Comparison of 18F-Fluoro-L-DOPA, 18F-Fluoro-Deoxyglucose, and 18F-Fluorodopamine PET and 123I-MIBG Scintigraphy in the Localization of Pheochromocytoma and Paraganglioma

Context: Besides 123I-metaiodobenzylguanidine (MIBG), positron emission tomography (PET) agents are available for the localization of paraganglioma (PGL), including 18F-3,4-dihydroxyphenylalanine (DOPA), 18F-fluoro-2-deoxy-D-glucose (18F-FDG), and 18F-fluorodopamine (18F-FDA).

Objective: The objective of the study was to establish the optimal approach to the functional imaging of PGL and examine the link between genotype-specific tumor biology and imaging.

Design: This was a prospective observational study.

Intervention: There were no interventions.

Patients: Fifty-two patients (28 males, 24 females, aged 46.8 ± 14.2 yr): 20 with nonmetastatic PGL (11 adrenal), 28 with metastatic PGL (13 adrenal), and four in whom PGL was ruled out; 22 PGLs were of the succinate dehydrogenase subunit B (SDHB) genotype.

Main Outcome Measures: Sensitivity of 18F-DOPA, 18F-FDG, and 18F-FDA PET, 123I-MIBG scintigraphy, computed tomography (CT), and magnetic resonance imaging (MRI) for the localization of PGL were measured.

Results: Sensitivities for localizing nonmetastatic PGL were 100% for CT and/or MRI, 81% for 18F-DOPA PET, 88% for 18F-FDG PET/CT, 78% for 18F-FDA PET/CT, and 78% for 123I-MIBG scintigraphy. For metastatic PGL, sensitivity in reference to CT/MRI was 45% for 18F-DOPA PET, 74% for 18F-FDG PET/CT, 76% for 18F-FDA PET/CT, and 57% for 123I-MIBG scintigraphy. In patients with SDHB metastatic PGL, 18F-FDA and 18F-FDG have a higher sensitivity (82 and 83%) than 123I-MIBG (57%) and 18F-DOPA (20%).

Conclusions: 18F-FDA PET/CT is the preferred technique for the localization of the primary PGL and to rule out metastases. Second best, equal alternatives are 18F-DOPA PET and 123I-MIBG scintigraphy. For patients with known metastatic PGL, we recommend 18F-FDA PET in patients with an unknown genotype, 18F-FDG or 18F-FDA PET in SDHB mutation carriers, and 18F-DOPA or 18F-FDA PET in non-SDHB patients. (J Clin Endocrinol Metab 94: 4757–4767, 2009)
Accurate tumor localization is critical for guiding the optimal therapeutic approach for PGL, in particular for identification of multiple primary tumors or metastases. Lesions detected by anatomical imaging can be specifically identified as PGL by functional imaging agents that target the catecholamine synthesis, storage, and secretion pathways of chromaffin tumor cells (5). These techniques include $^{[123]}$T-metaiodobenzylguanidine (MIBG) scintigraphy, $^{[18]}$F-fluoro-L-3,4-dihydroxyphenylalanine (DOPA) positron emission tomography (PET), and $^{[18]}$F-fluorodopamine (FDA) PET. $^{[18]}$F-fluoro-2-deoxy-D-glucose (FDG) PET provides another modality for localization of metastatic PGL, albeit with less tissue specificity than the other functional approaches that target the catecholamine biosynthetic and storage pathways (6–8).

Previous studies on the performance of different functional imaging modalities in PGL yielded discrepant results (8–15). Meaningful comparisons among these studies is hampered by heterogeneous patient sample groups with respect to PGL location (adrenal and extraadrenal abdominal vs. thoracic vs. head and neck), benign vs. malignant PGL, and hereditary vs. sporadic PGL. At least 25–30% of patients with PGL have underlying mutations in one of the four known PGL susceptibility genes (16). The various PGL genotypes are increasingly recognized as important determinants of functional imaging results. For example, 18F-FDA PET is superior to 123I-MIBG scintigraphy in the context of von Hippel Lindau (VHL) syndrome (17), whereas 18F-FDG PET is extremely sensitive in metastatic PGL associated with mutations in succinate dehydrogenase subunit B (SDHB) (8).

Individually, the PET tracers 18F-FDA, 18F-DOPA, and 18F-FDG have been claimed to be superior to 123I-MIBG for the localization of PGL in the particular clinical contexts of different studies. So far, however, a comprehensive comparison between these tracers within the same patient population has not been performed. In the present study, such a head-to-head comparison was accomplished in a large, heterogeneous group of patients with benign and malignant PGLs of various locations and genotypes. The aim of this study was to establish the optimal approach to the functional imaging of sympathetic PGL and further explore possible links between tumor genotypes and imaging.

Patients and Methods

Patients

Between June 2006 and June 2008, we prospectively studied 53 patients (29 males, 24 females, mean ± sd, aged 46.8 ± 14.2 yr), who were consecutively evaluated for known or suspected PGL. At the time of the study, 20 patients had histologically proven, nonmetastatic PGL (no. p1-20), including 11 with adrenal PGL, seven with extraadrenal abdominal or thoracic PGL, one with bilateral adrenal and an extraadrenal PGL, and one with a catecholamine secreting head PGL. Twenty-eight patients had metastatic PGL (no. m1-28), including 13 with primary adrenal tumors and 15 with primary extraadrenal abdominal or thoracic tumors. Metastatic PGL was defined by the presence of metastatic lesions at sites in which chromaffin tissue is normally absent (18). In four patients, PGL was ruled out by normal biochemical findings (no. n1-4). One patient was excluded from the analysis because a histological diagnosis was still pending. Clinical details of individual patients, including previous treatments, are listed in Tables 1–3.

