The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/81456

Please be advised that this information was generated on 2019-01-05 and may be subject to change.
Subcellular Dynamics of Somatostatin Receptor Subtype 1 in the Rat Arcuate Nucleus: Receptor Localization and Synaptic Connectivity Vary in Parallel with the Ultradian Rhythm of Growth Hormone Secretion

Thomas Stroh,1,2 Martine R. van Schouwenburg,1,2 Alain Beaudet,1,2 and Gloria S. Tannenbaum1,2,3,4

1Department of Neurology and Neurosurgery and 2Montreal Neurological Institute, McGill University, Montréal, Québec H3A 2B4, Canada, 3Department of Pediatrics, McGill University, Montréal, Québec H3H 1P3, Canada, and 4Montreal Children’s Hospital Research Institute, Montréal, Québec H3H 1P3, Canada

Growth hormone (GH) secretion in male rats exhibits a 3.3 h ultradian rhythm generated by the reciprocal interaction of GH-releasing hormone (GHRH) and somatostatin (SRIF). SRIF receptor subtypes sst1 and sst3 are highly expressed in GHRH neurons of the hypothalamic arcuate nucleus (ARC). We previously demonstrated an ultradian oscillation in binding of SRIF analogs to the ARC in relation to GH peaks and troughs. Here we tested the hypothesis that these ultradian changes in SRIF binding are due to differential plasma membrane targeting of sst1 receptors in ARC neurons using immunocytochemistry and electron microscopy. We found that 87% of sst1-positive ARC neurons also synthesized GHRH. Subcellularly, 80% of sst1 receptors were located intracellularly and 20% at the plasma membrane regardless of GH status. However, whereas 30% of the cell-surface sst1 receptors were located perisynaptically or subsynaptically following exposure to high GH secretion, this fraction was increased to 42% following a GH trough period (p = 0.05). Furthermore, the relative abundance of symmetric and asymmetric synapses on sst1-positive dendrites also varied significantly, depending on the GH cycle, from approximately equal numbers following GH troughs to 70:30 in favor of symmetric, i.e., inhibitory, inputs after GH peaks (p < 0.02). These findings suggest that postsynaptic localization of sst1 receptors and synaptic connectivity in the ARC undergo pronounced remodeling in parallel with the GH rhythm. Such synaptic plasticity may be an important mechanism by which sst1 mediates SRIF’s cyclical effects on ARC GHRH neurons to generate the ultradian rhythm of GH secretion.

Introduction

The secretion of growth hormone (GH) in male rodents exhibits an endogenous ultradian rhythm with major bursts of GH secretion occurring at regular 3.3 h intervals followed by trough periods of very low or undetectable basal plasma GH levels (Tannenbaum and Martin, 1976). This rhythm is generated through the interaction of two hypothalamic neuropeptides, GH-releasing hormone (GHRH) and somatostatin (SRIF) in the hypophysis and the hypothalamic arcuate nucleus (ARC) (Tannenbaum and Epelbaum, 1999). In the male rat, these two neurohormones are released in reciprocal 3–4 h cycles from the median eminence into the hypothypeal portal circulation to act upon somatotropes (Tannenbaum and Ling, 1984; Plotsky and Vale, 1985). Furthermore, we have postulated that SRIF is also released into the hypothalamus with a 3.3 h periodicity (Wagner et al., 1998).

SRIF acts via a family of G-protein-coupled receptors (GPCRs), sst1–sst5, which are differentially distributed throughout the CNS (Csaba and Dournaud, 2001; Olias et al., 2004). ARC GHRH neurons express high levels of sst, and sst2a mRNA (Tannenbaum et al., 1998). Both receptor proteins are present in the ARC, whereas other SRIF receptor subtypes are of low abundance in this area (Hervieu and Emson, 1998; Stroh et al., 2006; Kumar, 2007) (but see also Helboe et al., 1998), consistent with the involvement of sst1 and sst2 in the hypothalamic regulation of GH secretion (Guo et al., 1996; Zheng et al., 1997; Zhang et al., 1999; Lanneau et al., 2000).

