Nucleotides Downregulate Aquaporin 2 via Activation of Apical P2 Receptors

Scott S. P. Wildman,* Michelle Boone,† Claire M. Peppiatt-Wildman,* Alberto Contreras-Sanz,* Brian F. King,‡ David G. Shirley,§ Peter M. T. Deen,† and Robert J. Unwin‡§

*Department of Veterinary Basic Sciences, Royal Veterinary College, London, United Kingdom; §Centre for Nephrology, University College London Medical School, Royal Free Campus, London, United Kingdom; †Department of Physiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands; ‡Research Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom

ABSTRACT

Vasopressin regulates water reabsorption in the collecting duct, but extracellular nucleotides modulate this regulation through incompletely understood mechanisms. We investigated these mechanisms using immortalized mouse collecting duct (mpkCCD) cells. Basolateral exposure to dDAVP induced AQP2 localization to the apical membrane, but co-treatment with ATP internalized AQP2. Because plasma membrane-bound P2 receptors (P2R) mediate the effects of extracellular nucleotides, we examined the abundance and localization of P2R in mpkCCD cells. In the absence of dDAVP, P2Y1 and P2Y4 receptors localized to the apical membrane, whereas P2X2, P2X4, P2X5, P2X7, P2Y2, P2Y11, and P2Y12 receptors localized to the cytoplasm. dDAVP induced gene expression of P2X1, which localized to the apical domain, and led to translocation of P2X2 and P2Y2 to the apical and basolateral membranes, respectively. In co-expression experiments, P2R activation decreased membrane AQP2 and AQP2-mediated water permeability in *Xenopus* oocytes expressing P2X2, P2Y2, or P2Y4 receptors, but not in oocytes expressing other P2R subtypes. In summary, these data suggest that AQP2-mediated water transport is downregulated not only by basolateral nucleotides, mediated by P2Y2 receptors, but also by luminal nucleotides, mediated by P2X2 and/or P2Y4 receptors.

Urinary concentration and water homeostasis are primarily under the control of arginine vasopressin (AVP) acting on the renal collecting duct (CD). AVP ultimately exerts its effect by controlling the abundance of aquaporin 2 (AQP2) water channels in the apical membrane of CD principal cells (PCs): it activates V2 receptors in the basolateral membrane of these cells and stimulates adenyl cyclase (increasing intracellular cAMP levels), which in turn results in phosphorylation of AQP2 and its rapid (within minutes) trafficking and insertion into the apical membrane (from subapical storage vesicles), together with reduced endocytosis of AQP2; continued exposure to AVP over several days stimulates AQP2 gene transcription.

Increased apical abundance of AQP2 enhances water reabsorption and produces a concentrated urine; in the absence of AVP, AQP2 is internalized by ubiquitin-dependent endocytosis, leading to reduced water reabsorption and a dilute urine. Therefore, any dysregulation of AQP2 synthesis or sur-
face membrane abundance will affect fluid balance: lack of normal AQP2 abundance or function in cranial or nephrogenic diabetes insipidus causes excessive water loss and hypernatremia,7,8,9 while increased apical membrane abundance of AQP2 in congestive heart failure, liver cirrhosis, or the syndrome of inappropriate ADH secretion causes enhanced water retention and hyponatremia.10,11

Several paracrine or autocrine factors, including extracellular nucleotides, have been shown to inhibit AVP-stimulated and AQP2-mediated water transport in the CD.12–20 The effect of extracellular nucleotides is mediated by activation of plasma membrane-bound P2 receptors (P2R) in CD PCs. The presence of almost all of the molecularly identified subtypes of ionotropic (P2X) and metabotropic (P2Y) P2R has been demonstrated in CD epithelial cells and immortalized distal nephron epithelial cell lines.21–24 Ionotropic P2X receptors are represented by homeric assemblies (P2X1, P2X2, P2X3, P2X4, P2X5, P2X6, and P2X7) and heteromeric assemblies (P2X1/2, P2X1/4, P2X1/5, P2X2/3, P2X2/6, P2X4/6 and P2X4/7).25 Metabotropic P2Y receptors are represented by P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, and P2Y12, and the recently cloned P2Y13 and P2Y14, subtypes.25

Based on pharmacologic profiling (although it should be noted that truly specific agonists are not available for P2R), the P2R subtype thought to inhibit AVP-stimulated water transport in the CD is the P2Y2 receptor present in the basolateral membrane of PCs.12,15 This P2R-mediated inhibition is PKC-dependent, and the result of decreased intracellular cAMP and increased PGE2 levels.26,27 In support of a role for the P2Y2 receptor in modulating AVP-mediated changes in CD water transport, infusion of AVP (for 90 min) increases P2Y2 mRNA and protein levels in the CD of hydrated rats.28 Therefore, it has been proposed that activation of basolaterally located P2Y2 receptors by extracellular nucleotides significantly affects AQP2 abundance, and thereby AVP-mediated water reabsorption, in the CD.29 Indeed, P2Y2 knockout mice exhibit higher levels of AQP2 compared with wild-type mice, despite similar AVP levels.30,31