Twenty-two patients had an underlying mutation of the SDHB gene, four of the succinate dehydrogenase subunit D (SDHD) gene, three of the rearranged during transfection protooncogene, and two of the VHL gene. Six patients had sporadic tumors, two were not tested, and in 14 patients lacking syndromic features, at least SDHx mutations were ruled out. The results of 18F-DOPA PET scanning in the first 11 patients were reported in a previous paper on the usefulness of the administration of carbidopa before scanning (19).

This protocol was approved by the Institutional Review Board of the National Institute of Child Health and Development at the National Institutes of Health. All patients provided written informed consent.

Computed tomography (CT) and magnetic resonance imaging (MRI)

In all 53 patients, CT scans of the neck, chest, abdomen, and pelvis were performed, using Lightspeed Ultra, LightSpeed Q/i (General Electric Healthcare Technologies, Waukesha, WI), and Mx8000 IDT (Philips Medical Systems, Andover, MA) scanners. Section thickness was 2–2.5 mm in the neck and 5 mm through the chest, abdomen, and pelvis. Studies were performed with a rapid infusion of nonionic water-soluble contrast agent as well as oral contrast material.

In 45 patients, additional MRI scans of the neck, chest, abdomen, and/or pelvis were obtained, using 1.5 or 3 Tesla scanners (General Electric Healthcare Technologies and Philips Medical Systems). Phased-array coils were used for neck imaging and either phased array torso or quadrature body coils elsewhere. T1-weighted gradient-echo, and short-T_2 inversion recovery and/or fat-suppressed fast spin-echo T2-weighted imaging parameters were adjusted to minimize examination time but achieving desired anatomic coverage. Image thickness was 5 mm for neck studies and 5–8 mm for other body regions. Preinjection images were obtained in the axial plane. Studies included injec-
<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Sex</th>
<th>Reason for evaluation</th>
<th>Age at diagnosis (yr)</th>
<th>Location primary tumor</th>
<th>Hypersecretion</th>
<th>Genotype</th>
<th>Time until metastases (yr)</th>
<th>Locations of metastases</th>
<th>Previous treatment</th>
<th>Imaging results: true positive lesions, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>p01</td>
<td>F</td>
<td>Monitor primary</td>
<td>51</td>
<td>R paraaortic abdomen</td>
<td>NE</td>
<td>SDHB</td>
<td>na</td>
<td>na</td>
<td>MIBG</td>
<td>1 0 1 1 1 1 1</td>
</tr>
<tr>
<td>p02</td>
<td>F</td>
<td>Suspected primary</td>
<td>53</td>
<td>R adrenal</td>
<td>NE</td>
<td>Negative for SDHx/RET</td>
<td>na</td>
<td>na</td>
<td>1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>p03</td>
<td>F</td>
<td>Suspected recurrence</td>
<td>33</td>
<td>R + L adrenal</td>
<td>E</td>
<td>RET</td>
<td>na</td>
<td>na</td>
<td>Res primary</td>
<td>1 1 0 1 0 1</td>
</tr>
<tr>
<td>p04</td>
<td>F</td>
<td>Suspected primary</td>
<td>56</td>
<td>R adrenal</td>
<td>NE + E</td>
<td>Negative for SDHx/RET</td>
<td>na</td>
<td>na</td>
<td>1 1 0 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>p05</td>
<td>M</td>
<td>Suspected primary</td>
<td>31</td>
<td>L paraaortic abdomen</td>
<td>DA</td>
<td>SDHB</td>
<td>na</td>
<td>na</td>
<td>1 0 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>p06</td>
<td>M</td>
<td>Suspected primary</td>
<td>58</td>
<td>L adrenal</td>
<td>NE + E</td>
<td>Negative for SDHx</td>
<td>na</td>
<td>na</td>
<td>1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>p07</td>
<td>M</td>
<td>Suspected primary</td>
<td>59</td>
<td>R paraaortic abdomen</td>
<td>NE</td>
<td>Negative for SDHx</td>
<td>na</td>
<td>na</td>
<td>1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>p08</td>
<td>F</td>
<td>Suspected recurrence</td>
<td>18</td>
<td>Mult extraadrenal abdomen</td>
<td>NE</td>
<td>1 1 1 1 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p09</td>
<td>F</td>
<td>Suspected recurrence</td>
<td>16</td>
<td>R jugular ganglion</td>
<td>NE</td>
<td>Sporadic</td>
<td>na</td>
<td>1 1 1 1 1 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p10</td>
<td>F</td>
<td>Suspected primary</td>
<td>52</td>
<td>L adrenal</td>
<td>NE + E</td>
<td>Negative for SDHx</td>
<td>na</td>
<td>na</td>
<td>1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>p11</td>
<td>M</td>
<td>Suspected primary</td>
<td>72</td>
<td>R adrenal</td>
<td>NE + E</td>
<td>Negative for SDHx</td>
<td>na</td>
<td>na</td>
<td>1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>p12</td>
<td>M</td>
<td>Monitor primary</td>
<td>49</td>
<td>R + L adrenal, mediastinal</td>
<td>NE + DA</td>
<td>SDHB</td>
<td>2 1 2 1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p13</td>
<td>M</td>
<td>Monitor primary</td>
<td>49</td>
<td>Medastinal</td>
<td>NE + DA</td>
<td>SDHB</td>
<td>1 1 1 1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p14</td>
<td>M</td>
<td>Suspected primary</td>
<td>22</td>
<td>R + L adrenal, R carotid</td>
<td>NE</td>
<td>VHL</td>
<td>3 3 3 3 3 3 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p15</td>
<td>M</td>
<td>Rule out primary</td>
<td>61</td>
<td>L extraadrenal abdomen</td>
<td>DA</td>
<td>SDHB</td>
<td>1 0 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p16</td>
<td>M</td>
<td>Rule out primary</td>
<td>34</td>
<td>Mult extraadrenal abdomen</td>
<td>NE</td>
<td>SDHB</td>
<td>3 3 3 3 3 3 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p17</td>
<td>F</td>
<td>Suspected primary</td>
<td>44</td>
<td>R adrenal</td>
<td>NE + E</td>
<td>Negative for SDHx</td>
<td>na</td>
<td>na</td>
<td>1 1 0 0 1 1 1</td>
<td></td>
</tr>
<tr>
<td>p18</td>
<td>F</td>
<td>Suspected primary</td>
<td>48</td>
<td>R adrenal</td>
<td>NE + E</td>
<td>Negative for SDHx/RET</td>
<td>na</td>
<td>na</td>
<td>1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>p19</td>
<td>M</td>
<td>Suspected primary</td>
<td>36</td>
<td>L adrenal</td>
<td>NE + E</td>
<td>Negative for SDHx</td>
<td>na</td>
<td>na</td>
<td>1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>p20</td>
<td>F</td>
<td>Suspected primary</td>
<td>39</td>
<td>R adrenal</td>
<td>NE + E</td>
<td>RET</td>
<td>na</td>
<td>na</td>
<td>1 1 1 1 1 1</td>
<td></td>
</tr>
</tbody>
</table>