In parallel with the ultradian GH secretion cycle, we found that binding of radiolabeled, non-receptor subtype-selective SRIF analogs to the ARC also oscillates in an ultradian manner; thus, SRIF binding is highest during peaks in GH secretion and lowest during GH troughs (Tannenbaum et al., 1993). This may be due to differential plasma membrane targeting and cell-surface maintenance of SRIF receptors. Indeed, the sst2a receptor subtype rapidly internalizes in response to endogenous SRIF and...
exogenously applied agonists in neurons in which it previously localized to the somatodendritic plasma membrane (Dournaud et al., 1998; Csaba et al., 2001; Csaba et al., 2007). However, little is known about mobilization and regulation of sst1 in hypothalamic neurons in vivo.

In the present study, we hypothesized that the increase in SRIF binding to the ARC during peaks in GH secretion may be due, at least in part, to an increase in sst1 receptors at the cell surface of GHRH neurons. Moreover, mounting evidence indicates that ARC neurons may respond to changing physiological status of the organism with changes in synaptic connectivity (Parducz et al., 2003). Therefore, we further hypothesized that changes in SRIF receptor targeting in the ARC may be accompanied by variations in the synaptic connectivity of the nucleus. To test these hypotheses, we examined, by electron microscopic immunohistochemistry, the cellular and subcellular localization of sst1 receptors in the ARC of male rats at times associated with peaks and troughs of the GH secretion cycle and studied the synaptic contacts of sst1-positive ARC neurons at the same time points.

Materials and Methods

Animals and experimental procedures. Adult male Sprague Dawley rats (200–250 g; Charles River Canada) were individually housed in an isolated room under a 12 h light, 12 h dark cycle (lights on: 6:00 A.M.) at 22 ± 1°C and constant air humidity. Purina rat chow (Ralston Purina) and tap water were available ad libitum. Chronic intravenous cannulae were implanted in the external jugular vein under sodium pentobarbital anesthesia (50 mg/kg, i.p.) using a previously described technique (Tannenbaum and Martin, 1976). After surgery, the rats were directly placed in isolation test chambers with food and water available ad libitum until body weight returned to preoperative levels (usually within 5–7 d, n = 6 animals).

On the day of the experiment, blood samples were withdrawn every 15 min from unanesthetized, free-moving rats starting at 9:00 A.M. until either 11:00 A.M. or 1:00 P.M., when they were anesthetized with an intravenous injection of sodium pentobarbital (35 mg/kg). The times of 11:00 A.M. and 1:00 P.M. were chosen because we previously established that they correspond to typical peak and trough periods of GH secretion, respectively, in male rats maintained under the above photoperiodic conditions (Tannenbaum and Martin, 1976; Tannenbaum and Ling, 1984). One animal each was fixed for electron microscopy by transaortic perfusion (details below) at either 11:00 A.M. or 1:00 P.M. so that in each experiment a pair of animals fixed at these times was compared with each other. All blood samples were immediately centrifuged, and the plasma was separated and stored at −20°C for subsequent GH assay. To avoid hemodynamic disturbance, the red blood cells were resuspended in normal saline and returned to the animal after removal of the next blood sample.

Additional rats from the same source were housed under the same conditions but not cannulated. They were fixed in the morning (between 9:00 and 10:00 A.M.) by perfusion with 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB) for immunohistochemical detection of sst1, and vesicular neurotransmitter transporters and for colocalization studies of sst1, with the vesicular transmitter transporters (n = 3) or GHRH (n = 3) by immunofluorescence. No blood samples were withdrawn from these animals. All animal procedures were performed in compliance with the guidelines of the Canadian Council on Animal Care and the McGill University Animal Care Committee.

