perfectly competitive, at each point in time producing goods with a constant returns to scale technology, using low-skilled labour only. There are no transportation costs involved in selling T-goods across regional borders so that the T-sector can serve as numeraire sector. By appropriate choice of units this implies a wage rate of one for low-skilled labour in both regions: \(w_r = w_s = 1 \). Each period consumers spend a fixed share \(1 - \mu \) of their total expenditures on traditional goods, which is assumed sufficiently large to always sustain production in both regions.

The remaining share \(\mu \) of consumer expenditures is spent on manufacturing varieties, which are produced in the M-sector. Consumers exhibit a Dixit-Stiglitz-like love of variety with \(\sigma > 1 \) as the fixed elasticity of substitution. Accordingly, manufacturing varieties are produced under monopolistic competition and increasing returns to scale. The production of a manufacturing variety requires the exclusive use of a patent, which is to be acquired from the investment good sector. In addition, manufacturing production requires one unit of low-skilled labour to actually produce the good. The total costs of manufacturing production thus consists of a fixed cost that equals the price paid for the patent and a marginal cost of one, the wage rate of low-skilled workers. Selling manufacturing output in the other region carries iceberg-type of transportation costs \(\Upsilon > 1 \): in order to sell an amount \(q \) in the other region, an amount of \(\Upsilon \cdot q > q \) must be shipped.

The I-sector provides patents for new manufacturing varieties, using high-skilled workers only. The productivity of high-skilled workers in producing patents depends on past ideas and innovations, implying a positive technological spillover as in Romer (1990). More specifically,

\[
\begin{align*}
 h(j) &= \alpha M \\
 K_i &= \left[\int_0^{\lambda_i} h(j)^2 dj + \eta \int_0^{1-\lambda_i} h(j)^2 dj \right]^{1/3} \\
 &= M \left[\lambda_i + \eta (1 - \lambda_i) \right]^{1/3} \\
 n_i &= K_i \lambda_i
\end{align*}
\]
for $i = r, s$. In these equations, $h(j)$ denotes personal knowledge of high-skilled workers, which is the same in both regions by its dependence on the world-wide number of manufacturing varieties M. The parameter α is a general productivity parameter of individual learning. The production of patents in a region is n. It depends on the number of high-skilled workers involved in the region’s I-sector, indicated by λ_i, as well as on the productivity of each worker K_i. The latter is the regional knowledge stock, which is the result of complementary interaction between all high-skilled workers $(0 < \beta < 1)$, wherever they reside. However, the contribution of the personal knowledge of high-skilled workers from the other region is hampered by a fixed distance decay effect: $0 \leq \eta \leq 1$.

Equations (1)-(2) imply that individual learning is perfect and independent of where high-skilled workers reside, but that high-skilled productivity in generating patents is region-specific, as in localized spillovers models. This has important implications for optimal growth in the Fujita & Thisse model, where the economy-wide growth rate depends on the number of newly-created manufacturing varieties: $M/M = g(\lambda_r) = [\lambda_r K_r(\lambda_r) + (1 - \lambda_r)K_s(\lambda_r)] / M$. With imperfect knowledge spillovers, this implies that growth will be highest when all high-skilled workers agglomerate in one region, that is when either λ_r or λ_s is one. When high-skilled workers are fully dispersed, growth is lowest. This makes migration vital for reaching optimal growth in the Fujita & Thisse framework.

Where high-skilled workers will locate depends on the real wage they will receive, as customary in new economic geography models. Since only the high-skilled work in the I-sector, and assuming free entry and exit of firms in the I-sector, high-skilled wages are directly related to the price of a patent. The market price of a patent Π_i should equal the unit costs of producing a patent. Hence,

$$w_i^* = \Pi_i K_i(\lambda_i)$$

5 The total mass of high-skilled workers is set to one, $H_r + H_s = 1$.

6 Apart from wages, high-skilled workers also own assets in the form of shares in manufacturing firms. As will become clear, this is irrelevant for the location decision of high-skilled workers.
is the equilibrium (nominal) wage of high-skilled workers in either region.