DA, Dopamine; E, epinephrine; F, female; M, male; MIBG, 131I-MIBG treatment; mult, multiple; na, not available; NE, norepinephrine; R, right; res, surgical resection; RET, rearranged during transfection; RT, radiotherapy; susp, suspicion.

Additional false-positive lesion(s).
<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Sex</th>
<th>Reason for Evaluation</th>
<th>Age at diagnosis (yr)</th>
<th>Location primary tumor</th>
<th>Hypersecretion</th>
<th>Genotype</th>
<th>Time until metastases (yr)</th>
<th>Locations metastases</th>
<th>Previous treatment</th>
<th>Imaging results: lesions detected, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>m01 M</td>
<td>Monitor metastases</td>
<td>27</td>
<td>Extra-adrenal</td>
<td>L</td>
<td>NE</td>
<td>SDHB</td>
<td>0</td>
<td>Abd, me, b</td>
<td>Res primary; CT</td>
<td>7</td>
</tr>
<tr>
<td>m02 F</td>
<td>Monitor metastases</td>
<td>23</td>
<td>Para-aortic abdomen</td>
<td>R</td>
<td>NE</td>
<td>SDHB</td>
<td>0.3</td>
<td>Abd, b</td>
<td>Res primary; CT</td>
<td>4</td>
</tr>
<tr>
<td>m03 M</td>
<td>Monitor metastases</td>
<td>22</td>
<td>Adrenal</td>
<td>R</td>
<td>NE</td>
<td>SDHD</td>
<td>10.3</td>
<td>Abd, li, me, b</td>
<td>Res primary; MIBG</td>
<td>9</td>
</tr>
<tr>
<td>m04 M</td>
<td>Monitor metastases</td>
<td>10</td>
<td>Para-aortic abdomen</td>
<td>R</td>
<td>NE+DA</td>
<td>SDHB</td>
<td>8.4</td>
<td>Abd, li, me, b, n</td>
<td>MIBG</td>
<td>16</td>
</tr>
<tr>
<td>m05 M</td>
<td>Susp metastases</td>
<td>39</td>
<td>Adrenal</td>
<td>R</td>
<td>NE+DA</td>
<td>Neg for SDHx</td>
<td>14.7</td>
<td>Abd, me, b</td>
<td>Res primary</td>
<td>16</td>
</tr>
<tr>
<td>m06 F</td>
<td>Monitor metastases</td>
<td>33</td>
<td>L Adrenal</td>
<td>R</td>
<td>NE+E</td>
<td>RET</td>
<td>6.2</td>
<td>Abd, li, b</td>
<td>Res primary; MIBG</td>
<td>12</td>
</tr>
<tr>
<td>m07 M</td>
<td>Monitor metastases</td>
<td>40</td>
<td>Para-aortic abdomen</td>
<td>L</td>
<td>NE</td>
<td>SDHB</td>
<td>3.9</td>
<td>li</td>
<td>Res primary</td>
<td>7</td>
</tr>
<tr>
<td>m08 M</td>
<td>Monitor metastases</td>
<td>40</td>
<td>Adrenal</td>
<td>R</td>
<td>NE+DA</td>
<td>Neg for SDHx</td>
<td>4.7</td>
<td>li, be</td>
<td>Res primary; CT; MIBG</td>
<td>4</td>
</tr>
<tr>
<td>m09 F</td>
<td>Susp metastases</td>
<td>46</td>
<td>Retroparacardiac</td>
<td>R</td>
<td>NE+DA</td>
<td>SDHB</td>
<td>0</td>
<td>be</td>
<td>Res primary</td>
<td>7</td>
</tr>
<tr>
<td>m10 F</td>
<td>Monitor metastases</td>
<td>20</td>
<td>Zucker-Kandl</td>
<td>R</td>
<td>NE+DA</td>
<td>Sporadic</td>
<td>0</td>
<td>Abd, li, b</td>
<td>Debulking primary; CT; RT sacrum</td>
<td>5</td>
</tr>
<tr>
<td>m11 F</td>
<td>Monitor metastases</td>
<td>39</td>
<td>Adrenal</td>
<td>R</td>
<td>NE+E</td>
<td>Sporadic</td>
<td>7</td>
<td>Abd, li, me, li</td>
<td>Res primary; CT; MIBG</td>
<td>16</td>
</tr>
<tr>
<td>m12 M</td>
<td>Monitor metastases</td>
<td>52</td>
<td>Adrenal</td>
<td>L</td>
<td>NE+E</td>
<td>VH</td>
<td>20</td>
<td>Abi</td>
<td>Res primary; CT; MIBG</td>
<td>1</td>
</tr>
<tr>
<td>m13 M</td>
<td>Monitor metastases</td>
