Pioglitazone Treatment Enlarges Subcutaneous Adipocytes in Insulin-Resistant Patients

Departments of General Internal Medicine (T.B.K., C.J.T., J.M.K., A.F.H.S., J.d.G., L.J.H.v.T., R.S.), Endocrinology (J.M.K., A.R.H.), Pathology (J.v.d.L.), and Chemical Endocrinology (F.C.G.S.), Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands

Context: Obesity-related insulin resistance is associated with an increase in adipocyte size. In rodent models, treatment with the insulin-sensitizers thiazolidinediones (TZDs) leads to the appearance of small, insulin-sensitive adipocytes. Whether such TZD-dependent morphological changes occur in adipose tissue of insulin-resistant patients is unclear.

Objective: The objective of the study was to study the effects of treatment with the TZD pioglitazone on sc adipose tissue morphology and function in insulin-resistant subjects.

Design: This was a placebo-controlled, randomized crossover study.

Setting: The study was conducted at a university medical center.

Patients: Twelve adult patients with congenital adrenal hyperplasia (CAH) characterized by insulin resistance were included in this study.

Intervention: After a 4-wk run-in phase, patients were treated with pioglitazone (45 mg/d) followed by placebo, each for 16 wk or vice versa.

Main Outcome Measures: After both placebo and pioglitazone treatment, insulin sensitivity was determined by hyperinsulinemic euglycemic clamp and abdominal sc adipose tissue was obtained to measure adipocyte cell surface and expression of genes involved in glucose uptake and inflammation.

Results: Pioglitazone treatment significantly improved the insulin sensitivity index (placebo: 0.35 ± 0.16 μmol/kg⁻¹ min per milliunit per liter; pioglitazone 0.53 ± 0.16 μmol/kg⁻¹ min per milliunit per liter, P < 0.001) and increased mRNA expression levels of adiponectin and glucose transporter-4 in adipose tissue. The increase in insulin sensitivity was accompanied by a significant enlargement of the sc adipocyte cell surface (placebo: 2323 ± 725 μm²; pioglitazone 2821 ± 885 μm², P = 0.03).

Conclusions: In the human situation, treatment of insulin-resistant subjects with pioglitazone improves insulin sensitivity, whereas at the same time, sc adipocyte cell surface increases. (J Clin Endocrinol Metab 94: 4453–4457, 2009)

Obesity is associated with an abnormal secretion pattern of adipocytes and increased infiltration of macrophages into adipose tissue (1, 2). Recent studies have shown that the increased risk for obese subjects to develop insulin resistance and type 2 diabetes mellitus (T2DM) is associated with increased sc abdominal adipocyte surface (3, 4). Large adipocytes are relatively insulin insensitive and have an increased basal lipolysis and an altered

Abbreviations: BMI, Body mass index; CAH, congenital adrenal hyperplasia; GLUT-4, glucose transporter 4; ISI, insulin sensitivity index; MCP, monocyte chemoattractant protein; T2DM, type 2 diabetes mellitus; TZD, thiazolidinedione.
secretion of adipokines (5, 6). In addition, hypertrophic adipocytes promote the infiltration of macrophages into adipose tissue, leading to enhanced production of proinflammatory cytokines that contribute to the development of insulin insensitivity (7). It has therefore been assumed that the presence of large adipocytes may drive the development of insulin resistance.

Thiazolidinediones (TZDs) are an insulin-sensitizing class of pharmacological compounds widely used for treatment of T2DM, which exhibit their insulin-sensitizing effects by decreasing visceral fat content, enhancing insulin action, and improving glucose homeostasis (8). At the same time, TZDs increase the sc fat depot (9). TZDs are ligands for peroxisome proliferator-activated receptor-γ, a nuclear transcription factor highly expressed in adipose tissue (10). One of the adipose tissue-specific effects of TZDs, mainly described in rodent studies, is the stimulation of adipocyte differentiation and apoptosis of large adipocytes, resulting in an increased population of small, more insulin-sensitive adipocytes (11). This suggests that improvement in glucose homeostasis by TZD treatment will be accompanied by changes in adipocyte size.

In the present study, we investigated the effects of pioglitazone treatment on insulin sensitivity, sc adipocyte surface, and expression of genes involved in glucose uptake and inflammation, in insulin-resistant subjects.