The real wage also depends on the location of manufacturing production though. Since M-goods carry transportation costs, regions producing more manufacturing varieties will have a lower price index, making it attractive for high-skilled labour to migrate to that region. The location decision of manufacturing firms, in turn, depends on consumer expenditures. Firms prefer being close to their potential market, to save on transportation costs. The migration of high-skilled workers to a region therefore makes it attractive for manufacturing firms to move there as well, giving rise to a demand-linked cumulative causation effect. On the other hand, low-skilled labour is immobile across regions so that some transportation costs will always have to be incurred. Moreover, transportation costs imply a better shield against foreign competition in smaller regions, making it attractive to locate in the smaller region. Depending on the level of trade costs, this market-crowding effect may dominate the demand-linked circular causality effect, as customary in new economic geography models. Since the location of patent production is irrelevant to the location decision of manufacturing firms\(^7\), Fujita & Thisse find that when transportation costs are high, manufacturing production will always take place in both regions, irrespective of the division of high-skilled workers. For sufficiently low transportation costs manufacturing production tends to agglomerate in the region that has the higher share of high-skilled labour.

Apart from being a new economic geography framework, the Fujita & Thisse model also features growth, requiring insight in how consumers determine their optimal consumption paths and how this depends on patent production and migration decisions. Fujita & Thisse (2003: 125-126) assume that all consumers choose an expenditure path \(e_j(t), j = L, H\) whereas the mobile high-skilled consumers also choose an optimal location path \(i_H(t) \in \{r, s\}\). Indirect utility for consumer \(j\) at time \(t\) is given by \(v_j(t) = e_j(t)[P_{j,0}(t)]^{-\mu}\), with \(P_{j,0}(t)\) the price index of the M-good in region of residence \(i\) at time \(t\). However, moving between regions incurs a psychological cost \(C(t)\) that is

\(^7\)Patents are assumed to be freely transmittable across regions and once the patent has been acquired, the manufacturing firm can choose freely where to locate.
expressed in units of lifetime utility. This implies lifetime utility of

\[U_j = \int_0^\infty e^{-\gamma t} \ln[v_j(t)] dt - \sum_h e^{-\gamma t} C(t_h), \]

where the latter part is only relevant for high-skilled workers and where \(\gamma > 0 \) is the subjective discount rate that is the same for all consumers. Preferences are intertemporal CES with unit elasticity of intertemporal substitution.

High-skilled workers hold assets as well, which takes the form of an equal share in all manufacturing firms. Low-skilled workers do not hold assets. The assets yield an interest rate \(v(t) \) that is determined in perfectly competitive bond markets that are freely accessible to all consumers, wherever they reside. Following Barro and Sala-i-Martin (1995: 66) the intertemporal budget constraint is written as:

\[\int_0^\infty \varepsilon_j(t)e^{-\bar{v}t} dt = a_j + W_j(0), \quad j = L, H \]

with \(a_L = 0 \) and \(a_H > 0 \) and where \(\bar{v} \equiv (1/t) \int_0^t v(\tau)d\tau \) denotes the average interest rate between 0 and t. The term \(W_j(0) = \int_0^\infty e^{-\bar{v}t} w_j(t) dt \) is the present value of the consumer’s wage income over time. Note that for low-skilled workers \(w = 1 \) at all times in both regions. For any given location path, the optimal consumption path is governed by the familiar Euler condition, \(\dot{\varepsilon}_j(t)/\varepsilon_j(t) = \nu(t) - \gamma \). Since this must hold for all consumers, this also determines the aggregate expenditure path \(\dot{E}(t)/E(t) \).

Given this set-up, and under the expectation that migration takes place to the receiving region \(r \), Fujita & Thisse show that the migration rate of high-skilled workers at time \(t \) is governed by:

\[\dot{\lambda}(t) = \frac{\delta}{\gamma} e^{\gamma t} \ln \left[\frac{a_H + W(0,t)}{a_H + W(0,T)} \right] - \delta \mu e^{\gamma t} \int_t^T e^{-\gamma t} \ln \left[\frac{P_r(z)}{P_s(z)} \right] dz, \quad (4) \]

where \(T \) is the point in time beyond which high-skilled labourers would not want to postpone migration and where \(\delta \) is the speed of adjustment in workers’ migration. The equation essentially says that migration depends on a
comparison of real returns between moving to \(r \) at time \(t \) and \(T \), under the expectation that high-skilled workers indeed move from \(s \) to \(r \).\(^8\)