GH assay. Plasma GH concentrations were measured in duplicate by double-antibody RIA using materials supplied by the National Institute of Diabetes and Digestive and Kidney Diseases Hormone Distribution Program. The averaged plasma GH values are reported in terms of the rat reference preparation (rGH RP-2). The standard curve was linear between 0.62 and 160.0 ng/ml; the least detectable concentration of plasma GH under the conditions used was 1.2 ng/ml. All samples with values of >160.0 ng/ml were re assayed at dilutions ranging from 1:2 to 1:10. The intra-assay and interassay coefficients of variation were 7.7% and 10.7% respectively, for duplicate samples of pooled plasma containing a mean concentration of 60.7 ng/ml.

Double immunofluorescence. Adult male Sprague Dawley rats (200–250 g) were anesthetized with ketamine/xylazine (80/10 mg/kg, i.p.) and perfused transaurically with a freshly prepared solution of 4% PFA in 0.1 M PB, pH 7.4. Brains were rapidly removed, cryoprotected overnight at 4°C in 0.1 M PB containing 30% sucrose, and frozen for 1 min in isopentane at −40°C.

Coronal sections (30 μm thick) were cut on a freezing microtome throughout the rostrocaudal extent of the hypothalamus from the preoptic area to the mammillary region and collected in 0.1 M PB. For immunofluorescent double labeling of sst1, with vesicular neurotransmitter receptors, sections were washed twice with 0.1 M Trizma buffer-saline (TBS), pH 7.4, and reincubated for 30 min at room temperature (RT) in a blocking solution containing 3% normal goat serum (NGS) in TBS. Subsequently, they were incubated overnight at 4°C in a mixture of rabbit anti-sst1, and either guinea pig anti-vesicular glutamate transporter subtype 2 (VGluT2) or mouse anti-vesicular GABA transporter protein (VGAT) appropriately diluted in TBS containing 0.05% Triton X-100 and 0.5% NGS (for sources and dilutions, see Table 1). Following rinsing with TBS, bound primary antibodies were visualized by incubation in a mixture of Alexa 594 goat anti-rabbit IgG, detecting the anti-sst1, and either Alexa 488 goat anti-guinea pig IgG or Alexa 488 goat anti-mouse IgG for the detection of anti-VGluT2 or VGAT, respectively (all diluted 1:800 in TBS, respectively; all purchased from Invitrogen). After final rinsing the sections were mounted on chrome-alum-coated slides using Aquapolymount (Polysciences). For GHRH/sst1 double labeling (for antibody provenance and dilutions, see Table 1), a sequential staining procedure was adopted and NGS was replaced with normal donkey serum in the immunostaining protocol. Briefly, sections were first incubated overnight at 4°C with sheep anti-GHRH. The following day, they were rinsed, incubated for 45 min at RT with Cy2 donkey anti-sheep IgG (Jackson Immunoresearch) diluted 1:200 in TBS and subsequently incubated overnight at 4°C with rabbit anti-sst1. The following day, they were rinsed, incubated for 45 min at RT with Alexa 594 donkey anti-rabbit IgG (Invitrogen), rinsed again, and mounted onto object slides using AquaPolymount. Two-color confocal z-stacks were acquired on a Zeiss LSM 510 in channel mode (Zeiss Canada). Three-dimensional processing was performed using Volocity release 4.0 (Improvision). The resulting images were adjusted for brightness and contrast using Photoshop CS2, and final composites were created in MS Powerpoint 2003.

Stereological analysis of GHRH/sst1, double-labeled cell populations in the ARC. For unbiased estimates of the GHRH- and sst1- positive cell populations and the proportion of double-positive cells, sections were analyzed by widefield fluorescence microscopy on a Nikon Eclipse E800 microscope (Nikon Instruments) equipped with an x/y/z-motorized stage, a color CCD camera (Optronics, MicroFire 599808), and appropriate filter sets for Cy2 (excitation: bandpass 480/40 nm; dichroic mirror: long-pass 505 nm; emission: bandpass 535/50 nm) and Alexa 594 (excitation: bandpass 560/55 nm; dichroic mirror: long-pass 595 nm; emission: 645/75 nm).