Activation of basolaterally localized P2Y2 receptors has also been linked to the local control of amiloride-sensitive Na+ reabsorption in CD PCs,22 an effect that also occurs with luminal (apical) ATP. However, we have recently shown that the P2Y2 subtype is not the only P2R to mediate a luminal effect of ATP on CD Na+ transport.24 Combining molecular and pharmacologic approaches, we found that activation of P2Y4 (which is almost identical in its pharmacologic profile to P2Y2), P2X4, or P2X4/6 receptors can also affect Na+ transport. Furthermore, we showed that changing dietary Na+ intake alters P2R mRNA and protein levels.24

Two questions arise from the previously published work: (1) Can AVP alter the protein abundance and mRNA levels of P2R other than the P2Y2 subtype? (2) Can P2R other than the P2Y2 subtype affect AVP-stimulated AQP2 abundance in CD PCs? In the present study, we have used immortalized mouse mpkCCD(c14) cells and the Xenopus oocyte heterologous expression system to clarify the molecular interactions between P2R subtypes and AQP2 abundance, and internalization.

RESULTS

Immunocytochemical Localization of AQP2 in mpkCCD Cells

To determine whether AVP induces plasma membrane localization of AQP2 in mpkCCD cells, monolayers of these cells were either left untreated or were treated with dDAVP. In the absence of dDAVP (n = 12), no immunofluorescent staining for AQP2 was detectable in the cells or their apical membranes (Figure 1A); however, treatment with dDAVP (1 nM applied to the basolateral medium for 96 h; n = 12) resulted in strongly positive immunofluorescence for AQP2 in the apical membrane (Figure 1B). Thus, as in earlier published studies,32,33

![Figure 1. dDAVP-induced localization of AQP2 in mpkCCD cells.](image-url)
mRNA Levels of P2R in mpkCCD Cells
To investigate the relative abundance of P2R mRNA in monolayers of cells treated or untreated with dDAVP, we performed real-time PCR analysis and calculated the ratio of expression of the P2R gene of interest to a constitutively expressed housekeeping gene (hypoxanthine phosphoribosyl transferase [HPRT]). In untreated cells, we could not detect significant levels of P2X1, P2X3, or P2X6 subunit mRNA, or of P2Y6 receptor mRNA (n = 6; Figure 2A and B, respectively). In contrast, significant amounts of mRNA were detected for P2X2, P2X4, P2X5, and P2X7 subunits (Figure 2A), and for P2Y1, P2Y2, and P2Y4 receptors (Figure 2B); mRNA abundance had a rank order of P2Y2 > P2X2, P2X4 = P2Y1 = P2Y4 > P2X5 = P2X7.

Cells treated with dDAVP showed a significant increase in abundance of P2Y2 mRNA (by 7-fold; n = 6; P < 0.01), a significant decrease in abundance of P2Y1 mRNA (by 2.5-fold; n = 6; P < 0.01), but no change in P2X2, P2X4, P2X5, P2X7, or P2Y4 mRNA levels (Figure 2, A and B). P2X1 mRNA levels increased significantly in cells treated with dDAVP (Figure 2A). Rank order of abundance for P2R mRNA in cells treated with dDAVP was P2Y2 > P2X1 = P2X4 > P2X2 = P2Y1 = P2Y4 > P2X5 = P2X7.

These data suggest that mpkCCD cells express a variety of P2R and that chronic dDAVP treatment alters the mRNA levels of several P2R subtypes.

Localization of P2R in mpkCCD Cells
To investigate P2R protein localization in untreated mpkCCD cells, monolayers of cells (n = 6) were stained for different P2R using specific antibodies. Positive immunofluorescence for P2Y1 and P2Y4 receptors was seen apically, whereas P2X2, P2X3, and P2X7 receptor subunits and P2Y2, P2Y11, and P2Y12 receptors were located throughout the cytoplasm, toward the cell borders and in the perinuclear region (Figure 3A). Immunofluorescent staining for P2X1, P2X3, and P2X6 sub-units and the P2Y4 receptor was not seen. These data broadly agree with the real-time PCR findings.

To corroborate the apical localization of P2Y1 and P2Y4 receptors in cells untreated with dDAVP, whole-cell perforated patch-clamp recordings were made on individual cells using P2R-selective agonists. Figure 3B shows ATP- and other P2R agonist-evoked (all at 10 μM) whole-cell inward currents in voltage-clamped (holding potential [Vh] = −60 mV) cells in a confluent monolayer. Agonists were chosen according to their P2R selectivity (see Table 1).