This finalizes the set-up of the Fujita & Thisse model. Focusing on steady state growth paths, the next step is to determine how the location of manufacturing production and high-skilled workers interact to explain persistent income divergence across regions. Their results are summarized in two propositions. Proposition 1 (Fujita & Thisse, 2003: 140) shows that when patents are freely mobile, only stable spatial configurations can be attained that involve full agglomeration of high-skilled labour in one region. Provided transportation costs are sufficiently low, also manufacturing production will agglomerate in that region. For higher transportation costs manufacturing production is dispersed, with the major share in the region where high-skilled labour agglomerates. Proposition 2 (Fujita & Thisse, 2003: 143) deals with the welfare effects for workers in both regions, establishing a trade-off between standard new economic geography core-periphery welfare effects of high-skilled agglomeration and optimal growth effects. If the additional growth boosted by agglomerating R&D in one region is sufficiently large, core-periphery growth paths Pareto-dominate growth paths with a symmetrically dispersed R&D sector for all types of labour involved (low-skilled labour, skilled labour in \(r \) and skilled labour in \(s \)).

3 Knowledge spillovers and social ties

The key reason for this paper is the importance of social ties in generating knowledge and its consequences for knowledge spillovers across regional boundaries. Before discussing how we will incorporate this in the model of Fujita & Thisse (2003), we first elaborate a bit more on learning across regional borders.

In general, individuals learn by getting formal education or by gathering practical experience. However, they also profit from knowledge spillovers

\(^8\)Since the equation has been derived under the assumption that people are indifferent between moving at \(T \) and \(t \), it also gives what a migrant would be willing to pay to move at time \(t \) rather than on time \(T \) (Fukao & Bénabou, 1993).
that arise from the nonrival public good nature of knowledge (Arrow, 1962). By building systems through which individuals can acquire knowledge, societies unintentionally enlarge individual knowledge by generating knowledge spillovers. As alluded to in the introduction, the existence of knowledge spillovers is well understood in the literature on regional growth disparities, relating it to geographical distance. The empirical evidence on the matter (e.g. Jaffe et al., 1993; Asheim and Gertler, 2005) has been taken up by parameterizing a distance decay effects regarding regional knowledge spillovers, allowing for knowledge spillovers that are only local, entirely global, or anything in between, see Baldwin et al. (2003) for an overview and for details of specification. The Fujita & Thisse (2003) framework clearly fits in this tradition.

A possible explanation for the localization of knowledge spillovers is that knowledge is created in such a way that part of it remains unclear to others (scientists, firms, workers). As if knowledge consisted of two parts: a codified part and a non-codified part (Polanyi, 1966; Agrawal, 2006). The codified elements are easily accessible and applicable to others in society and could easily spill over. The non-codified elements are harder to absorb. Some parts remain tacit, either because incentives to codify all knowledge are lacking, or because it is impossible to do so (Powell and Swart, 2005). Direct interaction with the creator of knowledge is thus required to be able to fully use it, which is obviously easier when one is (geographically) close.

When taking into account sociological views on interaction, the importance of geographical proximity is even greater. The ease of interaction is then related to the sense of social belonging that individuals experience. Each group of persons that is geographically close has a natural urge to form its “own imagined community” (Anderson, 1983), in which for every community certain specific ground rules and behaviour exist. As a result, all societies will claim to be different from one another, giving rise to a sense of “us” versus “them”. Belonging to the same community therefore increases interaction and understanding.

Paasi (1996) analyses this notion, using a framework that bases forms of socio-spatial integration and distinction on differing regional identities.
Paasi identifies two scales of socio-spatial integration; on the one hand there is one’s original identity (thus “we” or “other”), on the other hand there is one’s current location (thus “here” or “there”). The combination of these two scales yields four options of socio-spatial integration; the first two options deal with original residents of both “here” and “there”, while the other two deal with migrants, who have entered the other region. At some point in time regional identities of the two regions become interwoven, as the residents of both regions become less and less distinct from the migrants entering their region. As Paasi argues, this is because the identity of a region is mostly expressed in structures of expectations. It weaves together elements which are significant in the institutions and habits of a region, which in turn depend on people’s interactions.

This implies that regional knowledge stocks can be different in content at first, due to different regional identities, inhibiting instantaneous learning from regions that are not geographically close. Moreover, to be able to transfer the tacit parts of the knowledge stock also requires mutual understanding. As both economists (Glaeser et al., 2002; Knack and Keefer, 1997) and sociologists (Granovetter, 1973; Coleman, 1988) claim, the latter is enhanced by strong ties amongst individuals. Strong ties lower the costs of exchanging information, not only because of access to previously established networks of knowledge, but also since reputations are built when individuals frequently interact. Empirical evidence for this is provided by Singh (2005), Oettl and Agrawal (2008) and Kerr (2008).