Patients and Methods

Study population

Twelve patients with genetically characterized, classical, congenital adrenal hyperplasia (CAH) on a stable corticosteroid dose were studied in a randomized crossover design. Based on their underlying condition and chronic treatment, this group of patients is characterized by insulin resistance (12). After a 4-wk run-in phase, patients were randomized to treatments with placebo and pioglitazone (45 mg/d) in a blinded fashion for 16 wk or vice versa. At the end of each treatment period, sc adipose tissue biopsies were obtained under local anesthesia by needle biopsy (6–10 cm lateral to the umbilicus). Samples were taken after an overnight fast. Fasting plasma adiponectin, leptin, and total cholesterol levels after placebo were 8.8 ± 0.3 mmol/liter, 0.96 ± 0.2 mmol/liter, and 4500 densitometer (Hologic, Bedford, MA) to determine indices of treatment differences of other variables. Two-tailed paired \(t \) test was used to analyze statistical significance of treatment differences of other variables. Two-tailed \(P < 0.05 \) was considered significant. Tukey honestly significant difference **post hoc** testing was applied for multiple comparison testing. All statistics were performed using SPSS software (version 16.0; SPSS Inc., Chicago, IL.).

Results

Study population characteristics

A total of 12 patients [five men, seven women aged 36 ± 9 yr; body mass index (BMI) 26.9 ± 4.7 kg/m²] completed the study. Mean fasting plasma insulin, glucose, triglyceride, and total cholesterol levels after placebo were 8.8 ± 5.8 mU/liter, 5.0 ± 0.2 mmol/liter, 0.96 ± 0.3 mmol/liter, 4.7 kg/m²] completed the study. At the end of each treatment period, sc adipose tissue biopsies were obtained under local anesthesia by needle biopsy (6–10 cm lateral to the umbilicus). Samples were taken after an overnight fast. Fasting plasma adiponectin, leptin, and total cholesterol levels after placebo were 8.8 ± 0.3 mmol/liter, 0.96 ± 0.2 mmol/liter, and 4500 densitometer (Hologic, Bedford, MA) to determine indices of treatment differences of other variables. Two-tailed paired \(t \) test was used to analyze statistical significance of treatment differences of other variables. Two-tailed \(P < 0.05 \) was considered significant. Tukey honestly significant difference **post hoc** testing was applied for multiple comparison testing. All statistics were performed using SPSS software (version 16.0; SPSS Inc., Chicago, IL.).

Results

Study population characteristics

A total of 12 patients [five men, seven women aged 36 ± 9 yr; body mass index (BMI) 26.9 ± 4.7 kg/m²] completed the study. Mean fasting plasma insulin, glucose, triglyceride, and total cholesterol levels after placebo were 8.8 ± 5.8 mU/liter, 5.0 ± 0.2 mmol/liter, 0.96 ± 0.3 mmol/liter.
and 4.53 ± 0.7 mmol/liter, respectively. The cell surface of sc adipocytes in our study population showed large variation. Whereas the mean sc adipocyte surface was 2323 ± 725 μm², clear interindividual differences were observed (Fig. 1, A and B). Interestingly, adipocyte cell surface was positively correlated with the percentage of trunk fat (r = 0.73; P = 0.01) and plasma leptin levels (r = 0.70; P = 0.01) and negatively correlated with the ISI (r = -0.60; P = 0.04) (Fig. 1C). In addition, adipocyte surface correlated negatively with glucose transporter 4 (GLUT-4) mRNA expression (r = -0.65; P = 0.03) and positively with the mRNA expression level of the inflammatory marker monocyte chemoattractant protein (MCP)-1 in the adipose tissue (r = 0.57; P = 0.05) (Fig. 1D). Noticeably, adjustment for BMI did not significantly alter the correlations that were observed between the different variables and adipocyte surface.