GHRH- and sst1-positive neurons were mapped and counted using the Optical Fractionator probe of StereoInvestigator (version 8.0, MicroBrightField) for systematic random sampling. Images were acquired and
counts were performed using a 100× oil-immersion objective (numerical aperture 1.4). Counts were made through levels separated by 180 μm throughout the rostrocaudal extent of the ARC from three individual brains. On each section, the outline of the ARC on both sides of the third ventricle was drawn to define two regions of interest (ROIs) per section, which were both analyzed. For the first series of sections, counts were performed using a counting frame size of 25 × 25 μm and a variable grid size to yield five counting frames per ROI. Based on the results from this pilot study, the final counting frame size was adapted to 50 × 50 μm, and the grid size was fixed at 170 × 90 μm throughout the analysis, which yielded 5–10 sampling sites per ROI and assured a suitable sample size. The average mounted section thickness ranged from 16 to 26 μm across section series, and di-sector depth ranged from 14 to 24 μm. Cells were counted as their top came into focus beneath the top of the disector. The precision of the population estimates was verified using Gundersen’s coefficient of error (CE, m = 1) (Gundersen et al., 1999). The CEs obtained from three brains ranged from 0.06 to 0.07 for the total number of sst1-positive cells, from 0.05 to 0.06 for the total number of GHRH-positive neurons and from 0.06 to 0.08 for sst1/GHRH dually positive cells. Means and SEs were calculated using Graph Pad Prism 4.03 (Graph Pad Software).

Electron microscopy. Sections were processed for electron microscopic immunostaining using a preembedding procedure as described previously (Dournau et al., 1998; Boudin et al., 2000; Stroh et al., 2006). Adult male Sprague Dawley rats (250–325 g) were anesthetized with a preembedding procedure as described previously (Dournau et al., 1998; Boudin et al., 2000; Stroh et al., 2006). Adult male Sprague Dawley rats (250–325 g) were anesthetized with a preembedding procedure as described previously (Dournau et al., 1998; Boudin et al., 2000; Stroh et al., 2006).

A solution of 1% sodium borohydride in PB for 30 min to neutralize free aldehyde groups. Following extensive rinsing with PB, they were cryoprotected for 30 min by immersion in a mixture of 25% sucrose and 3% glutaraldehyde in PB, pH 7.4. Brains were rapidly removed from the skull and postfixed for 30 min at 4°C in the 2% PFA solution. Sections (50 μm thick) of the mediobasal hypothalamus were cut on a vibratome, collected in 0.1 M PB, and incubated in a solution of 1% sodium borohydride in PB for 30 min to neutralize free aldehyde groups. Following extensive rinsing with PB, they were cryoprotected for 30 min by immersion in a mixture of 25% sucrose and 3% glycerol in 0.1 M PB, rapidly frozen in isopentane at −60°C, briefly transferred to liquid nitrogen, and thawed in 0.1 M PB at room temperature. Sections thus permeabilized by freeze-thaw treatment were preincubated for 30 min in 0.1 M TBS, pH 7.4, containing 3% NGS and then incubated overnight at 4°C in rabbit sst1, N-terminal antiserum diluted 1:100 in TBS containing 0.5% NGS. After rinsing in 0.01 M PBS, sections were incubated for 2 h at RT in a 1:50 dilution of ultrasmall colloidal gold-conjugated goat anti-rabbit Ig (Aurion) in PBS containing 0.2% gelatin and 0.8% BSA. After several washes in PBS, sections were fixed for 10 min in 2% glutaraldehyde in PBS, washed in PBS, and rinsed twice in 0.2 M citrate buffer, pH 7.4. Immunogold particles were amplified through silver intensification by incubating the sections for 8 min with IntenSE M silver solution (GE Healthcare). The reaction was stopped by washing in citrate buffer and 0.1 M PB, pH 7.4. Subsequent to postfixation in 2% osmium tetroxide in 0.1 M PB for 40 min, the sections were dehydrated in graded ethanol and infiltrated with a propylene oxide/Epon 812 mixture (1:1 then 1:3, respectively). The mixture was replaced by 100% Epon 812 and incubated overnight at 4°C followed by placement between two sheets of acetate at 60°C for 24 h for flat embedding. Ultrathin sections (80 nm thick) were collected from the ARC (between the retrochiasmatic area anteriorly and the mamillary bodies posteriorly), counterstained with uranyl acetate/lead nitrate, and examined with a JEOL 100CX transmission electron microscope.