With social ties being of crucial importance for cross-regional knowledge spillovers, migration becomes an important channel through which the distance decay effect of knowledge spillovers can be overcome. When people move to another region, mutual understanding will be stimulated through explicit communication with people from the previously denounced “other” region. Knowledge of the other region becomes accessible. This holds both for the region of immigration, where migrants bring their knowledge and communicate about it with the locals, as well as for the region of emigration. Especially if migrants retain their social relationships with those they leave behind, their newly acquired knowledge will spill over to their old region.
To incorporate these findings in the Fujita & Thisse model in a sensible manner requires striking the right balance between analytical rigour and tractability. As such, we retain the main set-up of the Fujita & Thisse model, but change the way knowledge spillovers occur, relating it explicitly to migration. Our changes relate to the individual learning specification, equation (1), as well as to assigning migration a key role in the transmission of knowledge from abroad, equation (2). The way regional knowledge stocks affect high-skilled productivity and patent production remains as in Fujita & Thisse.

Regarding individual learning we assume, in line with the above, that learning implies getting to understand both the tacit and codified component of existing knowledge. Regarding tacit knowledge we relate this to social interaction with the local labour force, while learning about the codified knowledge part is modelled by relating it to the manufacturing varieties that are around. Attaching a weight $0 \leq \delta \leq 1$ to indicate the relative importance of these two components, we get:

$$h_i(j) = \alpha \lambda^\delta_i M^{1-\delta}.$$ \hspace{1cm} (5)

where all variables are as before. We add a subscript $i = r, s$ to emphasize that individual learning is (partly) region specific. Individuals learn about the tacit component of knowledge from social interaction with residents from their own region, while they also learn from the codified knowledge that is implicit in each manufacturing variety. Eq. (5) includes Fujita & Thisse’s (2003) specification as a special case ($\delta = 0$).

As in Fujita & Thisse the human capital stock of societies is based on an accumulation of individual knowledges. However, migration is required to benefit from knowledge from the other region:

$$K_r = \left[\int_0^{\lambda_r} h_r(j)^\beta dj + \eta_r \int_0^{\lambda_r} h_s(j)^\beta dj \right]^{1/\beta} \hspace{1cm} (6)$$

$$K_s = \left[\int_0^{\lambda_s} h_s(j)^\beta dj + \eta_s \int_0^{\lambda_r} h_r(j)^\beta dj \right]^{1/\beta}, \hspace{1cm} (7)$$
where \(0 \leq \eta_r, \eta_s \leq 1 \) are region-specific distance decay effects that depend on migration.\(^9\)

The exact specification of \(\eta \) requires some thought. First, \(\eta \) should rely on the migration rate, for that is the main channel through which knowledge spills over from other regions in our framework. When migration increases more knowledge can be transmitted, while zero migration would imply that no knowledge spillovers can be reaped. Second, one incoming worker is unlikely to make a substantial difference in the receiving region, but its impact on the region of origin will be more substantial. Hence, in general we require \(\eta_s > \eta_r \). But here social ties come into play, which are more prominent the smaller the sending region is. What is learned in the new region may then be easily shared with old friends and colleagues who stayed at home.\(^10\) Consequently, \(\eta \) should also depend on regional size. The larger the receiving region, the less substantial will be the impact of incoming migrants. The larger the group left behind, the less likely it is that knowledge spills over from the receiving to the sending region. Finally, we want \(\eta \) to be maximally one to ensure that the knowledge stock cannot be larger than would be the case when all high-skilled workers live in the same region.

The following specification for \(\eta \) satisfies these considerations:

\[
\eta_r = \lambda_s \cdot (1 - \lambda_r) \quad \text{and} \quad \eta_s = \lambda_s \cdot (1 + \lambda_s) \lambda_r. \quad (8)
\]

It establishes that the knowledge stock of a region consists of individual knowledges of the ‘own’ region and that of other regions, provided there is migration that helps to overcome incongruities in understanding and/or knowledge bases. When \(\lambda_s \) is zero, no spillovers occur, \(\eta_s > \eta_r \) for all levels

\(^9\)While empirical literature shows distance matters for the magnitude of knowledge spillovers, e.g. Jaffe et al. (1993) and Asheim and Gertler (2005), we will ignore distance in absolute terms in the remainder of the analysis. Socially induced knowledge spillovers work as a way to overcome mental distance, and as such leave absolute distance relatively unimportant for knowledge diffusion, as confirmed by the analysis of Agrawal et al. (2008).