Effects of pioglitazone treatment

After 16 wk of pioglitazone treatment, body weight and BMI had increased (by 2.0 ± 3.3 kg and 0.7 ± 1.1 kg/m²; P = 0.06 for both), but no difference was observed in mean trunk fat percentage. Insulin sensitivity improved significantly after pioglitazone as reflected by ISI (placebo: 0.35 ± 0.16; pioglitazone: 0.53 ± 0.16 μmol/kg · min per milliunit per liter), P < 0.001). The ISI was based on glucose disposal rate (placebo: 28.5 ± 11.6 μmol/kg · min; pioglitazone 38.9 ± 11.0 μmol/kg · min, P < 0.001) and the insulin level at 120 min (placebo: 87.5 ± 22.9 mU/liter; pioglitazone: 76.3 ± 13.8 mU/liter, P = 0.03). Subcutaneous adipocyte surface increased significantly (by 497 ± 625 μm²; P = 0.03) after pioglitazone treatment: eight of 11 patients showed larger adipocytes (Fig. 2, A and B). Pioglitazone had no significant effect on fasting plasma insulin (7.9 ± 4.1 mU/liter after pioglitazone), glucose (5.1 ± 0.5 mmol/liter after pioglitazone), adiponectin (placebo: 5.4 ± 3.9 μg/ml; pioglitazone: 6.1 ± 4.7 μg/ml), and leptin levels (placebo: 23.6 ± 14.9 ng/ml; pioglitazone: 22.9 ± 16.3 ng/ml). Quantitative PCR analysis revealed increases in expression of adiponectin (P < 0.01) and GLUT-4 (P = 0.10) mRNA in adipose tissue after pioglitazone treatment. MCP-1 mRNA expression appeared lower after pioglitazone treatment, but the differences were not statistically significant (Fig. 2C). After pioglitazone treatment, the negative correlation between sc adipocyte surface and ISI was slightly weaker (r = 0.58; P = 0.05), and the negative correlation between GLUT-4 and sc adipocyte surface was no longer significant (r = -0.42; P = 0.2). Correlations between sc adipocyte surface and the percentage of trunk fat, plasma leptin levels, and MCP-1 gene expression were dramatically changed after pioglitazone treatment. In contrast to placebo treatment, the percentage trunk fat and plasma leptin levels were no longer positively correlated with sc adipocyte surface. In addition, the positive correlation of MCP-1 gene expression levels and adipocyte surface observed after placebo treatment was lost after pioglitazone treatment. Apparently, enlarged adipocyte surface no longer predicts metabolic abnormalities and adipose tissue functioning after pioglitazone treatment in this study population.

Discussion

In the present study, we describe the effect of pioglitazone on sc adipose tissue morphology, gene expression levels, and insulin sensitivity in a group of insulin-resistant patients. Although adipocyte hypertrophy was associated
with indices of insulin resistance, pioglitazone treatment resulted in an enlargement of sc adipocytes in parallel with an improvement of systemic insulin sensitivity.

The positive association between obesity-induced adipocyte hypertrophy and the development of insulin resistance and T2DM has been reported before (4). The development of hypertrophic adipocytes is partly explained by the impaired ability to differentiate new fat cells, resulting in enlargement of existing adipocytes (15). Enlarged adipocytes are characterized by a lower insulin-mediated glucose disposal, disturbances in lipid mobilization, and secretion of higher levels of leptin compared with smaller adipocytes (3, 16). In line with these detrimental effects of adipocyte hypertrophy, our data show that after placebo enlarged sc adipocyte surface correlates with elevated levels of circulating leptin, low insulin sensitivity, and lower GLUT-4 mRNA expression, an essential glucose uptake transporter. Adipocyte surface also positively correlates with secretion of proinflammatory adipokines (17). In our study, the MCP-1 proinflammatory gene expression positively correlated with sc adipocyte surface, suggesting that enlarged adipocytes have increased secretion levels of MCP-1 (17). Elevated MCP-1 levels might also be indicative of increased accumulation of macrophages in sc adipose tissue that promote the development of insulin resistance. Altogether our observations suggest that sc adipocyte hypertrophy is indicative of unfavorable metabolic functioning of adipose tissue after placebo treatment.

