Radionuclide Imaging of Tumor Angiogenesis

Ingrid Dijkgraaf and Otto C. Boerman

Summation

Angiogenesis is a multistep process regulated by pro- and antiangiogenic factors. In order to grow and metastasize, tumors need a constant supply of oxygen and nutrients. For growth beyond 1–2 mm in size, tumors are dependent on angiogenesis. Inhibition of angiogenesis is a new cancer treatment strategy that is now widely investigated clinically. Researchers have begun to search for objective measures that indicate pharmacologic responses to antiangiogenic drugs. Therefore, there is a great interest in techniques to visualize angiogenesis in growing tumors noninvasively. Several markers have been described that are preferentially expressed on newly formed blood vessels in tumors (αvβ3 integrin, vascular endothelial growth factor, and its receptor, prostate-specific membrane antigen) and in the extracellular matrix surrounding newly formed blood vessels (extra domain B of fibronectin, Tenascin-C, matrix metalloproteinases, and Robo-4). Several ligands targeting these markers have been tested as a radiotracer for imaging angiogenesis in tumors. The potential of some of these tracers, such as radiolabeled cyclic RGD peptides and radiolabeled anti-PSMA antibodies, has already been tested in cancer patients, while for markers such as Robo-4, the ligand has not yet been identified. In this review, an overview on the currently used nuclear imaging probes for noninvasive visualization of tumor angiogenesis is given.

Key words: angiogenesis, αvβ3, α5β1, VEGF, PMSA, ECM, Magic roundabout

Introduction

Angiogenesis, the formation of new blood vessels from existing ones, is an essential process if solid tumors are to grow beyond 2–3 mm³, since diffusion is no longer sufficient to supply the tissue with oxygen and nutrients. Tumor-induced angiogenesis is a complex, multistep process that follows a characteristic cascade of events mediated and controlled by growth factors, cellular receptors, and adhesion molecules. In this process, five phases can be distinguished: 1) endothelial cell activation, 2) basement membrane degradation, 3) endothelial cell migration, 4) vessel formation, and 5) angiogenic remodeling.

The activation of preexisting quiescent vessels can be triggered by hypoxia. Hypoxia induces the expression of hypoxia-inducible factor (HIF), which binds to the hypoxic response element. As a result, the expression of hypoxia-inducible genes, such as vascular endothelial growth factor (VEGF), carbonic anhydrase IX (CAIX), platelet-derived growth factor (PDGF), and transforming growth factor-α (TGF-α), is induced. Activated endothelial cells express the dimeric transmembrane integrin, αvβ3, which interacts with extracellular matrix proteins (e.g., vitronectin, tenascin, fibronectin, and so forth) and regulates migration of the endothelial cell through the extracellular matrix during vessel formation. The activated endothelial cells synthesize proteolytic enzymes, such as matrix metalloproteinases (MMPs), used to degrade the basement membrane and the extracellular matrix. Initially, endothelial cells assemble as solid cords. Subsequently, the inner layer of endothelial cells undergoes apoptosis, leading to the formation of the vessel lumen. Finally, this primary, immature vasculature undergoes extensive remodeling, during which the vessels are stabilized by pericytes and smooth muscle cells. This step is often incomplete in tumors, resulting in the characteristic, increased permeability of tumor vessels.
Based on a balance between pro- and antiangiogenic factors, a tumor can stay dormant for a very long time until the so-called “angiogenic switch” occurs. In most tissues, tumors can only grow to a life-threatening size if the tumor is able to trigger angiogenesis. In tissues with high vessel densities (e.g., liver, brain, and so forth), tumors may also progress via angiogenesis-independent co-option of the preexistent vasculature.10

In summary, tumor-induced angiogenesis is a multistep process and a key feature of a tumor lesion that has major impact on the biologic behavior of the lesion. Inhibition of angiogenesis is a new cancer treatment strategy that is now widely investigated clinically. Researchers have begun to search for objective measures that indicate pharmacologic responses to antiangiogenic drugs. Therefore, there is a great interest in techniques to visualize angiogenesis in growing tumors noninvasively. During the past decade, several markers of angiogenesis have been identified and specific tracers targeting these markers have been developed. In this review, an overview on the currently used nuclear imaging probes for noninvasive visualization of tumor angiogenesis is given.