<td>42</td>
<td>Para-aortic abdomen</td>
<td>L</td>
<td>NE</td>
<td>SDHB</td>
<td>0</td>
<td>lb</td>
<td>Res primary + lung met; CT; MIBG</td>
<td>3</td>
</tr>
<tr>
<td>m14 F</td>
<td>Monitor recurrence</td>
<td>22</td>
<td>Medial para-aortic</td>
<td>NE</td>
<td>NE</td>
<td>SDHB</td>
<td>5</td>
<td>b</td>
<td>Re-res primary</td>
<td>0</td>
</tr>
<tr>
<td>m15 M</td>
<td>Monitor metastases</td>
<td>32</td>
<td>Para-aortic abdomen</td>
<td>L</td>
<td>NE+DA</td>
<td>SDHB</td>
<td>4</td>
<td>Abd, me</td>
<td>Res primary</td>
<td>9</td>
</tr>
<tr>
<td>m16 M</td>
<td>Monitor metastases</td>
<td>41</td>
<td>Adrenal</td>
<td>R</td>
<td>E</td>
<td>Sporadic</td>
<td>15</td>
<td>b</td>
<td>Re-res primary</td>
<td>0</td>
</tr>
<tr>
<td>m17 F</td>
<td>Monitor metastases</td>
<td>37</td>
<td>Para-aortic abdomen</td>
<td>L</td>
<td>NE</td>
<td>Sporadic</td>
<td>9</td>
<td>Abd</td>
<td>Res primary, res recurrence, res mets</td>
<td>0</td>
</tr>
<tr>
<td>m18 F</td>
<td>Monitor metastases</td>
<td>18</td>
<td>Adrenal + L carotid</td>
<td>L</td>
<td>NE</td>
<td>SDHB</td>
<td>13</td>
<td>b, me</td>
<td>Res primary</td>
<td>20</td>
</tr>
<tr>
<td>m19 F</td>
<td>Monitor metastases</td>
<td>51</td>
<td>Adrenal</td>
<td>L</td>
<td>NE</td>
<td>Neg for SDHx</td>
<td>1</td>
<td>lb</td>
<td>CT</td>
<td>4</td>
</tr>
<tr>
<td>m20 M</td>
<td>Monitor metastases</td>
<td>25</td>
<td>Mediastinum</td>
<td>R</td>
<td>NE</td>
<td>SDHB</td>
<td>2</td>
<td>lb</td>
<td>Res primary + RT primary, res lung meta</td>
<td>11</td>
</tr>
<tr>
<td>m21 M</td>
<td>Monitor metastases</td>
<td>11</td>
<td>Para-aortic abdomen</td>
<td>R</td>
<td>NE</td>
<td>SDHB</td>
<td>8</td>
<td>lb</td>
<td>Res primary</td>
<td>2</td>
</tr>
<tr>
<td>m22 M</td>
<td>Susp recurrence</td>
<td>36</td>
<td>Adrenal</td>
<td>R</td>
<td>NE</td>
<td>Neg for SDHx</td>
<td>10</td>
<td>a/p</td>
<td>Res primary</td>
<td>4</td>
</tr>
<tr>
<td>m23 F</td>
<td>Monitor metastases</td>
<td>37</td>
<td>Pelvic</td>
<td>R</td>
<td>NE+DA</td>
<td>SDHB</td>
<td>0.8</td>
<td>a/p</td>
<td>CT + meta res</td>
<td>0</td>
</tr>
<tr>
<td>m24 F</td>
<td>Monitor metastases</td>
<td>51</td>
<td>Adrenal</td>
<td>L</td>
<td>NE</td>
<td>Neg for SDHx</td>
<td>5</td>
<td>lb, a/p</td>
<td>Res primary</td>
<td>14</td>
</tr>
<tr>
<td>m25 M</td>
<td>Monitor metastases</td>
<td>14</td>
<td>Adrenal</td>
<td>R</td>
<td>SDHB</td>
<td>2</td>
<td>b, li, a/p</td>
<td>Res + RT primary, CT</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>m26 F</td>
<td>Susp metastases</td>
<td>48</td>
<td>Mediastinum or</td>
<td>L</td>
<td>NE</td>
<td>SDHD</td>
<td>7</td>
<td>lb, li, me, neck</td>
<td>Res carotid body tumors</td>
<td>9</td>
</tr>
<tr>
<td>m27 M</td>
<td>Monitor metastases</td>
<td>24</td>
<td>Adrenal</td>
<td>L</td>
<td>NE</td>
<td>SDHB</td>
<td>0</td>
<td>b, a/p</td>
<td>CT, MIBG</td>
<td>20</td>
</tr>
<tr>
<td>m28 M</td>
<td>Monitor metastases</td>
<td>30</td>
<td>Para-aortic abdomen</td>
<td>R</td>
<td>NE</td>
<td>SDHB</td>
<td>17</td>
<td>b</td>
<td>Res primary, meta res</td>
<td>1</td>
</tr>
</tbody>
</table>