In agreement with previously published studies, treatment with pioglitazone significantly improved insulin sensitivity in our study population despite an increase in body weight (18). Because peroxisome proliferator-activated receptor-γ efficiently binds TZDs and is abundantly expressed in adipose tissue, pioglitazone is thought to primarily target the adipose tissue in which it promotes the development of small adipocytes characterized by an improvement in metabolic function. However, evidence in support of this mechanism of action has mainly been obtained from rodent studies (11). The number of studies that have investigated sc adipocyte surface in response to TZD treatment in humans is limited and has revealed ambiguous results. So far, studies have reported no change or an increase in the number of small adipocytes together with an improvement of insulin sensitivity after TZD treatment (19, 20), although a trend toward fat cell volume increase was also observed (21). In the present study, we observed a clear increase in sc adipocyte surface by pioglitazone together with an improvement of whole-body insulin sensitivity. These divergent results may be explained by differences in methodology. Previous studies measured adipocyte surface using isolated adipocytes obtained after collagenase digestion and subsequent centrifugation. This treatment usually results in breakage of large cells, leading to an unrepresentative sample of the original cell population with underestimation of large cells (22). In the present study, immediate fixation of adipose tissue biopsies after isolation warranted accurate estimation of adipocyte surfaces.

Importantly, positive correlations between adipocyte surface and plasma leptin, percentage trunk fat, and MCP-1 gene expression levels, markers indicative of insulin resistance and adipose tissue dysfunctioning, disappeared after pioglitazone-induced enlargement of adipocytes. These findings suggest that pioglitazone-induced adipocyte surface enlargement does not have a detrimental

FIG. 2. Characteristics of sc adipocytes after 16 wk of pioglitazone treatment. A, Individual changes of mean sc adipocyte cell surface after pioglitazone treatment. B, Representative hematoxylin-eosin staining images of sc adipose tissue after placebo and pioglitazone treatment. C, Individual adipose tissue mRNA expression levels of adiponectin, GLUT-4, and MCP-1 after both treatments. Person 4 is missing because no biopsy was taken after pioglitazone treatment. Black dashes represent mean values.
but a beneficial effect on adipose tissue metabolism. Hypo-
theretically the pioglitazone-induced adipocyte hypertro-
phy might result from redistribution of visceral and ec-
topic fat toward sc storage, ultimately leading to smaller
visceral, although enlarged, sc adipocytes. Because no vis-
ceral fat biopsies were taken, no data are available to sup-
port this hypothesis.

This study was performed in a group of adult patients
with CAH on stable corticosteroid treatment. These pa-
tients are characterized by insulin resistance (12) and were
used in this study as a human model for obesity-associated
insulin resistance. The advantage of this approach is that
pioglitazone treatment will not lead to changes in glucose
levels, and hence, the pure, not confounded by changes in
glycemic level, effect of the TZD on fat metabolism can be
studied. The improvement of insulin sensitivity suggests a
normal response to pioglitazone in CAH patients and af-
firms the applicability of the model. However, we cannot
exclude that other human models of insulin resistance
would show different responses.

In conclusion, our data, obtained from human adipose
tissue samples, confirm that increased sc adipocyte surface
correlates with indices of insulin resistance at the whole-
body and cellular level. Pioglitazone treatment enlarges
adipose tissue and increases adipocyte surface, whereas at
the same time improving the systemic insulin sensitivity.

Acknowledgments
Address all correspondence and requests for reprints to: Tim B.
Koenen, M.Sc., Radboud University Nijmegen Medical Centre, De-
partment of General Internal Medicine 463, P.O. Box 9101, 6500
HB Nijmegen, The Netherlands. E-mail: t.koenen@ag.umcn.nl.
Disclosure Summary: The authors have nothing to disclose.