\(\alpha_\beta_\gamma \) Integrin Receptor

The \(\alpha_\beta_\gamma \) integrin, also referred to as the vitronectin receptor, belongs to the integrin receptors. Integrins are a family of heterodimeric transmembrane glycoproteins that function in cellular adhesion, migration, and signal transduction. The term “integrin” was derived from the ability of these proteins to link the extracellular matrix (ECM) proteins with the intracellular cytoskeleton.11 Each member of this family consists of two noncovalently bound transmembrane polypeptide subunits, alpha and beta. Integrins have a large extracellular domain, which binds extracellular ligands, a transmembrane domain, and a relatively small intracellular domain responsible for interaction with the cytoskeleton and intracellular signaling pathways. To date, 18 alpha- and 8 beta-subunits have been identified, which associate selectively to form at least 24 different integrins. The unique combinations of alpha- and beta-subunits determine which ECM ligands are recognized by a cell. Binding of ECM ligands to integrins triggers interactions between several signaling molecules in close vicinity to the extracellular and cytoplasmic regions of the integrin receptor.12,13 Integrin-mediated cell adhesion may affect the cell-cycle kinetics or may cause anchorage-dependent cell death or anoikis.14,15

The alpha-v-subunit can associate with various integrin beta-subunits. At present, there are at least three distinct beta-subunits known, which associate with the alpha-v-subunit, namely, \(\beta_1 \), \(\beta_3 \), and \(\beta_5 \). Integrin \(\alpha_\beta_\gamma \) is expressed on a variety of cell types, including osteoclasts, vascular smooth muscle cells, and endothelial cells. In addition, \(\alpha_\beta_\gamma \) integrin is expressed on the cell membrane of various tumor cell types, such as ovarian cancer, neuroblastoma, breast cancer, melanoma, and others. Further, integrin \(\alpha_\beta_\gamma \) is minimally expressed on normal quiescent endothelial cells, but significantly upregulated on activated endothelial cells during angiogenesis.16 \(\alpha_\beta_\gamma \) integrin expressed on endothelial cells modulate cell migration and survival during angiogenesis, whereas \(\alpha_\beta_\gamma \) integrin expressed on carcinoma cells potentiate metastasis by facilitating invasion and movement across blood vessels.

Integrin \(\alpha_\beta_\gamma \) binds extracellular matrix proteins (e.g., vitronectin, fibrinogen, laminin, and collagen) through exposed tripeptide arginine-glycine-aspartic acid (RGD) amino-acid moieties.17 Several research groups have investigated the potential of RGD-containing peptides to target \(\alpha_\beta_\gamma \) expressed in tumors with radionuclides. It was found that the cyclic pentapeptide, cyclo(Arg-Gly-Asp-d-Phe-Val), having an IC\textsubscript{50} value in the lower nanomolar range, was a 100-fold better inhibitor of cell adhesion to vitronectin, compared to the linear variant.18,19 It was found that besides the essential RGD sequence, a hydrophobic amino acid in position 4 increases the affinity for \(\alpha_\beta_\gamma \).20 Based on this finding, Haubner et al. designed five peptides that could be radioiodinated by introducing a tyrosine residue. Two of these peptides, cyclo([Arg-Gly-Asp-d-Tyr-Val] and cyclo([Arg-Gly-Asp-d-Phe-Tyr]) (designated as P1 and P4, respectively), were studied in vivo.21 The biodistribution of the radioiodinated peptides was studied in nude mice with various subcutaneous (s.c.) human tumors (M21 melanoma, MacCaF mammary carcinoma, and osteocarcoma). The peptides rapidly cleared from the blood; blood levels were lower than 1 %ID/g (percent injected dose per g) as early as 10 minutes postinjection (p.i.). In the M21 melanoma model, the tumor uptake peaked at 10 minutes p.i. (1.12 ± 0.98 %ID/g) and decreased to 0.12 ± 0.04 %ID/g at 2 hours p.i. However, both peptides cleared via the hepatobiliary route and revealed relatively high hepatic uptake, especially at early time points (~5 %ID/g, 1 hour p.i.). Therefore, the pharmacokinetics of this first-generation radiohologenated RGD peptides were improved by conjugating them with sugar amino acids. A glucose-based sugar amino acid (SA1) was conjugated to the epsilon-amino function of lysine in the pentapeptide. Compared to the noncarbohydrated radioiodinated P4, the resulting iodine-labeled glucopeptide, 3-[125I]iodo-d-Tyr-cyclo([Arg-Gly-Asp-d-Tyr-Lys](SA1))([125I]-Gluco-RGD) showed reduced activity accumulation in the liver, an initially increased activity concentration in the blood, and an increased uptake and retention in the tumor.22 Based on these data, a galactose-based sugar amino acid (SA2) was conjugated with cyclo([Arg-Gly-Asp-d-Phe-Lys], allowing prosthetic group labeling.23,24 Due to the low lipophilicity of the small propionyl moiety, 4-nitrophenyl-2-[18F]fluoropropionate ([18F]NFP) was used for 18F-labeling. The resulting \([18F]Galacto-RGD\) was the first radiotracer applied in patients. The conjugation of the DTPA-moiety in the pentapeptide, cyclo([Arg-Gly-Asp-d-Tyr-Lys]), via the epsilon group of the lysine residue also made the peptide more hydrophilic and facilitated renal clearance, in contrast to the non-DTPA-conjugated radioiodinated peptide, which is cleared predominantly via the hepatic route.24