\(^10\)We do not differentiate between the degree of social ties here. It does not matter in the model whether high-skilled workers are socially tied on direct relationships (family, former work colleagues or classmates) or on indirect relationships (graduated at the same university, common friends). The model tries to establish the effect of social ties on regional disparities, and the current setup suffices for that.
Substituting for (5) in (6) and (7) yields the final equations for the regional knowledge stocks:

\[K_i = M^{1-\delta} \left[\lambda_i^{1+\delta} + \eta_i (1 - \lambda_i)^{1+\delta} \right]^{1/\beta} \quad i = r, s. \]

where we applied \(\lambda_r + \lambda_s = 1 \) and put \(\alpha = 1 \) for convenience. For notational convenience we define \(k_i \equiv \left[\lambda_i^{1+\delta} + \eta_i (1 - \lambda_i)^{1+\delta} \right]^{1/\beta} \) for \(i = r, s \) so that \(K_i = M^{1-\delta} k_i \). The equation shows some resemblance with equation (2), Fujita & Thisse’s equation for regional knowledge stocks. It differs clearly however regarding the way knowledge spillovers occur between regions, reserving a central role for migration. Moreover, we have supplied a micro-foundation for the region-specificity of knowledge stocks.

4 Migration, social ties and regional convergence

In the Fujita & Thisse framework growth would be optimal if all high-skilled labour agglomerates in one region. This will not be different in our model since it is a logical outcome of having imperfect cross-regional knowledge spillovers. Growth is related to the generation of new manufacturing varieties world wide as follows:

\[g = \frac{M}{M} = M^{-\delta} \left[\lambda_r k_r(\lambda_r, \lambda_s) + \lambda_s k_s(\lambda_r, \lambda_s) \right], \]

\[11 \text{ Note that this would imply that once people have migrated their potential to act as a channel for spillovers ceases to exist. The implicit assumption therefore is that social ties only play a role during or just after the actual migration phase. This assumption is however not restrictive in steady-state migration equilibrium, as this requires zero migration.} \]

\[12 \text{ This would of course be different had we assumed that migrants do not easily blend in with their new environment. In that case, learning across individuals would not be perfect, as it would depend on the shared geographical background of residents. Since the purpose of this paper is to focus on migration and social ties as important mechanisms for cross-border learning, we leave this option for future research.} \]
since \(M = (n_r + n_s) = \sum_i \lambda_i K_i \) as patents are footloose. Also in the migration-induced knowledge spillover model the growth rate of manufacturing varieties is highest when all high-skilled agglomerate in one region. The question is therefore: will high-skilled workers agglomerate in one region, and, if so, to what extent?

The answer lies in an investigation of the stability of dispersed equilibria, as customary in new economic geography models. For each value of \(0 \leq \lambda_r \leq 1 \) it must be checked whether this is an equilibrium that involves no (further) migration, and, if so, whether this is a stable equilibrium in the sense that a small additional movement of labour would imply migration flows leading back to \(\lambda_r \). To shed light on this issue recall that migrants essentially compare the real returns between moving to the receiving region \(r \) and staying in the sending region \(s \), where real wages also depend on the location of manufacturing production. The introduction of social ties as an important factor for knowledge accumulation does not alter this basic mechanism.\(^{13}\) In steady-state migration equilibrium, where workers choose to not longer migrate, the comparison of real returns of migration boils down to:

\[
\frac{\nu_r}{\nu_s} = \frac{\gamma + k_r(\lambda_r)}{\gamma + k_s(\lambda_s)} \left(\frac{P_r(t)}{P_s(t)} \right)^{-\mu} \equiv \Phi(\lambda_r),
\]

where it has been assumed that migration takes place from region \(s \) to region \(r \). In (11), \(\nu_j(t) = \varepsilon_j(t) [P_{ij}(0)(t)]^{-\mu} \) is indirect utility at time \(t \) and individual expenditure \(\varepsilon_j(t) \) equals \(a^*(\gamma + k_i(\lambda_i)) \) in region \(i = r, s \), with \(a^*(\cdot) \) denoting total asset value of manufacturing firms (see Fujita & Thisse, 2003: 136-7 for further details). Steady state migration equilibrium requires \(\Phi(\lambda_r) = 1 \).