Data analysis. For analysis of the subcellular distribution of silver-enhanced gold particles, sections (~100 sections in total, collected from two blocks per animal) were randomly scanned, and each field exhibiting gold particles was photographed at an original magnification of 5000–10,000×. Additional sections from tissue incubated in the absence of primary antibodies were also analyzed in each animal to assess nonspecific background labeling. Negatives from electron microscopic photomicrographs were scanned at 1200 dpi resolution on an AGFA Drumscan T1200 scanner (AGFA Canada). The digitized negatives were processed using Adobe Photoshop 6.0 (Adobe Systems) and MS Powerpoint software (Microsoft) on an IBM-compatible computer. Gold particles were then counted and classified according to the type of tissue component, perikarya, terminals, or dendrites, with which they were associated. Dendrite- and cell body-associated grains were further classified as intracellular or membrane associated. Plasma membrane-associated grains overlying or located immediately adjacent to a postsynaptic membrane were counted as “postsynaptic” or “perisynaptic,” respectively, and regarded as synapse-associated. All morphometry was done using Neurolucida, release 7.0 (MicroBrightField).

Postsynaptic specializations in sst1-positive dendritic profiles were identified as open contours using different identifiers for asymmetric and symmetric contacts (respectively). Their lengths as well as the circumference of the dendritic profiles were also determined using Neurolucida.
with previous findings (Stroh et al., 2006), numerous sst₁-immunopositive neuronal cell bodies were distributed throughout the ARC (supplemental Fig. 1A, available at www.jneurosci.org as supplemental material). These sst₁-positive neurons were particularly densely concentrated in the ventral aspect of the nucleus, where GHRH-producing cells have been reported to be localized (Sasaki et al., 1994; Romero and Phelps, 1997; Tannenbaum et al., 1998). In addition, faint labeling of elongated and punctate structures, reminiscent of dendrites and terminals or cut dendritic profiles, was evident in between the cell bodies (supplemental Fig. 1A, available at www.jneurosci.org as supplemental material).

The ARC is a highly regulated hypothalamic area and receives dense synaptic input. To elucidate the neurochemical identity of synaptic terminals in this region, we incubated parallel sections of mediobasal hypothalamus with antibodies recognizing VGluT2 and VGAT, respectively. In agreement with previous reports (Hrabovszky et al., 2005; Kiss et al., 2006), single labeling for VGluT2 revealed dense VGluT2-positive punctate staining, likely excitatory terminals, throughout the ARC (supplemental Fig. 1B, available at www.jneurosci.org as supplemental material). Incubation of parallel sections with an antibody recognizing VGAT demonstrated that the ARC also exhibits densely packed VGAT-immunopositive punctate structures, presumably inhibitory synaptic terminals (supplemental Fig. 1C, available at www.jneurosci.org as supplemental material). In fact, VGAT immunoreactivity was so dense that the ARC stood out strikingly from the surrounding hypothalamus (supplemental Fig. 1C, available at www.jneurosci.org as supplemental material). High-magnification micrographs show that both vesicular neurotransmitter transporter antibodies labeled bead-like structures that tended to encircle what appeared to be neuronal cell bodies in the ARC (supplemental Fig. 1B,C, insets, available at www.jneurosci.org as supplemental material).

Double immunofluorescence for sst₁ and either VGluT2 or VGAT analyzed by confocal microscopy revealed that sst₁-positive neurons in the ventral ARC appear to be contacted both by numerous VGAT-positive, putatively GABAergic (Fig. 2A–C) and abundant VGluT2-positive, likely glutamatergic, terminals (Fig. 2D–F).