The hydrophilicity of peptides can also be enhanced by linking them to polyethylene glycol (PEG) chains, an approach called PEGylation. Chen et al. coupled PEG-moieties to RGD-containing peptides. Radioiodinated, 125I-, and 64Cu-labeled derivatives were studied and demonstrated different effects of PEGylation on the pharmacokinetics, tumor uptake, and retention of the RGD peptides. This could be due to the nature of the lead structure and the size of the PEG-moiety. For example, 125I-RGD-mPEG [mPEG molecular weight (MW) = 2000] demonstrated higher activity concentration in liver and intestines, compared to 125I-RGD. In addition, the PEGylated analog showed faster blood clearance, lower
tumor uptake, but improved tumor retention, compared to 125I-RGD. In contrast, the PEGylated RGD peptide, 64Cu-DOTA-PEG-RGD (PEG MW = 3400), showed lower uptake in liver and intestine with no effect on tumor uptake and retention, compared to 64Cu-DOTA-RGD.26 A direct comparison in mice with s.c. U87MG glioblastoma demonstrated that [18F]FB-PEG-RGD (PEG MW = 3400) had significantly improved tumor retention relative to [18F]FB-RGD without compromising hepatic and renal clearance of activity.27

Recently, a 99mTc-labeled RGD-containing peptide (NC100692) was evaluated in ischemic models and showed high uptake in areas of neovascularization with αvβ3 integrin overexpression.28 In these models, it was shown that NC100692 binds to αvβ3-expressing endothelial cells in the regions of angiogenesis.29

Clinical studies

As described above, [18F]Galacto-RGD was the first radiotracer applied in patients and could successfully image αvβ3 expression in human tumors with good tumor-to-background ratios.30 Further biodistribution and dosimetry studies confirmed rapid clearance of [18F]Galacto-RGD from the blood pool and, primarily, renal excretion.31–33 It has been shown that molecular imaging of αvβ3 expression, with [18F]Galacto-RGD in humans correlated with αvβ3 expression, as determined by immunohistochemistry.34 In another study, the tracer uptake of [18F]FDG and [18F]Galacto-RGD in patients with non-small-cell lung cancer (NSCLC; n = 10) and various other tumors (n = 8) was compared (Fig. 1), indicating that [18F]FDG uptake in tumor lesions did not correlate with [18F]Galacto-RGD uptake. These results showed that αvβ3 expression and glucose metabolism are not closely correlated in tumor lesions, and that, consequently, [18F]FDG cannot provide similar information as [18F]Galacto-RGD.35

The second radiotracer that was applied in patients was 99mTc-NC100692. A clinical study was performed to provide an initial indication of the efficacy and safety of imaging malignant breast tumors.36 Nineteen (19) of 22 tumors were detected with this radiotracer. In an additional study,

FIG. 1. [18F]FDG-PET of a patient with non-small-cell lung cancer (NSCLC) showed intense tracer uptake in the lesion (A). PET imaging of αvβ3 integrin expression with [18F]Galacto-RGD showed heterogeneous tracer uptake in the lesion, with a different pattern, compared to the [18F]FDG-PET (B). PET/CT (C) and PET/MRI (T2w) image fusion (D) are useful for a good correlation of anatomic and biologic information. FDG, Fluorodeoxyglucose; PET, positron emission tomography; CT, computed tomography; MRI, magnetic resonance imaging.
Multimeric RGD peptides

To improve the efficiency of tumor targeting and to obtain better in vivo imaging properties, multimeric RGD peptides were synthesized and characterized. The first cyclic RGD multimers that were developed were E[c(RGDfK)]₂-based dimers (Fig. 2). Subsequently, the Stanford group reported the use of E[c(RGDyK)]₂-based dimers labeled with ⁶⁴Cu or ¹⁸F for positron emission tomography (PET) imaging. In in vivo studies, the resulting [¹⁸F]FB-c(RGDyK)]₂ showed significantly higher tumor uptake and prolonged tumor retention, compared with its monomeric analog, [¹⁸F]FB-c(RGDyK). In addition, the dimeric peptide had a predominant renal excretion, whereas the monomeric analog was excreted primarily through the biliary route.