Table 1. The amplitudes of 10 μM agonist-evoked currents were 584 ± 59 pA (for ATP; n = 5), 540 ± 48 pA (for UTP; n = 5), 226 ± 26 pA (for ADP; n = 5), 29 ± 11 pA (for BzATP; n = 5), 343 ± 29 pA (for ATPγS; n = 5), and 234 ± 40 pA (for 2meSADP; n = 5); consistent with apical P2Y1 and P2Y4 receptor localization.

To test whether dDAVP alters the abundance and/or localization of P2R, mpkCCD cells were treated with dDAVP and subjected to immunocytochemistry using P2R-specific antibodies. Treatment with dDAVP (1 nM; 96 h; basolateral medium) resulted in positive immunostaining for P2X1 and P2X2 receptor subunits in the apical regions, and basolateral staining for P2Y1 receptors (Figure 4, A and B), suggesting that dDAVP induces the synthesis of P2X1, and targets P2X1, and P2X2 receptor subunits, as well as P2Y2 receptors, to the plasma membrane. Fluorescence immunostaining for all other P2R remained unchanged (data not shown).

To investigate whether dDAVP-dependent P2R synthesis and localization is cAMP-dependent, dDAVP-treated mpkCCD cells were incubated with the cell-permeable PKA inhibi-
itor H-89 and subjected to immunocytochemistry using P2X1-, P2X2-, and P2Y2-specific antibodies. Treatment with H-89 (1 μM; 30 min; basolateral medium) abolished dDAVP-dependent P2X1 synthesis (and apical localization), dDAVP-dependent P2X2 apical localization, and dDAVP-dependent P2Y2 basolateral localization (data not shown), strongly suggesting that dDAVP-dependent P2R synthesis and localization in mpkCCD cells is cAMP-dependent. In the absence of dDAVP, H-89 failed to alter fluorescence immunostaining for any P2R.

Acute Effects of P2R Activation on AQP2 Membrane Localization in mpkCCD Cells

To investigate the effect of ATP on AQP2 localization, dDAVP-treated mpkCCD cell monolayers were treated with 1 μM ATPγS (a stable analog of ATP with agonist activity at most P2R) for 2 h, added to either the apical or basolateral medium (n = 5). Immunostaining revealed that whereas AQP2 was localized to the apical membrane in the absence of ATPγS, it was present intracellularly following exposure to ATPγS in either the apical or basolateral medium (Figure 5A), consistent with AQP2 internalization.

To confirm that ATP itself causes internalization of AQP2, ATP was added to both apical and basolateral medium of cultured mpkCCD cells or to each medium separately for 2 h. Subsequent cell surface biotinylation, and semiquantification of AQP2 abundance by immunoblotting, showed that AQP2 was internalized from the plasma membrane when ATP was added to either the apical or basolateral medium (Figure 5, B and C), and that this effect was increased when ATP was added to both medium (Figure 5, B and C). These data indicate that both apical and basolateral P2R can affect apical membrane abundance of AQP2, and that the effect is additive.

To investigate which of the apically localized P2R (P2X1, P2X2, P2Y1 and/or P2Y4; see Figures 3, A and B, and 4) causes internalization of AQP2, a selection of partially selective P2R agonists was added to the apical medium of cultured mpkCCD cells for 2 h. Subsequent cell surface biotinylation, and semiquantification of AQP2 abundance by immunoblotting, showed that AQP2 was internalized from the plasma membrane when ATP (100 μM; a potent agonist at P2X1, P2X2, and P2Y4 receptor subtypes) or UTP (100 μM; an agonist selectively favoring the P2Y4 receptor subtype), but not 2meSADP (100 μM; an agonist selective for the P2Y1 receptor subtype), was added (Figure 5D). AQP2 membrane abundance was reduced to a greater extent by ATP than by UTP. These data indicate that apical P2Y4 receptors and P2X1 and/or P2X2 receptors, but not P2Y1, play an important role in altering AQP2 abundance and localization.

Longer-term Effects of P2R activation on AQP2 Levels in mpkCCD Cells

To test whether P2R activation results in AQP2 protein degradation, dDAVP-treated mpkCCD cells were incubated with ATP (100 μM) added to both sides (apical and basolateral) for 8 h. Subsequent immunoblotting for AQP2 and β-actin (to normalize for the amount of protein loaded) indicated that AQP2 was degraded in the absence of dDAVP treatment (Figure 5E).