Equation (11) makes explicit that the willingness to migrate depends on the relative productivity of high-skilled workers in both regions as well as on relative price indices. In the Fujita & Thisse framework, \(k_r/k_s \) is

\(^{13}\)This would be different had we modelled social ties as a factor in the migration decision of individuals as well. This is however beyond the purpose of the current paper. The Fujita & Thisse framework incorporates migration costs that increases in the rate of migration, which could be interpreted as resembling the increased costs of leaving one’s social network. A better proxy for it would however be to include the number of inhabitants staying behind.
symmetric around $\lambda_r = 1/2$, implying that $k_r \geq k_s \Leftrightarrow \lambda_r \geq 1/2$. Hence, in their model the fully dispersed equilibrium is a steady-state equilibrium: $\Phi(1/2) = 1$. With both high-skilled and low-skilled labour evenly distributed across regions, also manufacturing firms will be evenly distributed, equating regional price indices. However, the symmetric equilibrium is not stable. A slight change in the regional distribution of workers will imply that real wages in the larger region go up, making it attractive for high-skilled workers to move there.

In our framework this is different, due to social ties affecting the receiving and sending region differently. It implies that an equal division of labour across regions is a stable steady-state migration equilibrium. To see this, note that for positive migration rates, $\eta_s(1/2) > \eta_r(1/2)$ and $k_r(1/2) < k_s(1/2)$. Unlike the Fujita & Thisse framework, a slightly higher number of high-skilled workers in region r implies $k_r < k_s$, making such a move inconsistent in expectations. A formal condition settling this, assuming for now that manufacturing is equally spread across regions (hence $P_s = P_r$) and using the definitions of k_l, is:

$$k_r \geq k_s \Leftrightarrow \begin{cases} \hat{\lambda}_s \geq \hat{\lambda}_s(\lambda_r) & \text{for } \lambda_r < \lambda_r < 1/2 \\ \hat{\lambda}_s \leq \hat{\lambda}_s(\lambda_r) & \text{for } \lambda_r < \lambda_r < 1 \end{cases}, \quad (12)$$

where $\hat{\lambda}_s(\lambda_r) \equiv \frac{1 - [\lambda_r/\lambda_s]^{1+\delta}}{(1 - \lambda_r) - (1 + \lambda_s)\lambda_r [\lambda_r/\lambda_s]^{1+\delta}}$ and where λ_r is the value for λ_r at which the denominator of $\hat{\lambda}_s(\lambda_r)$ switches sign. For an equal division of high-skilled workers, $\lambda_s = 0$, implying $k_r(1/2) < k_s(1/2)$ for...
all $\lambda_s > 0$. Moreover, since $\lambda_s(1) = 0$ and $\lambda_s(0) = 1$, the other regional distribution that is consistent with a steady-state equilibrium entailing zero migration and a symmetric distribution of manufacturing activity is when all high-skilled labourers agglomerate in the receiving region, that is when $\lambda_r = 1$.\footnote{Which could be either of the two regions of course. Which region is actually the receiving region is completely endogenous in our model.}

Proposition 1 When social ties are important for knowledge generation and when knowledge spillovers across regions depend on migration, an equilibrium with symmetric spreading of high-skilled labour is a stable migration equilibrium.

When λ_r deviates from $1/2$, however, high-skilled workers may want to agglomerate in one region. We recall in this respect that condition (12) has been derived under the assumption that high-skilled labour migrates towards the receiving region. In the Fujita & Thisse model this assumption is consistent with $\lambda_r > 1/2$. Since in their framework the spreading of high-skilled labour is never a stable equilibrium, this assumption always holds: a slight deviation of λ_r above $1/2$, for whatever reason, implies migration towards region r until all high-skilled have moved there. The region with the size advantage is also the region of immigration. This is clearly different in our framework. Retaining our working assumption that manufacturing activity is symmetrically dispersed across regions, (12) shows that only migration rates below $\lambda_s(\lambda_r)$ are consistent with enduring migration to r as the larger region. If migration becomes too high, the advantage in numbers of the larger region r is compensated by the disadvantage of benefitting less from knowledge spillovers than the receiving region ($\eta_r < \eta_s$). In the migration-induced spillovers model it is not at all certain that the larger region will be the immigrant region.