The group in Munich developed the pentapeptide cyclo(-RGDfE-) for multimerization of RGD peptides. In their studies, glutamic acid was chosen as the fifth amino acid, since it provides a free carboxylic group for peptide-coupling reactions. cyclo(-RGDfE-) and was linked to either amino-hexanoic acid (Ahx) or to heptaethylene glycol (HEG) as spacer molecules. Subsequently, these monomeric units were bridged via lysine or lysine tree to form dimeric and tetrameric RGD peptides. The final ¹⁸F-labeling step was carried out by oxime ligation, for example, by using 4-[¹⁸F]fluorobenzaldehyde as the ¹⁸F-labeled synthon. In in vitro studies, the multimers showed significantly increased affinity to α₃β₃ monomer < dimer < tetramer. For example, α₃β₃-affinities of the cyclo(-RGFDE-) mono-, di-, and tetramer containing HEG spacer units were increased by a factor of 10 with each duplication of binding units (IC₅₀ = 20, 3.0, and 0.2 nM, respectively for the mono-, di-, and tetramer). In mice with α₃β₃-positive M21-melanoma, the tumor uptake of the ¹⁸F-labeled RGD peptides increased in the series monomer < dimer ≈ tetramer, but due to lower uptake of the tetramer in all other tissues, compared to the dimer, tumor-to-organ ratios were highest for the ¹⁸F-labeled RGD-tetramer, leading to a significantly improved imaging.

Although the potential benefits of multivalent probes are generally accepted, the exact mechanism of the enhanced accumulation in α₃β₃-expressing tumors is not exactly clear. It is unlikely that these multimers bind several α₃β₃ integrins simultaneously, because the distance between the RGD units is very short. Statistical rebinding is the most likely explanation for the enhanced affinity of the multimers, compared to their monomeric counterparts. Due to the incorporation of Ahx- or HEG-spacers, the distance between the cyclo(RGFDE) moieties might be long enough to bind adjacent α₃β₃ integrins simultaneously and thus multivalently. Recently, Liu et al. extended the distance between two RGD motifs by PEG₄ linkers, resulting in a higher affinity and a significantly higher tumor uptake, compared with the dimer without linkers.

During recent years, various other RGD dimers, tetramers, and even octamers labeled with different radionuclides have been developed and studied in vitro and in vivo. Generally, the results from several research groups have demonstrated that increasing the peptide multiplicity can significantly enhance the integrin α₃β₃-binding affinity of RGD peptides and improve tumor-targeting capability of the radiotracer (Fig. 3). In addition, the incorporation of the right spacer between the RGD motifs can enhance the affinity.

FIG. 2. Tumor uptake of ¹¹¹In-DOTA-E-c(RGDfK), ¹¹¹In-DOTA-E-[c(RGDfK)]₂, and ¹¹¹In-DOTA-E[c(RGDfK)]₂ at 2, 8, and 24 hours after injection in athymic mice with subcutaneous SK-RC-52 tumors. Results are reflected as mean injected dose per gram ± standard deviation. Values were analyzed by using one-way analysis of variance. *p < 0.05; **p < 0.01; ***p < 0.005. p-values refer to differences in tumor uptake between ¹¹¹In-DOTA-E-c(RGDfK) and ¹¹¹In-DOTA-E-[c(RGDfK)]₂ or differences in tumor uptake between ¹¹¹In-DOTA-E-[c(RGDfK)]₂ and ¹¹¹In-DOTA-E[c(RGDfK)]₂.

FIG. 3. Tumor-to-blood ratios of ¹¹¹In-DOTA-E-c(RGDfK), ¹¹¹In-DOTA-E-[c(RGDfK)]₂, and ¹¹¹In-DOTA-E[c(RGDfK)]₂ at 2, 8, and 24 hours after injection in athymic mice with subcutaneous SK-RC-52 tumors. Each bar represents the mean values ± standard deviation. Values were analyzed by using one-way analysis of variance. *p < 0.05.
NUCLEAR IMAGING OF TUMOR ANGIOGENESIS 641

for α5β3 and improve the tumor uptake. Among mono-, di-, tetra-, and octameric cyclo(RGDfK)-based peptides, the octamer had the highest α5β3 affinity and, usually, the highest tumor uptake. From this point of view, further increase of RGD peptide multiplicity may result in the formation of oligo- or polymeric cyclic RGD peptides with improved integrin α5β3-binding affinity and tumor targeting efficacy.