abdominal lymph node; b, bone; DA, dopamine; E, epinephrine; F, female; li, liver; lu, lung; M, male; me, mediastinum; meta, metastases; MIBG, 131I-MIBG treatment; n, neck; NE, norepinephrine; R, right; res, surgical resection; RET, rearranged during transfection; RT, radiotherapy; susp, suspicion.
tion of a gadolinium-¹¹¹In-diethylenetriamine-pentacetic acid contrast agent, using fat-suppressed T1-weighted gradient-echo imaging, generally in both axial and coronal planes.

Functional imaging

¹²³I-MIBG scintigraphy, ¹⁸F-FDG PET/CT, ¹⁸F-DOPA PET, and ¹⁸F-FDA PET/CT were performed as described previously (8, 19). ¹⁸F-DOPA PET scanning was preceded by oral administration of 200 mg carbidopa, a peripheral aromatic amino acid decarboxylase inhibitor (19). All patients underwent ¹⁸F-DOPA PET and ¹⁸F-FDA PET/CT, all but one underwent ¹⁸F-FDG PET/CT, and all but three underwent ¹²³I-MIBG scintigraphy.

Analysis of data

CT and MRI scans were read by a single radiologist who was blinded to results of other imaging studies. Lesions detected by CT and/or MRI that were typical or highly suspicious for PGL were considered positive.

¹⁸F-DOPA PET and ¹⁸F-FDA PET were each read in blinded fashion by two nuclear medicine physicians during separate reading sessions. Focal areas of abnormal uptake not corresponding to normal physiological sites of accumulation for each of the tracer were considered as lesions. Lesions were graded on a scale of 1–5 (1, not PGL; 2, doubtful; 3, equivocal; 4, probable; 5, definite PGL). Lesions with scores of 4 and 5 were counted as positive findings. Discrepancies were resolved by consensus review.

Lesions detected by CT, MRI, and functional imaging studies were counted in the following three separate body regions: neck, thorax, and abdomen/pelvis. Counts included both soft tissue and bone lesions. If the number of lesions in a region exceeded 10, the count was truncated at 10 to avoid bias toward that patient. Lesions of the head and extremities were not included in the analysis because these areas were not systematically scanned. For this reason, primary nonsecreting head and neck paragangliomas were excluded from the analysis.

Imaging results in individual patients were compared between scans performed within a 3-month interval, with the exception of one patient (no. m4), in whom ¹⁸F-FDG PET was performed with a delay of 7 months. In this interval, he did not undergo treatment, and repeat CT showed no additional lesions.

Sensitivities for tumor detection were calculated in reference to two different gold standards. In patients with nonmetastatic PGL, sensitivities were calculated in reference to histopathologically confirmed PGLs. If surgical resection of the culprit lesion(s) resulted in normalization of plasma-free metanephrines without signs of recurrence during follow-up, additional lesions of the chest and abdomen on preoperative imaging were presumed to be false positive. In patients with metastatic PGL, comprehensive histopathological confirmation of all lesions to serve as gold standard for imaging results was not feasible. Instead, the sensitivity for metastases was calculated in reference to lesions detected by CT and/or MRI. The sensitivity for metastases was based on per-region counts as stated above, not on a per-lesion basis.

Sensitivities were analyzed separately in patients with nonmetastatic and metastatic disease. Prompted by earlier findings in patients with <i>SDHB</i>-related PGL (8), sensitivities for the detection of metastases were compared between patients with and without underlying <i>SDHB</i> mutations.
Statistics

Results are given as mean ± SD unless stated otherwise. The McNemar test was used to compare sensitivities between different functional imaging modalities. A χ² test was used to compare sensitivities between patients with and without SDHB mutations. A two-sided \(P < 0.05 \) was considered significant. Statistical analysis was performed using Statistical Package for the Social Sciences (SPSS for Windows 12; SPSS Inc., Chicago, IL).