Immunofluorescence colocalization of sst₁ and GHRH within ARC neurons
To show that sst₁-positive neurons are not only located in the area of the ARC corresponding to the location of GHRH neurons but are also immunoreactive for the neurohormone we double stained sections of mediobasal hypothalamus using our rabbit sst₁ antiserum and a sheep antiserum against rat GHRH [GRF(1–29)NH₂], also previously developed and characterized by us (Tannenbaum et al., 1990). In keeping with our immunohistochemical results, we found sst₁-positive neurons throughout the ventral ARC (Fig. 3A), although the labeling was less intense than immunoperoxidase. In addition, moderate numbers of GHRH-immunopositive neurons were distributed in the same area as the

Results
GH secretion profiles
Figure 1, A and B, illustrates the spontaneous GH secretory profiles of two representative pairs of animals, killed either at the end of a GH trough period (Fig. 1A) or following a GH secretory episode (Fig. 1B). The typical pulsatile pattern of GH release was observed with high-amplitude GH peaks occurring at the predicted time. The mean AUC for the 2 h period before the animals were killed was more than threefold lower in animals killed following a GH trough period than that observed in animals killed at the end of a GH secretory episode (mean 2 h GH AUC: 45.0 ± 25.8 vs 142.5 ± 4.3 ng/ml × h; p < 0.02). Thus, both the GH profiles (Fig. 1) and the corresponding AUC data demonstrate that animals killed at 11:00 A.M. were exposed to a prolonged period of low plasma GH levels before they were killed, whereas animals killed at 1:00 P.M. had completed a full GH secretory episode and were exposed to plasma GH levels as high as 200 ng/ml before they were killed.

Immunohistochemistry for sst₁, VGluT2, and VGAT in the ARC
To establish the pattern of distribution of sst₁ immunoreactivity in the ARC, we incubated frontal sections of rat mediobasal hypothalamus with our N-terminal sst₁ antiserum, which has been extensively characterized (Stroh et al., 2006). In agreement
sst₁-positive neurons (Fig. 3B). Almost all of the sst₁-positive cells were also stained for GHRH (Fig. 3A,C, arrowheads). Conversely, a subpopulation of GHRH-positive cells did not colocalize the sst₁ protein (Fig. 3B,C, arrows). We used unbiased stereological sampling (Optical Fractionator probe) to provide a quantitative estimate of the sst₁- and GHRH-positive neuronal populations as well as the number of sst₁/GHRH dually positive cells in the rat ARC. In three individual brains, we found mean numbers ± SEM of 10,322 ± 2152 sst₁-positive, 12,183 ± 2580 GHRH-positive, and 9007 ± 2413 sst₁/GHRH double-positive neurons in the ARC. These results indicate that ~87% of ARC neurons expressing the sst₁ protein also synthesize GHRH and 74% of GHRH neurons have the sst₁ receptor.

Subcellular dynamics in the arcuate nucleus in parallel with pulsatile GH secretion

As in previous studies in the ARC (Stroh et al., 2006), silver-enhanced gold grains indicative of immunoreactive sst₁ receptors were concentrated over profiles of neuronal cell bodies and dendrites in the ventral ARC (Fig. 4A). In total, 1092 silver/gold particles were analyzed (after peak: 837; after trough: 255). Whereas many of these silver particles were located at the plasma membrane (Fig. 4A, arrows), the majority was associated with intracellular structures such as Golgi stacks (Fig. 4A, arrowheads) and numerous vesicular organelles. Quantitative analysis revealed that 80% of the silver/gold particles were intracellular and 20% located at the plasma membrane (Fig. 4B) (n = 3 independent experiments). This ratio was extremely stable throughout the GH secretion cycle; it was completely independent of whether the animal had been killed at the end of a GH trough or a GH peak (Fig. 4B).