References
1. Iacobellis G, Ribaudo MC, Zappaterreno A, Iannucci CV, Leonetti
F 2005 Prevalence of uncomplicated obesity in an Italian obese popu-
2. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL,
Ferrante Jr AW 2003 Obesity is associated with macrophage accumu-
3. Larson-Meyer DE, Heilbronn LK, Redman LM, Newcomer BR,
Frisard MI, Anton S, Smith SR, Alfonso A, Ravussin E 2006 Effect of
carbohydrate restriction with or without exercise on insulin sensitivity,
β-cell function, fat cell size, and ectopic lipid in overweight subjects.
Diabetes Care 29:1337–1344
Enlarged subcutaneous abdominal adipocyte size, but not obesity
itself, predicts type II diabetes independent of insulin resistance.
Diabetologia 43:1498–1506
106:473–481
6. Reardon MF, Goldrick RB, Fidge NH 1973 Dependence of rates of
lipolysis, esterification, and free fatty acid release in isolated fat cells
on age, cell size, and nutritional state. J Lipid Res 14:319–326
7. Di Gregorio GB, Yao-Borengasser A, Rasouli N, Varma V, Lu T,
Miles LM, Ranganathan G, Peterson CA, McGeehe RE, Kern PA
2005 Expression of CD68 and macrophage chemotaxtractant pro-
tein-1 genes in human adipose and muscle tissues: association with
cytokine expression, insulin resistance, and reduction by pioglitaz-
one. Diabetes 54:2305–2313
8. Yang X, Smith U 2007 Adipose tissue distribution and risk of met-
abolic disease: does thiazolidinedione-induced adipose tissue redis-
tribution provide a clue to the answer? Diabetologia 50:1127–1139
N, Ikeda Y 1999 Effect of troglitazone on body fat distribution in
type 2 diabetic patients. Diabetes Care 22:908–912
WJ, Caro JF, Flier JS 1997 Peroxisome proliferator-activated recep-
tor gene expression in human tissues. Effects of obesity, weight loss,
and regulation by insulin and glucocorticoids. J Clin Invest
99:2416–2422
11. Okuno A, Tatemoto H, Tohe K, Ueki K, Mori Y, Iwamoto K,
Umesono K, Akanuma Y, Fujiwara T, Horikoshi H, Yazaki Y,
Kadowaki T 1998 Troglitazone increases the number of small adipo-
cytes without the change of white adipose tissue mass in obese Zucker
12. Charmandari E, Weishe M, Bornstein SR, Eisenhofer G, Kell MF,
Chrousos GP, Merke DP 2002 Children with classic congenital ad-
renal hyperplasia have elevated serum leptin concentrations and
insulin resistance: potential clinical implications. J Clin Endocrinol
Metab 87:2114–2120
2008 Peroxisome proliferator-activated receptor γ activation pro-
motes infiltration of alternatively activated macrophages into adi-
with familial combined hyperlipidemia are insulin resistant com-
pared with their nonafflicted relatives. Arterioscler Thromb Vasc
Biol 17:1465–1471
15. Danforth Jr E 2000 Failure of adipocyte differentiation causes type
II diabetes mellitus? Nat Genet 26:13
Tremblay A, Bouchard C, Despres JP 2000 Expression of CD68 and macrophage
between adipocyte size and adipokine expression and secretion.
J Clin Endocrinol Metab 92:1023–1033
18. Miyazaki Y, Mahankali A, Wajcberg E, Bajaj M, Mandarino LJ,
DeFronzo RA 2004 Effect of pioglitazone on circulating adipocy-
tokine levels and insulin sensitivity in type 2 diabetic patients. J Clin
Endocrinol Metab 89:4312–4319
Improved insulin sensitivity and adipose tissue dysregulation after
short-term treatment with pioglitazone in non-diabetic, insulin-re-
sistant subjects. Diabetologia 48:96–104
20. Shadid S, Jensen MD 2003 Effects of pioglitazone versus diet and
exercise on metabolic health and fat distribution in upper body obe-
sity. Diabetes Care 26:3148–3152
21. Garaldi TP, Kong AP, Chu NV, Kim DD, Baxi S, Loviscach M,
Miyazaki Y, Mahankali A, Wajcberg E, Bajaj M, Mandarino LJ,
DeFronzo RA 2004 Effect of pioglitazone on circulating adipocy-
tokine levels and insulin sensitivity in type 2 diabetic patients. J Clin
Endocrinol Metab 89:4312–4319
Improved insulin sensitivity and adipose tissue dysregulation after
short-term treatment with pioglitazone in non-diabetic, insulin-re-
sistant subjects. Diabetologia 48:96–104
20. Shadid S, Jensen MD 2003 Effects of pioglitazone versus diet and
exercise on metabolic health and fat distribution in upper body obe-
sity. Diabetes Care 26:3148–3152
21. Garaldi TP, Kong AP, Chu NV, Kim DD, Baxi S, Loviscach M,
Miyazaki Y, Mahankali A, Wajcberg E, Bajaj M, Mandarino LJ,
DeFronzo RA 2004 Effect of pioglitazone on circulating adipocy-
tokine levels and insulin sensitivity in type 2 diabetic patients. J Clin
Endocrinol Metab 89:4312–4319