Integrin α5β1

The α5β1 integrin, also known as very late antigen-5 (VLA-5, fibronectin receptor), is the only integrin heterodimer that contains the α5-subunit.61–63 This integrin functions as a receptor for fibronectin and certain other ECM proteins.62 Integrin α5β1 is poorly expressed on quiescent endothelium, but its expression is significantly upregulated on endothelium during tumor angiogenesis in both mice and humans.64 α5β1-binding ligands are currently under development. Radiolabeled high-affinity α5β1-binders might be more selective tracers to image angiogenic processes in animal models and patients than α5β3-binding tracers.

VEGF Receptors

VEGF is a key regulator of angiogenesis during embryogenesis, skeletal growth, and reproductive functions. The expression of VEGF is upregulated by environmental stress caused by hypoxia, anemia, myocardial ischemia, and tumor progression to initiate neovascularization.65 Via alternative mRNA splicing, the human VEGF-A gene gives rise to four isoforms having 121, 165, 189, and 206 amino acids (VEGF121, VEGF165, VEGF189, and VEGF206, respectively).66,67 Less-frequent splice variants have been identified more recently, including VEGF145,68 VEGF183,69 VEGF162,70 and VEGF160.71 The VEGF isoforms differ not only in their molecular mass, but also in their solubility and receptor-binding characteristics.

Initially, VEGF receptors were identified on the cell surface of vascular endothelial cells in vitro72,73 and in vivo.74,75 Subsequently, it was demonstrated that receptors for VEGF also occur on bone-marrow–derived cells, such as monocytes.76 VEGF binds two related receptor tyrosine kinases (RTKs), VEGFR-1 and VEGFR-2. Both receptors consist of seven Ig-like domains in the extracellular domain, a single transmembrane region, and a consensus tyrosine kinase sequence that is interrupted by a kinase-insert domain.77–79 VEGFR-1 binds VEGF with a higher affinity, compared to VEGFR-2 (Kd: 25 versus 75–250 pM).80–82 VEGFR-1 is considered to be a decoy receptor and VEGF-A only signals through VEGFR-2.83

Bevacizumab is a humanized variant of the anti-VEGF-A monoclonal antibody (mAb), A.4.6.1. It is directed against a common epitope encoded by exon 4, present on all VEGF-isoforms, and prevents interaction with VEGFR-1 and VEGFR-2.84 Nagengast et al. were the first to demonstrate noninvasive VEGF imaging from using radiolabeled bevacizumab. In their study, they demonstrated the potential of 89Zr- and 111In-bevacizumab as a specific VEGF tracer in nude mice with human SKOV-3 ovarian tumor xenografts.85 At the same time, our group showed specific imaging of VEGF-A expression from using 111In-bevacizumab in mice with s.c. human colon carcinoma xenografts LS174T (Fig. 4).86 We were the first to investigate the potential of 111In-labeled bevacizumab to image the expression of VEGF-A in tumors in cancer patients. In a study in colorectal cancer patients with liver metastases, the liver metastases in 9 of 12 patients were visualized with 111In-bevacizumab. In this study, the liver metastases were resected after scintigraphic imaging, allowing further immunohistochemical analysis. The VEGF-A expression in these resected liver metastases was determined by in situ hybridization and by enzyme-linked immunosorbent assay (ELISA). Surprisingly, no correlation was found between the level of antibody accumulation and expression of VEGF-A.

Cai et al. labeled VEGF121 with 64Cu via DOTA for PET imaging of VEGF expression.87 Small-animal PET imaging revealed rapid, specific, and prominent uptake of 64Cu-DOTA-VEGF121 in highly vascularized small U87MG human glioblastoma tumors (high VEGF expression), but significantly lower uptake in large U87MG tumors (low VEGF expression).