Table 1. Pharmacologic profiles of those P2R subtypes identified in the apical membrane of mpkCCD cells (in the absence of dDAVP treatment; see Figure 3)

<table>
<thead>
<tr>
<th>P2R Subtype</th>
<th>ATP</th>
<th>UTP</th>
<th>ADP</th>
<th>BzATP</th>
<th>ATPγS</th>
<th>2meSADP</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2Y1</td>
<td>agonist</td>
<td>i.a.</td>
<td>agonist</td>
<td>i.a.</td>
<td>agonist</td>
<td>agonist</td>
</tr>
<tr>
<td>P2Y4</td>
<td>agonist</td>
<td>agonist</td>
<td>i.a.</td>
<td>antagonist</td>
<td>agonist</td>
<td>i.a.</td>
</tr>
</tbody>
</table>

Information taken from King and Townsend-Nicholson, 2003; Wildman et al, 2008, 24, 34 i.a., inactive agonist at 10 μM.
ATP treatment reduced AQP2 protein levels by approximately 90% (Figure 6,A and B).

To investigate whether adenosine, derived from the breakdown of ATP, could be responsible for the ATP-evoked reduction in AQP2 membrane abundance, dDAVP-treated cells were incubated with ATP (100 μM) and DPCPX (10 μM; a nonselective adenosine, P1, receptor antagonist) added to both apical and basolateral sides for 8 h. Subsequent immunoblotting for AQP2 demonstrated that simultaneous treatment with ATP and DPCPX also markedly reduced AQP2 protein levels (Figure 6, C and D). Furthermore, dDAVP-treated cells were incubated with ATPγS (100 μM; a stable analog of ATP with agonist activity at most P2R) added to both sides for 8 h; subsequent immunoblotting for AQP2 demonstrated that ATPγS reduced AQP2

Figure 4. Effect of dDAVP on localization of P2R in mpkCCD cells. Confocal microscopy was used to determine the cellular distribution of P2R in monolayers of mpkCCD cells grown to confluence on transwell permeable supports. Images shown are x-z planes. Monolayers were imaged in the x-z plane from apical to basal boundaries of the cells. Scale bar represents 5 μm. (A) In cells untreated with dDAVP, positive immunostaining for P2X2, P2X3, P2X4, P2X6, P2Y2, and P2Y3 receptor subunits was found throughout the cytoplasm up to the cell border. (B) Treatment with dDAVP (1 nM, applied to the basolateral medium for 96 h) resulted in positive immunostaining (Cy3) for P2X1, P2X3, and P2X4 subunits in the apical domain, and for P2Y2 receptors in the basolateral domain. Not shown, staining for P2X6 and P2Y2, subunits, and P2Y6 receptors, was still not seen in the presence of dDAVP; dDAVP treatment also did not alter the positive immunostaining for P2Y4 receptors in the apical domain, or affect the pattern of immunostaining for P2X1, P2X4, or P2X7 subunits, or P2Y11 or P2Y12 receptors throughout the cytoplasm (as seen in Figure 3).

Figure 5. Effect of ATP on localization and membrane abundance of AQP2 in mpkCCD cells. (A) Confocal microscopy was used to determine the cellular distribution of AQP2 in monolayers of mpkCCD cells grown to confluence on transwell permeable supports. Monolayers were imaged in the x-z plane from apical to basal boundaries of the cells. Scale bar represents 5 μm. (B) Confluent mpkCCD monolayers were stimulated with 1 nM dDAVP (96 h, basolateral medium) and subsequently treated with dDAVP only (dDAVP), or together with ATP (100 μM; dDAVP+ATP) or the apical side only (dDAVP+ATP [apical]), or the basolateral side only (dDAVP+ATP [basolateral]), for 2 h. Cells were then subjected to a cell surface biotinylation assay. Biotinylated proteins were pulled down and immunoblotted for AQP2 (Gly-AQP2 and AQP2). Total lysates were also immunoblotted for AQP2 (Total AQP2). (C) The signals from B were scanned and the amount of AQP2 was semiquantified in arbitrary units (AU). Significant differences from untreated cells are indicated by asterisks. ATP treatment reduced AQP2 protein levels by approximately 90% (Figure 6,A and B).
AQP2-mediated water permeability (P_f) was significantly decreased following P2R activation in oocytes co-expressing P2X$_2$ (by 46 ± 8%; n = 6; $P < 0.01$; Figure 7A), P2Y$_2$ (by 53 ± 7%; n = 6; $P < 0.01$; Figure 7B) or P2Y$_4$ receptors (by 57 ± 3%; n = 6; $P < 0.01$; Figure 7B). Inhibition of AQP2-mediated P_f was achieved within 15 min. All other P2R tested, including P2X$_1$, did not change AQP2-mediated P_f (n = 6; Figure 7, A and B).

To determine if the reduction of AQP2-mediated water permeability by P2R activation also reduced plasma membrane AQP2 abundance, total membrane and plasma membrane fractions were made. Immunoblot analysis demonstrated that in *Xenopus* oocytes expressing only AQP2 (Figure 8A), or AQP2 co-expressed with P2X$_1$, P2X$_3$, or P2X$_4$ receptors, extracellular ATP did not alter AQP2 membrane abundance (data not shown). In contrast, in oocytes expressing those P2R that reduced AQP2-mediated water permeability on exposure to ATP (P2X$_2$, P2Y$_2$, and P2Y$_4$), plasma membrane abundance of AQP2 protein levels to a similar degree as that seen for ATP (data not shown). These findings suggest that adenosine is unlikely to be responsible for the reduction in AQP2 membrane abundance observed with ATP.