To make these and other implications clear, Figure 1 portrays condition (12) as a function of the initial distribution of high-skilled labour across regions. The graph has been drawn for $\beta = 0.8$ and $\delta = 0.5$ but is representative of all possible combinations of these values. The dark, solid lines give
the migration rates for which $k_r = k_s$. The relative magnitudes of k_r and k_s with respect to these lines are as indicated by the text boxes. Note that in the graph the relevant area for consideration is the range of migration rates between 0 and 1. The lines highlight that to become an attractive region for migration, it is indeed not enough to be the larger region. Migration to the larger region r will only occur when the migration rate does not surpass a certain threshold of migration, to make the productivity gain in the receiving region not higher than in the sending region. This stands in sharp contrast to the Fujita & Thisse analysis, where migration does not play a role in determining knowledge spillovers. In their case, $k_r \geq k_s \iff \lambda_r \geq 1/2$, which is independent of the migration rate.

(insert Figure 1 about here)

What’s more, Figure 1 also indicates that if region r is initially the smaller region, that is when $\lambda_r < 1/2$, it actually would become the sending region. To verify what this implies, warrants substitution of η_s in k_r and η_r in k_s when deriving $\lambda_s(\lambda_r)$. The dashed, grey line in Figure 1 therefore portrays condition (12) that is consistent with r being the sending region18 The underlined text boxes indicate the relative positions of k_r, k_s with respect to this line. It appears that situations with $\lambda_r < 1/2$ are in most instances consistent with seeing r as a sending region. Only values of λ_r just below $1/2$ require that migration is not too high.

Combining these insights, it appears that the sending region cannot be the initially larger region, for that would imply $k_s > k_r$. This is consistent with the idea that to be attractive for migration, a region should have an advantage, which in new economic geography-like frameworks is regional size. However, for a larger region to be an immigrant region, immigration rates should not be too high, as otherwise social ties will work against it.

18In that case, the denominator of $\lambda_s(\lambda_r)$ becomes $(1 + \lambda_s)\lambda_r - (1 - \lambda_r) [\lambda_r/\lambda_s]^{1+3\beta}$ while the condition itself remains the same. The value for λ_r changes and becomes much higher (around 0.9).
Proposition 2 When social ties are important for knowledge generation and when knowledge spillovers across regions depend on migration, regions should have a size advantage to become an immigrant region. However, a larger region only becomes an immigrant region if migration rates are below the threshold level $\lambda_a(\lambda_r)$.

We finally relax our working assumption that manufacturing activity is equally divided across regions. To begin with, we note that in the Fujita & Thisse framework, the decision of manufacturing firms where to locate is closely related to the location of high-skilled workers. Since only high-skilled workers are mobile across regions, where they locate marks the difference between regional expenditure shares. An equal division of high-skilled labour implies equal expenditure shares and since by Proposition 1 the symmetric spreading of high-skilled labour is a stable equilibrium, also the symmetric equilibrium spreading of manufacturing activity will be a stable equilibrium. Hence, in contrast to the Fujita & Thisse framework, the symmetric equilibrium involves both spreading of manufacturing activity and high-skilled labour across regions. When migration is an important channel for knowledge to spill over, identical regions are a spatial long-run equilibrium.

Proposition 3 When social ties are important for knowledge generation and when knowledge spillovers across regions depend on migration, initially identical regions are a stable equilibrium.

When regions are not identical initially, the situation will be different as it can no longer be assumed that manufacturing firms will be evenly spread across regions. As we show in the appendix, however, the distribution of manufacturing firms across regions sustains the stability of the three steady-state migration equilibria. Moreover, we show that, though less likely, also initial distributions of high-skilled labour that deviate from a half could be stable spreading equilibria. It exemplifies that it is labour migration that drives long-run outcomes, with social ties playing a key role for the convergence of regions in the wake of cross-region knowledge spillovers.

\footnote{See the appendix, where we derive the formal conditions that settle where manufacturing firms locate.}
5 Conclusion

We have taken the Fujita & Thisse (2003) growth-cum-geography model to investigate the implications of social ties as a main reason for generating knowledge spillovers across regions through migration. Our results show that in such a setting the full agglomeration of high-skilled workers engaged in R&D activities is not a straightforward outcome. The equilibrium with an equally dispersed high-skilled labour force is a stable migration equilibrium, while regions with a larger initial share of high-skilled workers will only attract more workers when migration rates are not too high. If migration becomes too high, the advantage in numbers of the larger region is compensated by the disadvantage of benefiting less from knowledge spillovers than the receiving region. When social ties are important in generating knowledge spillovers, the full agglomeration of high-skilled workers in one region is not at all certain. In such a case, growth is however not optimal, so that the trade-off between reaching optimal growth and an equal distribution of economic activity remains. However, this trade-off may be less sharp in practice, since we have assumed that migrants easily blend in with their new environment and that they establish complete, new social relationships almost immediately after they have migrated. However, as long as the geographical and social distance between individuals in different regions is bigger than the distance between individuals within the same region, a trade-off will remain.