Matrix Metalloproteinases

Matrix metalloproteinases (MMPs) are a family of more than 20 extracellular proteins, which are able to degrade structural components of the extracellular matrix (ECM) and basement membranes with overlapping substrate specificity.88–90 MMPs are zinc- and calcium-dependent secreted or membrane-anchored endopeptidases. They play a role in several physiologic processes, including angiogenesis, embryonic development, tissue morphogenesis, and wound healing. However,

FIG. 4. Scintigraphic images of 3 athymic male mice with subcutaneous LS174T tumors immediately after injection and at 1, 3, and 7 days postinjection of 111In-bevacizumab (0.9 MBq/mouse, 3 μg/mouse).
MMP expression and activity are upregulated under many pathologic conditions, such as atherosclerosis, inflammatory processes, and angiogenesis in tumors. In epithelial tumors, most of the upregulated MMPs are expressed by the host stromal cells. Expression of MMPs is associated with the removal of the ECM barrier to allow cancer cells and endothelial cells to invade the tissue. A number of MMPs are specifically involved in angiogenesis, including MMPs 1, 2, 3, 9, and 14. There is a growing interest in the use of radiolabeled MMP ligands as tracers to image angiogenesis in tumors and their potential to metastasize possibly.

Using phage display libraries, Koivunen et al. found that cyclo(Cys-Thr-Thr-His-Trp-Gly-Phe-Thr-Leu-Cys) (CTT), a disulfide-bridged decapeptide, selectively inhibited MMP2 and 9. CTT reduced the migration of both human endothelial and tumor cells and prevented tumor growth and invasion in animal models. The Munich group derivatized, radioiodinated, and evaluated CTT as a tracer for imaging MMP2 and 9 activity. In in vivo studies, CTT demonstrated high lipophilicity, resulting in high liver and kidney uptake. In addition, this peptide showed low tumor uptake due to the poor stability of the 125I-d-Tyr-modified peptide. In another study, CTT was conjugated to the chelator, DOTA, for radiolabeling with 64Cu and subsequent microPET imaging of MMP2/9-expressing tumors. Although there was some evidence for selective uptake of 64Cu-DOTA-CTT by MMP2- and MMP9-expressing tumors, this tracer had a low affinity for MMP2 and MMP-9 and showed low accumulation in tumors.

The above-mentioned radiotracers are based on the application of peptides for the imaging of activated MMPs. Another approach is based on the use of small-molecule nonpeptidyl matrix metalloproteinase inhibitors (MMPIs). These nonpeptidyl tracers for MMP imaging were reviewed recently. The N-sulfonyl amino acid hydroxamates, CGS 25966 and CGS 27023A, appeared to be prominent lead structures for potential radiolabeled tracers. These lead compounds inhibit MMP1, 2, 3, and 9 by chelating the zinc ion of the enzyme active site with the hydroxamic acid moiety. Lately, the 123I-labeled CGS 27023A-derivative [123I]I-HO-CGS 27023A has been synthesized and was tested in vitro and in vivo. This radiotracer specifically visualized activated MMPs in vascular lesions developing after carotid artery ligation in apolipoprotein E-deficient (ApoE−/−) mice by means of planar scintigraphy. Then, research groups focused on the development of several PET-compatible, mainly 11C- and 18F-labeled, CGS 25966 and CGS 27023A derivatives. Preclinical evaluation of these tracers was either not successful or not published.

Recently, novel fluorinated MMP inhibitors, based on the lead structures, CGS 25966 and CGS 27023A, were synthesized and the inhibition potencies of the compounds were evaluated in vitro MMP inhibition assays for MMP2, 8, 9, and 13. With the exception of one compound, all fluorinated hydroxamates are still potent, broad-spectrum MMP inhibitors (IC50 ~ 0.5–527 nM). Subsequent biodistribution and metabolism studies of two radioligands ([18F]I and [18F]I) in wild-type (WT) mice demonstrated no tissue-specific accumulation, which may be an advantage in the study of activated and dysregulated MMPs. This new class of hydroxamate-based radioligands could evolve into tracers for noninvasive detection of activated MMPs.

Prostate-Specific Membrane Antigen

Prostate-specific membrane antigen (PSMA) is a transmembrane protein that is overexpressed in prostate cancer. The anti-PSMA antibody, capromab pendetide, labeled with 111In, is marketed as ProstScint, a U.S. Food and Drug Administered (FDA)-approved antibody preparation for the detection of nodal metastases in prostate cancer patients. However, this antibody is directed against an intracellular epitope of PSMA, which is considered a suboptimal target for antibody imaging. PSMA was also found to be expressed on the neovascular endothelium of most solid tumor types, while there is no expression on the endothelial cells of normal tissue.

J591 is a mAb directed against an epitope on the extracellular domain of PSMA. Previous studies have shown that J591 accumulated in metastatic prostate cancer lesions. In a recent phase I trial, the feasibility of targeting the neovascularature of a wide range of adenocarcinomas, using 111In-labeled humanized J591, was investigated. Patients with melanoma and cancers of the breast, colon, liver, and kidney were injected with 111In-J591. In these patients (n = 24) the antibody accreted in all known tumor sites. Seventeen (17) of 18 (94%) patients with soft tissue disease on standard scans showed uptake in the soft tissues on antibody scans, as did 6 of 6 patients with bone disease. These data show selective targeting of PSMA expressed on tumor endothelium. In-huJ591 has the potential to become a suitable tracer for imaging angiogenesis.