A strikingly large proportion of the plasma membrane-associated sst₁ receptors were located next to or right on the postsynaptic zone of both symmetric and asymmetric terminals abutting the sst₁-positive dendritic profiles (Fig. 5A–D). In contrast to the general subcellular distribution of sst₁, this association with synaptic specializations proved to be highly dynamic in parallel with the ultradian rhythm of GH secretion. Thus, 29.9% of plasma membrane-associated sst₁ receptors were located at postsynaptic specializations (total: 50 of 167) following GH secretion peak periods, whereas 42.0% (total: 21 of 50) were located at such sites at the end of GH troughs (p = 0.05). Independently of the animals’ GH status sst₁ showed a preference for symmetric over asymmetric contacts (82% vs 18% after peak compared with 76% vs 24% after trough; p < 0.005) (Fig. 6). Whereas sst₁ receptors at symmetric synapses were all perisynaptic following a trough in GH secretion, 15% were located subsynaptically subsequent to a GH secretory period (p = 0.05) (Figs. 5A, B, 6). In addition, perisynaptic
tic sst1 receptors were found at asymmetric synapses following both subsynaptic positions following a period of high GH secretion (Post Peak) or a GH trough (Post GH secretion cycle). Data represent means ± SEM of data from three independent experiments (*p < 0.005). The data are expressed as percentages of all receptors located in perisynaptic or subsynaptic positions following a period of high GH secretion (Post Peak) or a GH trough (Post Trough), respectively (Uchizono, 1965; Peters et al., 1991), were approximately equal following GH troughs. However, at the end of a GH secretory episode, 70% of the contacts were now symmetric, i.e., inhibitory, whereas the percentage of asymmetric synapses dropped to 30% (*p < 0.02) (Fig. 7).

Discussion

In the present study, we demonstrate that somatodendritic sst1, SRIF receptors are present in a subset of GHRH-immunopositive neurons of the rat ARC and exhibit an association with postsynaptic specializations that fluctuates in parallel with the ultradian cycle of GH secretion, providing a possible explanation for the ultradian oscillations of SRIF binding in the ARC previously reported (Tannenbaum et al., 1993). We also show that the relative abundance of excitatory and inhibitory inputs to sst1-positive neurons in the ARC similarly varies in an ultradian manner dependent on the GH secretion cycle.

In addition to the synaptic localization of sst1 receptors in ARC neurons, synaptic connectivity of the nucleus itself also exhibited ultradian dynamics. Thus, the proportions of asymmetric and symmetric synaptic profiles (as measured by the length of presynaptic and postsynaptic specializations along the dendritic membrane) contacting the circumference of sst1-positive profiles, indicative of excitatory and inhibitory innervation, respectively (Uchizono, 1965; Peters et al., 1991), were approximately equal following GH troughs. However, at the end of a GH secretory episode, 70% of the contacts were now symmetric, i.e., inhibitory, whereas the percentage of asymmetric synapses dropped to 30% (*p < 0.02) (Fig. 7).

Figure 5. Temporal variation in the localization of sst1 at synaptic active zones in relation to the GH cycle. A–D, High-magnification electron micrographs of the arcuate nucleus neuropil immunostained for sst1 show that a high proportion of sst1 receptors at the plasma membrane are located at or next to synaptic contacts (arrows). A, Examples of plasma membrane sst1 receptors at the subsynaptic membrane of symmetric synapses (arrows) in ARC of animals killed at the end of a GH secretion peak. B, In some instances, sst1-positive tubular membrane invaginations were observed in the perisynaptic zone of these synapses (arrowhead). C, D, Perisynaptic sst1 receptors located lateral to the postsynaptic densities of asymmetric synapses. Scale bars: (in B) A, 180 nm; B, 100 nm; (in D) C, D, 250 nm.

Figure 6. Association of sst1 with symmetric as compared with asymmetric synapses. Perisynaptic and synaptic sst1 receptors were classified as being associated with a symmetric or an asymmetric synaptic contact following peak (Post Peak) or trough (Post Trough) periods in the GH secretion cycle. Data represent means ± SEM of data from three independent experiments (*p < 0.005). The data are expressed as percentages of all receptors located in perisynaptic or subsynaptic positions following a period of high GH secretion (Post Peak) or a GH trough (Post Trough), respectively. A significant association of sst1 receptors with symmetric synapses was observed (*p < 0.05 vs all other groups).

membrane invaginations containing immunoreactive sst1 were observed at some symmetric synapses (Fig. 5B). In contrast, subsynaptic sst1 receptors were found at asymmetric synapses following both GH trough and peak periods, but their percentage never exceeded 5% (Fig. 6).