Effect of P2R Activation on AQP2-Mediated Water Permeability in Xenopus Oocytes

To help determine which of the P2R localized in mpkCCD cells could mediate the observed downregulation of AQP2 abundance, the P2R localized in the plasma membrane of mpkCCD cells with or without dDAVP (and a number of others) were co-expressed with AQP2 in *Xenopus* oocytes, and the oocytes subjected to a cell swelling assay with or without P2R activation with 10 μM ATP.

Figure 6. Effect of extracellular ATP on AQP2 protein levels in mpkCCD cells. (A) Confluent monolayers of mpkCCD cells were stimulated with 1 nM dDAVP for 4 d, subsequently treated with dDAVP only or together with 100 μM ATP for 8 h, and subjected to immunoblotting for AQP2. (B) The signals from A were scanned and the amount of AQP2 was semiquantified in AU. A significant difference in relative AQP2 abundance between untreated and treated cells is indicated by an asterisk. (C) As in A, except cells were left untreated or treated with 100 μM ATP and 10 μM DPCPX (an adenosine receptor antagonist) for 8 h. (D) The signals from C were scanned and the amount of AQP2 was semiquantified in AU. The asterisk indicates a significant difference. Immunoblotting experiments were performed in duplicates in two independent experiments.

Figure 7. Effect of P2R activation on AQP2-mediated water permeability in *Xenopus* oocytes. Comparison of osmotic water permeability (P_f) in *Xenopus* oocytes co-expressing AQP2 and the P2R of interest, in the absence or presence of 10 μM ATP (15 min preincubation). P_f was determined from monitoring and measuring cell swelling (at 1.7 s intervals for 1 min) after cells were placed in a hypotonic solution. Significant differences from untreated cells are indicated by asterisks. (A) Activation of co-expressed P2X$_2$ receptors by extracellular ATP resulted in a significant decrease in P_f (n = 6; $P < 0.01$). (B) Activation of co-expressed P2Y$_2$ or P2Y$_4$ receptors also resulted in significant decreases in P_f (n = 6; $P < 0.01$). These data show that activation of P2X$_2$, P2Y$_2$, or P2Y$_4$ subtypes inhibits AQP2 activity within 15 min.
AQP2 was reduced. This is consistent with P2R-mediated inhibition of P2X2, P2Y2, and P2Y4 receptors by removal of AQP2 protein from the plasma membrane (n = 11005/3; Figure 8B).

DISCUSSION

The main findings of our *in vitro* study in mpkCCD cells are that AVP can alter P2R abundance and localization, and that activation of apically (and basolaterally) localized P2R can cause the internalization (and degradation) of AQP2 (Figure 9). More specifically, we report that: (1) P2Y1 and P2Y4 receptors are localized in the apical membrane, independent of the presence of dDAVP; (2) AVP induces cAMP-dependent synthesis and apical localization of AQP2, and of the P2X1 receptor; (3) AVP induces cAMP-dependent translocation and subsequent localization of P2X2 and P2Y2 receptors in the apical and basolateral membrane, respectively; (4) activation of basolaterally localized P2Y2 receptors, and of apically localized P2X2, and P2Y4 receptors, stimulates AQP2 internalization in the presence of AVP. These findings suggest a complex regulatory relationship between apical and basolateral P2R in AVP-stimulated, AQP2-mediated water transport in the CD.

Figure 8. Activation of P2X2, P2Y2, or P2Y4 receptors decreases plasma membrane abundance of AQP2 in *Xenopus* oocytes. Typical Western blot analysis of AQP2 protein in oocyte plasma membrane homogenates. (A) Oocytes expressing AQP2 in the absence (lane 1) or presence of 10 μM ATP (15 min; lane 2). The data show that extracellular ATP in the absence of P2R expression does not directly affect AQP2 membrane abundance. (B) Oocytes co-expressing AQP2 with P2X2 in the absence (lane 1) or presence of 10 μM ATP (15 min; lane 2); co-expressing AQP2 with P2Y2 in the absence (lane 3) or presence of 10 μM ATP (15 min; lane 4); and co-expressing AQP2 with P2Y4 in the absence (lane 5) or presence of 10 μM ATP (15 min; lane 6). The data show that P2 receptor-mediated inhibition of cell swelling in *Xenopus* oocytes is associated with removal of AQP2 protein from the oocyte plasma membrane within 15 min.