More recently, the first PET imaging agent for PSMA was synthesized in an extension of their previous work with the 11C-labeled DCMC, which binds to the active carboxy peptide site of PSMA. Mease et al. synthesized an agent containing 11C: 18F-DCFBC. 18F-DCFBC was demonstrated to localize in PSMA-expressing tumors in mice, allowing imaging by small animal PET.

ECM Proteins

A few antigens in the ECM have been identified that are preferentially expressed in the surroundings of newly formed blood vessels.

Extra domain B of fibronectin

Fibronectin is a large glycoprotein in the ECM. The extra domain B (ED-B) of fibronectin is a sequence of 91 amino acids, identical in mice, rats, and humans, that can be inserted into the fibronectin molecule at sites of tissue remodeling by alternative splicing. ED-B is specifically expressed around neovascular structures in tumors and other tissues undergoing angiogenesis, but is undetectable in the normal adult tissues. Using phage display technology, single-chain antibodies (scFv) directed against EDB have been isolated. The human single-domain antibody (scFv), L19, was shown to have subnanomolar affinity for ED-B.

Demartis et al. showed that radiiodinated scFv L19 selectively accumulated around tumoral blood vessels in a murine tumor model. Since the ED-B domain of fibronectin has an identical sequence in mouse and man, they suggested clinical utility for the scintigraphic detection of angiogenesis in vivo. Two (2) years later, it was shown by scintigraphic imaging that 125I-L19 selectively localized in tumor lesions of...
aggressive lung cancer as well as in liver metastases of colorectal cancer patients. More recently, the amino-acid sequence, (Gly)3-Cys-Ala, was inserted at the C-terminus of L19, resulting in the anti-ED-B scFv, named AP39, which could be labeled with 99mTc. The data revealed the feasibility of targeting ED-B fibronectin with 99mTc-labeled L19 in nude mice with s.c. teratocarcinoma tumors.

Subsequently, a series of different L19 formats were constructed, including dimeric scFv, a human bivalent “small immunoprotein” (SIP), and a complete human IgG. In comparing these different formats labeled with 125I and 123I, L19-SIP proved to be the most suitable tracer for imaging ED-B expression in tumors. In 2007, Rossin et al. described 76Br-L19, the first PET-imaging derivative of L19, for imaging of neovasculature in xenograft-bearing nude mice. Besides clear tumor targeting, 76Br-L19-SIP also showed persistent activity in blood, stomach, and several other normal organs, most probably due to in vivo debromination.

Extra domain C of tenascin

Tenascin is an ECM component. Tenasin-C, containing the extra domain C, is a splice variant of tenasin. Overexpression of this splice variant has been reported in high-grade astrocytomas, with a prominent pattern of staining around tumor neovasculature. In contrast, domain C was undetectable in normal human tissues and by immunohistochemistry and even at the level of Northern blot analysis.

Recently, Silacci et al. reported that the extra domain C is strongly expressed in the majority of lung cancers, with a vascular and stromal pattern of expression. Using antibody phage technology, they have generated a high-affinity human antibody fragment (G11), which was shown to selectively target tenasin-C in s.c. U87 gliomas in mice. These results pave the way for the clinical development of the G11 antibody for imaging angiogenesis.

Magic Roundabout (Robo-4)

Magic roundabout (Robo-4) is the fourth recently identified member of the roundabout receptor family. Robo-1–3 are highly expressed in the nervous system and are involved in axon guidance. The specificity of Robo-4 expression, however, is unique, compared with the other three members; it is highly expressed in embryonic vasculature, but not in the nervous system. Robo-4 induces endothelial migration and regulates angiogenesis. Some reports suggest that Robo-4 is expressed exclusively in tumor neovascular endothelium, and currently, Robo-4 is considered a highly specific marker of tumor endothelium. The ligand of Robo-4 has not been identified yet. It does not bind to slit2, the common ligand of Robo-1–3. Further studies are needed to identify the ligands of Robo-4. Based on these ligand(s), a tracer could be developed that can image the expression of Robo-4 in tumors.