Results

Nonmetastatic PGL

In 20 patients, 26 nonmetastatic PGLs were histopathologically identified. Besides anatomic imaging, all types of functional imaging were performed in all patients. One patient (no. p1) had inadvertently taken 40 mg instead of 200 mg carbidopa before 18F-DOPA PET. Discrepant readings were solved by consensus for two lesions on 18F-DOPA PET.

Of 26 PGLs, all lesions were detected by CT and/or MRI (sensitivity 100%), 21 by 18F-DOPA PET (sensitivity 81%), 20 by 18F-FDA PET/CT (sensitivity 78%), 20 by 123I-MIBG scintigraphy (sensitivity 78%), and 23 by 18F-FDG PET/CT (sensitivity 88%, \(P < 0.01 \), Table 4). Six false-positive lesions were detected. 123I-MIBG scintigraphy showed two false-positive chest lesions in one patient (no. p12). 18F-FDG PET/CT showed three false-positive lesions. In one patient (no. p13), a right inguinal lesion on 18F-FDG PET/CT [maximum standardized uptake value (SUV) 4.5] correlated with a 1.9 cm normal-appearing lymph node on CT. In another patient (no. 16), the 18F-FDG PET/CT showed two small foci in the vertebral bodies of T9 (maximum SUV 2.6) and L5 (maximum SUV 4.2), not correlating with abnormalities on anatomic imaging. Clinical follow-up of 1.5 yr showed no (biochemical) evidence of recurrent or metastatic disease in either of these patients. 18F-FDA PET/CT showed one false-positive lesion (no. 16). There were no false-positive lesions on CT, MRI, and 18F-DOPA PET.

TABLE 4. Sensitivity

<table>
<thead>
<tr>
<th>CT and/or MRI</th>
<th>18F-DOPA</th>
<th>18F-FDA</th>
<th>123I-MIBG</th>
<th>18F-FDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonmetastatic PGL (20 patients)</td>
<td>100% (26/26)</td>
<td>81% (21/26)</td>
<td>77% (20/26)</td>
<td>77% (20/26)</td>
</tr>
<tr>
<td>Metastatic PGL (28 patients)</td>
<td>45% (96/211)</td>
<td>76% (161/211)</td>
<td>57% (106/187)</td>
<td>74% (157/211)</td>
</tr>
</tbody>
</table>

A vs. B, A vs. C, A vs. D, B vs. C, C vs. D: \(P < 0.01 \); B vs. D: \(P = 0.760 \).

Metastatic PGL

All 28 patients with metastatic PGL underwent anatomic imaging and all types of functional imaging, except for three patients who did not undergo 123I-MIBG scintigraphy, and one patient who did not undergo 18F-FDG PET. In reference to CT and/or MRI region-based sensitivities were: 18F-FDA PET/CT, 76% (161 of 211); 18F-FDG PET/CT, 74% (157 of 211); 123I-MIBG scintigraphy, 57% (106 of 187); and 18F-DOPA PET, 45% (96 of 211). These results were significantly different between the imaging techniques (\(P < 0.01 \)), except between 18F-FDA and 18F-FDG (\(P = \text{ns} \), Table 4 and Fig. 1).

In one patient (no. m23), no lesions were detected by any imaging study, who previously underwent metastasectomy. In the remaining patients, one or more lesions were detected by CT and/or MRI in 24 of 27 patients (89%), 18F-FDG PET/CT in 24 of 27 patients (89%), 18F-FDA PET/CT in 22 of 27 patients (81%), 18F-DOPA PET in 20 of 27 patients (74%), and 123I-MIBG scintigraphy in 21 of 25 patients (84%).

In the 28 patients, a total score of 334 lesions was obtained from all anatomic and functional imaging studies by regional analysis. The total score for 18F-FDA PET/CT alone was 246, 211 for CT and/or MRI, 174 for 18F-DOPA PET, and 209 for 18F-FDG PET/CT. Lesion counts were truncated at 10 in 16 regions for 18F-FDA PET/CT, 10 regions for CT and/or MRI, 10 regions for 18F-FDG PET/CT, and nine regions for 18F-DOPA PET. In the 25 patients who underwent 123I-MIBG scintigraphy, 122 lesions were counted and were truncated in three regions.

Functional imaging sensitivities for metastatic lesions were compared between 15 patients with and 13 patients without mutations of the SDHB gene. In SDHB patients, 18F-FDG PET/CT detected metastases in all patients, whereas several other scans were false negative: in three patients (no. m13, m15, m28), no lesions were visualized by 18F-FDA, 18F-DOPA, or 123I-MIBG, in another (no. m7), no lesions were detected by 18F-FDA and 18F-DOPA,
and in three (no. m20, 21, and m27) \(^{18}\text{F}-\text{DOPA}\) was false negative (\(^{123}\text{I}-\text{MIBG}\) not done in no. m27). In non-SDHB patients, a false-negative \(^{18}\text{F}-\text{FDG}\) scan was obtained in one patient (no. m12 with \(\text{VHL}\) mutation), and \(^{18}\text{F}-\text{FDA}\) was negative in one patient (no. m10, sporadic). Using CT/MRI as a gold standard, lesion-based sensitivities in SDHB vs. non-SDHB patients are given in Table 5. In SDHB patients, \(^{18}\text{F}-\text{FDA}\) and \(^{18}\text{F}-\text{FDG}\) have a higher sensitivity (82 and 83%) than \(^{123}\text{I}-\text{MIBG}\) (57%) and \(^{18}\text{F}-\text{DOPA}\) (20%). In non-SDHB patients, \(^{18}\text{F}-\text{DOPA}\) has the best sensitivity (93%), followed by \(^{18}\text{F}-\text{FDA}\) (76%), \(^{123}\text{I}-\text{MIBG}\) (59%), and \(^{18}\text{F}-\text{FDG}\) (62%).