Figure 9. Vasopressin alters P2R abundance and localization, and P2R activation results in the internalisation of AQP2. (A) Immunocytochemistry and patch clamp electrophysiology demonstrate that P2Y1 and P2Y4 receptors are localized in the apical membrane of mpkCCD cells. (B) Treatment with dDAVP (acting via basolateral V2 receptors) results in the translocation of P2X2 to the apical membrane, P2Y2 to the basolateral membrane, and the synthesis and sorting (or trafficking) of P2X1 and AQP2 to the apical membrane. (C) Addition of ATP to either the basal or apical side causes AQP2 to be internalized in mpkCCD cells. Experiments using a *Xenopus* oocyte swelling assay suggest that the effects of ATP are mediated via P2Y2, P2Y4, and P2X2 activation.
P2R Abundance and Localization in mpkCCD Cells

As already mentioned, in cells untreated with AVP, we demonstrated localization of P2Y1 and P2Y2 receptors in the apical membrane (corroborated by pharmacologic characterization); and of P2X1, P2X4, P2X5, and P2X6 subunits and P2Y2, P2Y11, and P2Y13 receptors throughout the cytoplasm. In cells treated with AVP, in which AQP2 is localized in the apical membrane, we demonstrated apical localization of P2X1 and P2X2 subunits, and of P2Y1 and P2Y4 receptors, and basolateral localization of P2Y2, P2Y4 receptors; while P2X3, P2X5, and P2X6 subunits and P2Y11 and P2Y12 receptors remained within the cytoplasm. Furthermore, using real-time PCR, we showed that AVP treatment increases mRNA levels of apically localized P2X1 and basolaterally localized P2Y2 receptors (Figure 2). Taken together, these data suggest that AVP induces not only AQP2 translocation and abundance, but also P2X subunit and P2Y2 receptor synthesis and membrane trafficking, and P2X2 subunit membrane trafficking.

Our immunocytochemistry findings of P2R localization in mpkCCD cells agree broadly with previous reports of the presence of P2X1, P2X3, P2X5, P2X6, and P2X7 subunits and P2Y2, P2Y4, P2Y11, P2Y12, and P2Y13 receptors in rodent CD PCs.40,42,43,45–39 Although others have not reported P2Y4 receptor protein localization in the CD or in other PC-like cells in culture, P2Y4 mRNA has been detected in rat CD.40

In contrast to our findings that chronic dDAVP treatment (96 h) causes an increase in P2Y1 mRNA (Figure 2) and translocation of P2Y1 receptors into the basolateral membrane (Figure 4), Sun and colleagues reported that chronic dDAVP infusion (120 h) in rats decreases P2Y2 protein levels in the inner medullary CD.45 The same group also reported that chronic water loading (48 h), which should lower endogenous AVP levels, increases P2Y2 abundance.27 In these in vivo studies, as acknowledged by the authors, the changes in P2Y2 abundance could have been due to either a direct effect of AVP or changes in medullary tonicity. Given our findings, the latter seems a more likely explanation: an increase in tonicity causing suppression, and a decrease causing enhancement, of P2Y2 abundance.

In addition to finding that chronic AVP treatment alters P2Y2 abundance and localization in mpkCCD cells, we also found changes in the synthesis and apical localization of P2X1 receptors, and the translocation and subsequent apical localization of P2X2 receptors. We have shown recently that protein localization and mRNA levels of P2R in the rat CD can be affected by changes in dietary Na+ intake.44 We found that P2X1, P2X4, and P2X6 subunits, and P2X4 receptors, are up-regulated by a low Na+ diet, an effect we attributed to increased circulating aldosterone levels. Activation of the apically localized P2Y2 receptor inhibits the CD epithelial Na+ channel (ENaC), whereas the apical P2X4 subunit can inhibit or stimulate this channel. For the apical P2Y4 receptor at least, this suggests the possibility of a coupling between its inhibitory effect on Na+ and water transport in the CD. Interestingly, Schafer and Chen have reported that in Na+-depleted rats the stimulatory effect of AVP on Na+ and water transport in the CD is significantly reduced.41

P2R-mediated Internalization of AQP2

Until recently, most attention in the CD has focused on P2Y2 receptors, reinforced by recent studies of a P2Y2 knockout mouse,31 and it has already been established that activation of basolaterally localized P2Y2 receptors by extracellular nucleotides can inhibit AQP2-mediated water transport in the CD.12–15 This inhibition of AVP-stimulated, AQP2-mediated water transport is PLC- and PKC-dependent, and results in decreased intracellular CAMP and increased PGE2,12,13,15,42 which is known to cause AQP2 internalization.43