References

In this appendix we settle the location decision of manufacturing firms as a function of λ_r. In the model we employ here, the mechanisms driving this decision are the same as in the Fujita & Thisse (2003). From their analysis we obtain

$$\frac{P_r(t)}{P_s(t)} = \left(\frac{E_r(\lambda_r)}{E_s(\lambda_r)} \right)^{1/(\sigma-1)}$$ \hspace{1cm} (A.1)

as the market outcome when manufactures are produced in both regions ($M_r > 0; M_s > 0$). This equation holds as long as relative regional expenditure falls within certain limits that are related to the level of transportation costs. More specifically, when $\phi < E_r/E_s < 1/\phi$ with $\phi \equiv T^{-(\sigma-1)}$ a freeness of trade parameter that lies between zero and one.

The expenditure ratio is given by

$$\frac{E_r(\lambda_r)}{E_s(\lambda_r)} = \frac{L/2 + \lambda_r a^*(\lambda_r)[\gamma + k_r(\lambda_r)]}{L/2 + \lambda_s a^*(\lambda_r)[\gamma + k_s(\lambda_r)]},$$
where \(\sigma^* \) is the total asset value of manufacturing firms, which are owned by high-skilled labour (Fujita & Thisse: 134-135). Following their analysis, while applying our specifications for \(k_r \) and \(k_s \), yields:

\[
E_r/E_s = \begin{cases}
1 + \frac{2\mu}{\sigma - \mu} \frac{\gamma + \eta_r^{1/\beta}}{\gamma + M^{-\delta} \eta_r^{1/\beta}} & (\lambda_r = 1) \\
1 & (\lambda_r = 1/2) \\
\left[1 + \frac{2\mu}{\sigma - \mu} \frac{\gamma + \eta_s^{1/\beta}}{\gamma + M^{-\delta} \eta_s^{1/\beta}} \right]^{-1} & (\lambda_r = 0)
\end{cases}
\]

(A.2)

Since \(\eta_s(1) \) and \(\eta_s(0) \) are zero in zero migration equilibrium, these expressions are exactly identical to the expressions in Fujita & Thisse (2003). Hence, \(E_r/E_s(1) = (\sigma + \mu)/(\sigma - \mu) \) and \(E_r/E_s(0) = (\sigma - \mu)/(\sigma + \mu) \). Combining (A.1) and (A.2), we see that when all high-skilled workers reside in region \(r \) (s), \(P_r/P_s < (>) 1 \). Moreover, when \(\lambda_r = 1/2 \) price indices are the same.

Finally, we note that \(E_r/E_s \) monotonically increases in \(\lambda_r \), implying a monotonic decrease of \(P_r/P_s \) in \(\lambda_r \). Consequently, for initial values for \(\lambda_r \) deviating from 1/2 the stability conditions will be affected. To see this, we note that stability of any spreading equilibrium requires (cf. equation (11)):

\[
\nu_r < \nu_s \iff k_r(\lambda_r) < [(P_r/P_s)^{\mu} - 1]\gamma + (P_r/P_s)^{\mu} k_s(\lambda_s).
\]

Since \(\lambda_r > (<) 1/2 \) implies \(P_r/P_s < (>) 1 \), the stability of any initial distribution of high-skilled labour other than the perfect spreading distribution will be less easily satisfied. This also shows up in the expression for the threshold of migration below which the initial distribution will be maintained:

\[
\lambda_{s}(\lambda_r) = \frac{(P_r/P_s)^{\mu} - [\lambda_r/\lambda_s]^{1+\beta\delta}}{(1 - \lambda_r) - (1 + \lambda_s)\lambda_r [\lambda_r/\lambda_s]^{1+\beta\delta} (P_r/P_s)^{\mu} - 1}\gamma \lambda_s^{\delta-1}.
\]

For \(P_r/P_s = 1 \) this expression reduces to the threshold displayed in condition (12) in the main text. When \(P_r/P_s < (>) 1 \), the threshold decreases (increases): \(d\lambda_s(\lambda_r)/d(P_r/P_s) > 0 \), making stability less likely.
Figure 1: Threshold migration levels

migration

$k(r) > k(s)$

$k(r) < k(s)$

$k(r) > k(s)$

$k(r) < k(s)$

initial share high-skilled workers R