PGL ruled out

In the four patients in whom PGL was ruled out by biochemical investigation and clinical follow-up, two had
false-positive lesions on imaging. One patient (no. n03), a
carrier of an SDHB mutation (IVS1 + 1G>T), was found to
have an 8- × 5-cm gastrointestinal stromal tumor between the
stomach and pancreas, which was visualized by CT, MRI, 18F-DOPA PET, and 18F-FDG PET/CT but nega-
tive on 18F-FDA PET/CT and 123I-MIBG scintigraphy. In
the second patient (no. n01), a 2-cm left adrenal inciden-
taloma was seen on CT and MRI, which was also visible on
18F-FDG PET/CT.

Discussion

We present the first comprehensive head-to-head compar-
ison between 18F-FDA and 18F-FDG PET/CT, 18F-DOPA
PET, and 123I-MIBG scintigraphy for localizing benign
and malignant sympathetic PGLs. Nonmetastatic PGLs
were equally well localized by these techniques. For the
detection of metastases seen on CT, however, 18F-FDA
was superior to 18F-DOPA and 123I-MIBG scanning. SDHB-related metastatic disease is best detected by 18F-
FDG PET/CT, whereas 18F-DOPA PET performs best in
non-SDHB patients.

Different functional imaging agents target PGL tumor
cells through different mechanisms. 123I- and 131I-labeled
MIBG and 18F-FDA are actively transported into neuro-
secretory granules of catecholamine-producing cells via
the vesicular monoamine transporters after uptake into
cells by the norepinephrine transporter (20). In contrast,
18F-DOPA enters the cell via the amino acid transporter
based on the capability of PGL and other neuroendocrine
tumors to take up, decarboxylate, and store amino acids
and their biogenic amines (20, 21). Instead of targeting
catecholamine pathways, 18F-FDG enters the cell via the
glucose transporter, and its accumulation is an index of
increased glucose metabolism (22, 23).

A biochemical diagnosis of PGL is typically followed by
anatomic and functional imaging studies to localize the
primary tumor(s) and rule out metastases. 123I/131I-MIBG is the most widely used tracer in the first-line functional
imaging of PGL. 123I-MIBG is preferred over 131I-MIBG
because of its higher sensitivity, lower radiation exposure,
and improved imaging quality with single-photon emis-
sion-computed tomography (24). Previous studies suggest
a sensitivity of 123I-MIBG scintigraphy of 92–98% for
nonmetastatic PGL (15) and 57–79% for metastases (8, 15). The present findings confirm that the sensitivity is
high for primary tumors and relatively poor (~50%) for
metastases. We feel that the use of 123I-MIBG scintigraphy
in patients with metastatic PGL should be limited to the
evaluation of whether the patient qualifies for 131I-MIBG
treatment.

TABLE 5. SDHB- vs. non-SDHB metastatic PGL

<table>
<thead>
<tr>
<th></th>
<th>SDHB (15 patients)</th>
<th>non-SDHB (13 patients)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>18F-DOPA</td>
<td>20% (25/126)</td>
<td>93% (79/85)</td>
<td><0.001</td>
</tr>
<tr>
<td>18F-FDA</td>
<td>82% (103/126)</td>
<td>76% (65/85)</td>
<td>0.037</td>
</tr>
<tr>
<td>123I-MIBG</td>
<td>57% (60/106)</td>
<td>59% (48/81)</td>
<td>ns</td>
</tr>
<tr>
<td>18F-FDG</td>
<td>83% (105/126)</td>
<td>62% (53/85)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Within SDHB patients: A vs. B, A vs. C, A vs. D, B vs. C, C vs. D: P < 0.01; B vs. D: P = ns. Within non-SDHB patients: A vs. B, A vs. C, A vs. D: P < 0.01; B vs. C: P = 0.035; B vs. D, C vs. D: P = ns.
Apart from its established role the localization of gastrointestinal carcinoid tumors (25–27), 18F-DOPA PET has been suggested to be an excellent alternative for the imaging of sympathetic (10, 28–30) and parasympathetic (11, 31) PGL. In a study of 17 patients, 18F-DOPA PET detected tumors with a strikingly high sensitivity and specificity of both 100% (10). More recent studies confirmed the usefulness of this technique in benign and malignant abdominal PGL (29–32). We also show that 18F-DOPA is a very useful alternative for the specific localization of primary PGL, although it can yield both false-negative and false-positive results. In patients with metastatic disease, a per-lesion-based analysis showed a limited overall sensitivity of 18F-DOPA PET: less than half of the metastases detected by CT/MRI were detected by 18F-DOPA PET. On the other hand, in 71% of patients with malignant PGL, one or more metastases were discerned by the technique. Moreover, a subgroup analysis indicated that its sensitivity is excellent for non-SDHB metastases (94%) but poor for SDHB-related metastases (20%). This discrepancy remains unexplained. Our results are at variance with a previously published case series, in which 18F-DOPA PET identified more metastases than MIBG single-photon emission-computed tomography and 18F-FDG PET in four of five patients with malignant PGL (31).