In the present study, we demonstrate that somatodendritic sst1, SRIF receptors are present in a subset of GHRH-immunopositive neurons of the rat ARC and exhibit an association with postsynaptic specializations that fluctuates in parallel with the ultradian cycle of GH secretion, providing a possible explanation for the ultradian oscillations of SRIF binding in the ARC previously reported (Tannenbaum et al., 1993). We also show that the relative abundance of excitatory and inhibitory inputs to sst1-positive neurons in the ARC similarly varies in an ultradian manner dependent on the GH secretion cycle.
proportion of symmetric and asymmetric inputs following a period of high GH release. Although a similar perisynaptic localization has been reported for somatostatin receptors, we observed structural plasticity within the ARC under the influence of the endogenous GH cycle. SST1-immunoreactive dendritic profiles received both numerous asymmetric (Gray type 1) synapses with prominent postsynaptic densities and symmetric (Gray type 2) synapses. However, whereas approximately equal proportions of symmetric and asymmetric synaptic inputs were observed following GH trough periods, this ratio is shifted to 70:30 in favor of symmetric, i.e., inhibitory, inputs after prolonged exposure to high circulating GH, suggesting that a rewiring of the synaptic connectivity has taken place during the GH peak period. This finding is consistent with reports of various forms of synaptic reorganization in the hypothalamus in response to exogenous signals and endogenous rhythms such as changes in water balance (Miyata et al., 1994; Stern and Armstrong, 1998) or in circulating levels of estradiol (Garcia-Segura et al., 1986; Zsarnovszky et al., 2001; Parducz et al., 2003). Similarly, synaptic plasticity together with changes in the molecular machinery modulating synaptic efficacy may play a key role in the regulation of GH secretion at the level of the hypothalamus.

The present results, together with our previous work (Tannenbaum et al., 1993; Wagner et al., 1998), suggest that at the end of a GH peak there is an increase in inhibitory synaptic input concomitant with increased concentrations of extracellular SRIF, which are instrumental in terminating the burst of GH secretion and inducing the ensuing trough in the GH cycle. The increase in extracellular SRIF induces a lateral mobilization of persynaptic SST1 receptors to the subsynaptic membrane as well as an increased internalization of SST1. As compensation, intracellular SST1 receptors are targeted to extrasynaptic plasma membrane sites and are eventually laterally mobilized to replenish the pool of persynaptic/subsynaptic receptors during the following GH trough. Such a mechanism would explain our earlier observation that SRIF binding to the ARC is paradoxically highest during GH peaks (Tannenbaum et al., 1993) as external radioactive ligand has conceivably greater access to nonsynaptic receptors than to spatially restricted synaptic sites.

In conclusion, the results reported here suggest that ARC neurons actively regulate the postsynaptic localization of the SST1 receptor in conjunction with the ultradian rhythm of the GH secretion cycle. They also indicate that the synaptic connectivity of SST1-positive ARC neurons undergoes pronounced remodeling in parallel with the GH rhythm. Differential modulation of synaptic transmission mediated by SST1 and synaptic remodeling may thus be important mechanisms by which SST1 mediates cyclical SRIFergic effects on ARC GHRH neurons in generating the ultradian rhythmicity of GH secretion.

References
Boudin H, Sarret P, Mazella J, Schonbrunn A, Beaudet A (2000) Somatostatin-induced regulation of SSTR2A receptor expression and cell localization of SST1 observed here may be due to receptor internalization in perisynaptic position with respect to these SST1-labeled symmetric synapses at the end of a GH peak may indicate increased SST1 internalization, subsequent to increased SRIF release, at these sites. These results suggest that SST1 may play an important role in regulating the inhibition of GH release by SRIF.