Conclusions

Clinical trials of angiogenic drugs are challenging because there is no established method to monitor the effect of these drugs. It has been suggested that the maximum tolerated dose of angiogenic drugs is not necessarily the most effective. Establishing the optimal dose of an antiangiogenic agent, based on tumor-size measurements or on time to disease progression, may take months or years. Further, in patients, tumors typically develop resistance to antiangiogenic drugs after 6–12 months of treatment. Surrogate markers of angiogenesis are considered to be useful not only for the stratification of patients for treatment with antiangiogenic drugs, but also to determine optimal dosing, early clinical benefit, and the development of resistance. Biomarkers could also become essential to justify the costs of targeted therapies by increasing the likelihood of benefit to a level that is acceptable to patients and clinicians.

Numerous markers of tumor vasculature have been identified, but only a few radiotracers of angiogenesis have been tested clinically. The most extensively studied marker of angiogenesis is the integrin, $\alpha_v\beta_3$. For this marker, the single-photon emission computed tomography-tracer, 99mTc-NC100692, and the PET tracer, 18F-galacto-RGD, have been successfully tested in humans.

Other targets exclusively expressed on activated endothelial cells may eventually be better targets for imaging angiogenesis. Of the identified markers, PSMA, Robo-4, and $\alpha_v\beta_3$ seem to be specifically expressed on tumor neovasculature.

In conclusion, a few radiotracers for imaging angiogenesis in tumors have been tested in humans. The role of these tracers in assessing the response to antiangiogenic therapies has yet to be assessed.

Acknowledgments

The authors would like to thank Ambros J. Beer, Ph.D., at the Technische Universität München for providing the PET and the PET/CT-, PET/MRI-fusion images.

Disclosure Statement

No competing financial interests exist.

References

About the Authors

Ingrid Dijkgraaf (Epe, 1979) obtained her MSc in 2002 with specialization in Organic Chemistry at Wageningen University in the Netherlands. From 2002 until 2006, she was a junior investigator at the Department of Medicinal Chemistry and Chemical Biology at Utrecht University and at the Department of Nuclear Medicine at the Radboud University Nijmegen Medical Center. Here, she worked on the synthesis and biologic evaluation of alpha-v-beta-3-binding peptides and peptidomimetics. After obtaining her PhD, she was a postdoctoral fellow (2006–2009) at the Department of Nuclear Medicine at the Technical University of Munich under the supervision of Prof. Dr. Hans-Jürgen Wester. In Munich, she studied the synthesis and in vitro and in vivo evaluation of chemokine receptor-binding ligands. Currently, she works as a postdoc in the group of Prof. Dr. Otto C. Boerman at the Radboud University Nijmegen Medical Center.

Otto C. Boerman (Lochem, 1959) studied Chemistry at the University of Nijmegen in The Netherlands. From 1985 until 1990, he was a junior investigator at the Department of Cell Biology at the University of Nijmegen, where he wrote his thesis, entitled “Development and Application of Monoclonal Antibodies Against Ovarian Carcinoma-Associated Antigens.” As a fellow of the Dutch Cancer Society, he worked at the Center for Molecular Medicine and Immunology in Newark, New Jersey (1990–1991) on targeting cancer with radiolabeled monoclonal antibodies. Subsequently, he worked at the Biological Response Modifiers Program of the National Institutes of Health in Frederick, MD (1991–1992) on the in vivo effects of IL-7. When he returned to The Netherlands in 1992, he started his preclinical research group at the Department of Nuclear Medicine of the Radboud University Nijmegen Medical Center. In his group, preclinical studies focus on radionuclide imaging with radiolabeled antibodies and peptides. In 2007, he became a full professor in Radiochemistry at the Radboud University Nijmegen. Prof. Dr. Boerman is a member of the editorial board of The Journal of Nuclear Medicine and the European Journal of Nuclear Medicine and Molecular Imaging. He is a (co-)author of more than 250 peer-reviewed scientific publications.
This article has been cited by:

2. Alexander M. Szabo, Nicholas R. Howell, Paul Pellegrini, Ivan Greguric, Andrew Katsifis. 2012. Development and validation of competition binding assays for affinity to the extracellular matrix receptors, #v#3 and #IIb#3 integrin. *Analytical Biochemistry*. [CrossRef]

3. Ute Mühlhausen, Dorde Komljenovic, Maren Bretschi, Karin Leotta, Michael Eisenhut, Wolfhard Semmler, Tobias Bäuerle. 2011. A novel PET tracer for the imaging of #v#3 and #v#5 integrins in experimental breast cancer bone metastases. *Contrast Media & Molecular Imaging* 6, 6, 413-420. [CrossRef]