The novel data provided by the present study are the effects of activating apically localized P2R, including P2X subtypes, on AQP2 trafficking. Although a previous investigation has reported that stimulation of apical P2Y2 receptors in the terminal segment of the inner medullary CD is without significant effect on AQP2-mediated water reabsorption,15 an effect by other apical P2R subtypes was not included in that study. Here we report that activation of apically localized P2X2 and P2X4 receptors, rather than apical P2Y2, stimulates AQP2 internalization in a cell line derived from the cortical CD, the region of the CD in which most AVP-stimulated water reabsorption occurs. It is likely that the signal transduction pathway for P2X4-mediated inhibition of AVP-sensitive water reabsorption is similar to that for P2Y2 and is Gs protein-coupled. However, from our recent study of apical P2R control of Na+ transport, we know that P2X signal transduction involves stimulation of PI3K,24 which when activated has also been shown to stimulate retrieval of AQP2 from the apical membrane.44

Physiologic Significance

Trying to establish a physiologic role for paracrine or autocrine regulators of AVP-sensitive water transport is not easy and risks unwarranted speculation. While there are obvious limitations to both in vitro and in vivo models when it comes to manipulating the levels and action of AVP, even knockout mice have so far served only to illustrate how much complex interaction and compensation can occur in the local and intracellular control of AVP-dependent water permeability in the CD.42 However, there are at least two obvious questions to ask: (1) Where does the ATP come from in the CD and how is it released? (2) Why should there be apical as well as basolateral control by P2R? Concerning the source and release of ATP, it is generally believed that ATP is released locally, and that the stimulus to release may be cell swelling or shear stress, including flow-triggered release via the PC apical membrane cilia.42,45 Cell swelling under local and more generalized hypotonic conditions, for example, in hyponatremia, could lead to ATP release, which would then help to maximize water excretion by its action on basolateral P2Y2 receptors and apical P2R. Similarly, the water diuresis in this setting could further stimulate flow-dependent ATP release to increase water loss.
In summary, while acknowledging that the present findings are from an *in vitro* model, we have confirmed the location and function of the basolateral P2Y₂ receptor in mediating ATP inhibition of AVP-dependent water transport along the CD, but in addition, as with Na⁺ transport, we have defined novel P2R-mediated inhibition of AVP-dependent water transport through apically located P2R. This apical regulation involves P2X₂ subunits and P2Y₄ (rather than P2Y₂) receptors; in addition, AVP itself increases the abundance and membrane trafficking of these inhibitory P2R.

CONCISE METHODS

Cell Culture

mpkCCD cells (clone 14) were grown in a modified cell medium (DMEM:Ham’s F12 1:1 vol/vol; 60 nM sodium selenate, 5 μg/ml transferrin, 2 mM glutamine, 50 nM dexamethasone, 1 nM triiodothyronine, 10 ng/ml EGF, 5 μg/ml insulin, 20 mM D-glucose, 2% FCS, and 20 mM HEPES [pH 7.4]). Cells were seeded at a density of 1.5 × 10⁵ cells/cm² on semipermeable filters (Transwell®, 0.4 μm pore size, Corning Costar, Cambridge, USA); 1.13 cm² filters were used for immunocytochemistry or immunoblotting, and 4.7 cm² filters for biotinylation experiments. The cells remained in culture for 8 d before being analyzed. Where stated, cells were treated with 1 nM dDAVP (added to the basolateral medium) for the last 4 d to induce AQP2 expression maximally (75 to 85% of mpkCCD cells expressed AQP2 after dDAVP treatment), and the nucleotide compounds ATPγS, ATP or UTP, or the PKA inhibitor H-89, were applied to the basal and/or apical medium for the final 2 h. In some cases, DPCPX (and ATPγS) was applied to the basal and apical medium for the final 8 h.

Real-Time PCR

RNA was extracted from confluent monolayers of mpkCCD cells using an adapted guanidium thiocyanate-phenol-chloroform method. One microgram of total RNA was reverse transcribed with 0.5 μg oligo(-dt) 12 to 18 primer and a first-strand cDNA synthesis kit (Superscript II RNase H- reverse transcriptase, Life Technologies BRL, UK). The resulting cDNA transcripts were used for PCR amplification using a Roche Lightcycler (Roche diagnostics, Germany) and QuantiTect SYBR® master mix. Specific primer sets for P2R and the constitutively expressed gene hypoxanthine phosphoribosyl transferase (HPRT) were used as described previously. The whole-cell configuration was used; this was achieved using a nystatin perforated-patch method. To establish the perforated-patch, nystatin (50 to 100 μg/ml) was added to the pipette solution (50 mM KCl, 90 mM K-gluconate, 3 mM MgCl₂, 3 mM EGTA and 10 mM Hepes [pH 7.2, KOH]). Patch pipettes were pulled from borosilicate glass capillaries (Harvard Apparatus Ltd, Edenbridge, UK) and had a resistance ranging between 4.0 and 6.0 MΩ.