18F-FDA was initially developed at the National Institutes of Health for functional imaging of the sympathetic nervous system and later evaluated as a new imaging tool for PGL to optimally discern both primary tumors and metastatic lesions. The present findings confirm the high sensitivity of 18F-FDA PET previously shown for both primary tumors and metastases (13, 33) and show that 18F-FDA PET/CT is superior to 18F-DOPA PET and 123I-MIBG scintigraphy for localizing metastases. In fact, the number of lesions detected by 18F-FDA PET far exceeded the number of lesions on CT and MRI and other functional imaging modalities and were probably underestimated due to truncation of lesion counts, which was necessary in 60% more regions for 18F-FDA PET than for CT and MRI.

We found a surprisingly high sensitivity (88%) of 18F-FDG PET for nonmetastatic PGL. Previously, sensitivities ranging from 58 to 70% have been reported (6, 34). We do not advocate the use of 18F-FDG for the first-line imaging of PGL, because its uptake is not PGL-specific.

The observed differences in radiotracer accumulation between primary tumors and metastases are likely related to differences in tumor cell properties. Theoretically, dedifferentiation might lead to loss of the specific norepinephrine transporters in these tumors, but the avid accumulation of 18F-FDA in the majority of metastatic lesions does not support this theory. Alternatively, tracer accumulation may be directly linked to genotype-specific tumor biology. Malignant potential, tumor location, and biochemical phenotype are all closely linked to underlying mutations in PGL susceptibility genes (35, 36). In previous studies we provided evidence for such a genetic signature on a tumor’s tracer dynamics. For instance, we have shown that VHL PGLs are better localized with 18F-FDA PET than 131I-MIBG scintigraphy, which may be related to limited expression of norepinephrine transporters by VHL PGL cells and a better affinity of 18F-FDA than MIBG for these transporters (17, 37).

Our previous (8) and current observations in patients with SDHB-related PGL provide additional evidence for a link between genotype-specific tumor biology and imaging. SDHB mutations are associated with PGLs of a particularly high malignant potential (36). In the present study, we confirm that 18F-FDG PET has an excellent sensitivity for SDHB-associated metastatic PGL (8, 38). 18F-FDG accumulation is an index of increased tissue glucose metabolism, and, as a marker of tumor viability, the degree of 18F-FDG uptake usually reflects tumor aggressiveness (22). In this study, the high sensitivity of 18F-FDG PET was specific for SDHB-related metastases, rather than a feature of PGL metastases in general. Therefore, avid 18F-FDG uptake by PGL does not appear to be merely an indicator of a high metabolic rate due to malignancy per se but may rather be directly linked to SDHB-specific tumor biology. The SDHB gene encodes for subunit B of the mitochondrial succinate dehydrogenase complex II that catalyzes the oxidation of succinate to fumarate in the Krebs cycle and feeds electrons to the respiratory chain ubiquinone pool, which ultimately leads to the generation of ATP (oxidative phosphorylation). SDHB mutations can lead to complete loss of succinate dehydrogenase enzymatic activity in malignant PGL, with up-regulation of hypoxic-angiogenetic responsive genes (39). Impairment of mitochondrial function due to loss of SDHB function may cause tumor cells to shift from oxidative phosphorylation to aerobic glycolysis, a phenomenon known as the Warburg effect (40). Higher glucose requirement because of a switch to less efficient pathways for cellular energy production may explain the increased 18F-FDG uptake by malignant SDHB-related PGL. This possible bioenergetic signature on imaging awaits confirmation on a molecular level.

Based on our previous findings, we do not recommend the use of 111In-pentetreotide scintigraphy as a first-line imaging tool for PGL (8, 41). Novel somatostatin receptor-based PET scanning using 68Ga-DOTA-peptides (42) awaits further evaluation.

Our findings can assist practicing physicians in choosing the most appropriate type of functional imaging for individual patients with sympathetic, nonhead, and neck
PGL. We recommend the use of 18F-FDA PET/CT in patients with a biochemically established diagnosis of PGL when the aim is to localize the primary tumor(s) and rule out metastases. If 18F-FDA PET/CT is unavailable, 18F-FDG or 18F-FDA PET in patients with a biochemically established diagnosis of PGL genotype, 18F-DOPA or 18F-FDA PET in non-SDHB carriers, and 18F-DOPA or 18F-FDA PET in non-SDHB patients.

Acknowledgments

Address all correspondence and requests for reprints to: Henri J. L. M. Timmers, Department of Endocrinology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands. E-mail: h.timmers@endo.umcn.nl.

This work was supported by the Intramural Research Program of the National Institute of Child Health and Human Development/National Institutes of Health.

Disclosure Summary: The authors have nothing to disclose.

References

6. Shulkin BL, Thompson NW, Shapiro B, Francis IR, Sisson J 1999 Pheochromocytomas: imaging with 2fluorine-182fluorodeoxy-glucose PET. Radiology 212:35–41