Purified DNA was serially diluted 10-fold, covering a dynamic range of 6 logarithmic orders, and 1 μl of each standard was amplified by PCR using the relevant gene specific primers. One set of P2R standards was amplified in duplicate with the HPRT standards to generate two standard curves. For each sample, a ratio of relative abundance of each gene to the house-keeping gene HPRT was calculated by the Lightcycler Relative Quantification software, Version 1.0 (Roche Diagnostics, Germany). Melting curve analysis was carried out to determine primer specificity. PCR products were also analyzed by gel electrophoresis and visualized using a Bio-Rad multi-imager (Bio-Rad, Hemel Hempstead, UK).

Immunocytochemistry

Immunocytochemistry and confocal laser scanning microscopy of cells grown on semipermeable filters were performed as described previously. Cells were incubated with affinity-purified rabbit anti-AQP2 antibodies or rabbit anti-P2R antibodies. Noncommercial P2X antibodies were previously demonstrated to show subunit specificity.

Patch Clamp Electrophysiology

Patch clamp electrophysiology of cells grown on glass coverslips was performed as described previously. The whole-cell configuration was used; this was achieved using a nystatin perforated-patch method. To establish the perforated-patch, nystatin (50 to 100 μg/ml) was added to the pipette solution (50 mM KCl, 90 mM K-gluconate, 3 mM MgCl₂, 3 mM EGTA and 10 mM Hepes [pH 7.2, KOH]). Patch pipettes were pulled from borosilicate glass capillaries (Harvard Apparatus Ltd, Edenbridge, UK) and had a resistance ranging between 4.0 and 6.0 MΩ.

Cells were superfused (4 ml/min) with bathing solution (140 mM NaCl, 5 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂ and 10 mM Hepes [pH 7.4, NaOH]) by a gravity-fed, continuous flow system that allowed drug addition and washout. P2R agonist-activated membrane currents were recorded at a holding potential (Vₜₜ) of −60 mV, sufficient to drive P2X-mediated inward cationic currents and P2Y-mediated reporter currents. P2R agonists were applied for 60 s or until the current reached a peak, whichever was longer, then washed out for 3 min to avoid run-down.

Water Permeability (Pₜ) Measurements

Xenopus laevis oocytes were obtained and defolliculated as described previously. Defolliculated oocytes were injected with 50 nl of sterile water, or cRNA/cRNA combination (50% P2R/50% AQP2) in the case of co-expression studies (total cRNA quantities: human AQP2, 0.5 ng; rat P2X₁, P2X₃, P2X₆, P2Y₁, P2Y₂, P2Y₄ and P2Y₆, 50 ng; rat P2X₂ and P2X₅, 20 ng). Injected oocytes were incubated for 48 h at 18 °C in Barth’s solution (88 mM NaCl, 1 mM KCl, 0.82 mM MgSO₄, 0.33 mM Ca(NO₃)₂, 2.4 mM NaHCO₃, 0.41 mM CaCl₂ and 10 mM Hepes [pH 7.4]) and was supplemented with 50 μg/L gentamicin sulfate, then kept at 4 °C until used in experiments. Recombinant cRNA was not available for P2Y₁, P2Y₁₁, or P2Y₁₂ receptors.

Oocytes were analyzed after 48 h in a swelling assay as described previously. Oocyte swelling was performed at 22 °C after transfer.
from 200 to 70 mOsM/kg. Where stated, oocytes were preincubated with ATP (10 μM) for 15 min before the swelling assay started.

Immunoblotting

Immunoblotting and biotinylation experiments were performed as described previously.5,7 Affinity-purified rabbit anti-AQP2 antibodies (1:3000)6 or mouse anti-β-actin (Sigma, St. Louis, MO; 1:25,000)4 primary antibodies were used. As secondary antibodies, goat anti-rabbit or sheep anti-mouse antibodies coupled to horseradish peroxidase (HRP; Sigma, St. Louis, MO; 1:10,000) were used. Films were scanned using a GS-690 Imaging Densitometer (Bio-Rad, Hercules, CA) and analyzed using Bio-Rad software.

Statistical Analysis

All data are presented as mean values ± S.E.M.; significance was evaluated by t test (Instat v3.0: GraphPad Software, San Diego, CA), with P < 0.05 considered significant. Each experiment was repeated at least three times.

ACKNOWLEDGMENTS

This work was supported by the British Heart Foundation (UK; FS/04/081) and St Peter’s Trust for Kidney, Bladder and Prostate Research (UK) to SSPW; and Dutch Kidney Foundation (C03-2060), Netherlands Organization for Scientific Research (VICI; 865.07.002), European Union (RTN aquaglyceroporins; 035995-2) and the Netherlands Organization for Scientific Research (PMTD. We thank Dr. Sara Bale-saria and Dr. Clare M. Turner for DNA extraction and real-time PCR experiments.

Part of this work was presented at the American Society of Nephrology Renal Week; November 11 through 14, 2006; San Diego, CA.50,51

DISCLOSURES

None.

REFERENCES

26. Welch BD, Carlson NG, Shi H, Myatt L, Kishore BK: P2Y7 receptor-

