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This paper considers the beta-binomial convolution model for the
analysis of 2×2 tables with missing cell counts.We discuss maximum-
likelihood (ML) parameter estimation using the expectation–maxi-
mization algorithm and study information loss relative to complete
data estimators. We also examine bias of the ML estimators of the
beta-binomial convolution. The results are illustrated by two example
applications.
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1 Introduction

This paper is concerned with the maximum-likelihood (ML) estimation of cell prob-
abilities for a series of 2×2 tables with unobserved entries using the marginal totals
only. This ecological inference problem has attracted ample attention from statisti-
cians and methodologists (e.g. Plackett, 1977; Brown and Payne, 1986; Hamdan
and Nasro, 1986; Haber, 1989; Kocherlakota and Kocherlakota, 1992;
McCullagh and Nelder, 1992; King, 1997; King, Rosen and Tanner, 1999, 2004;
Rosen et al., 2001; Wakefield, 2004; Haneuse and Wakefield, 2008; Imai, Lu and
Strauss, 2008). A typical 2 × 2 ecological inference example concerns a study of
the electorate for each of two political parties in two successive elections. Because
of the secret ballot nature of voting, the party choices of individual voters and
potential changes therein are not known. One observes only the vote totals for the
two parties at each election for a number of constituencies. Ecological inference
studies take as their objective the estimation of the individual vote choice transi-
tions from the aggregate election results.

In a previous study, we examined ML parameter estimation and Fisher informa-
tion loss for 2 × 2 ecological tables assuming that the unobserved cell counts are
distributed according to two independent binomial distributions and that the tables

*r.eisinga@maw.ru.nl



Beta-binomial convolution model for 2×2 ecological tables 25

are homogeneous with respect to the conditional probabilities (Eisinga, 2008). The
current paper relaxes this assumption and discusses the beta-binomial generaliza-
tion of the binomial. For the beta-binomial distribution, the probability of success
parameter � varies for successive observations according to a beta-distribution. The
beta-binomial mixture model has several applications in ecological inference
analysis, but most studies adopt a Bayesian approach (e.g. King et al., 1999;
Wakefield, 2004). We discuss ML parameter estimation with the expectation–
maximization (EM) algorithm (Dempster, Laird and Rubin, 1977) and study Fisher
information loss and bias of the ML estimators.

The paper is organized as follows. The complete and observed data likelihoods
involved in the analysis of 2 × 2 ecological tables are presented in section 2.
Section 3 considers ML parameter estimation using EM and section 4 subsequently
examines Fisher information loss because of data aggregation in ecological infer-
ence. Parameter bias correction in the beta-binomial case is discussed in section 5.
Two empirical studies follow in section 6 and some concluding remarks are offered
in section 7.

2 Data likelihoods

As a benchmark, we first consider the complete data situation. For the sth 2 × 2
table, s =1, . . ., S, we use the notation for the counts presented in Table 1.

Table 1. Data for table s, s =1, . . ., S.

Y =0 Y =1 Total

x =0 y0s n0s
x =1 y1s n1s
Total ns −ys ys ns

Let y0s be the number of successes in n0s independent observations with bi-
nomial probability �0s, and let �1s denote the binomial probability of success for
n1s independent observations for which y1s successes were observed. Let

ys =
∑

j =0,1

yjs =y0s +y1s and ns = (ns −ys)+ys.

The likelihood of the distribution of Y0s and Y1s can be expressed as a product of
two binomial distributions

Ls(�0s, �1s)=P(y0s, y1s |n0s, n1s, �0s, �1s)

=
(

n0s

y0s

)
�y0s

0s (1−�0s)n0s−y0s ×
(

n1s

y1s

)
�y1s

1s (1−�1s)n1s−y1s ,

and the overall complete data likelihood for S tables is the product of the table-spe-
cific product binomial likelihoods. Many of the statistical procedures for analyzing
the product binomial model assume that the success probabilities �js are constant
across tables. When this assumption is unlikely to hold, the �js may alternatively be
© 2009 The Author. Journal compilation © 2009 VVS.



26 R. Eisinga

modeled as conditionally independent draws from a common Beta(aj1, aj0) distribu-
tion with probability density function

P(�js |aj0, aj1)= �(aj0 +aj1)
�(aj0)�(aj1)

�
aj1−1
js (1−�js)aj0−1,

where �(·) is the gamma function, 0 <�js < 1, and the shape parameters aj(·) > 0. The
joint beta-binomial distribution is then

P(yjs, �js |njs, aj0, aj1)=
(

njs

yjs

)
�(aj0 +aj1)
�(aj0)�(aj1)

�
yjs +aj1−1
js (1−�js)njs−yjs +aj0−1.

Reparameterizing this hierarchical model in terms of the parameters �j =aj1/
(aj0 +aj1) and �j =aj0 +aj1 and then integrating out the �js gives the unconditional
product beta-binomial likelihood contribution by complete data table s

Lcs (�0, �0, �1, �1)=P(y0s, y1s |n0s, n1s, �0, �0, �1, �1)

=
(

n0s

y0s

)
�(�0)

�(�0�0)�((1−�0)�0)

× �(y0s +�0�0)�(n0s −y0s + (1−�0)�0)
�(n0s + �0)

×
(

n1s

y1s

)
�(�1)

�(�1�1)�((1−�1)�1)

× �(y1s +�1�1)�(n1s −y1s + (1−�1)�1)
�(n1s + �1)

.

The parameters of interest are now �j and �j , which are assumed to be constant
over tables while allowing variation in the probabilities �js. The expectation and the
variance of the beta distribution are (e.g. Mosimann, 1962)

E(�js)=aj1/(aj0 +aj1)=�j and

var(�js)=aj0aj1/(aj0 +aj1)2(1+aj0 +aj1)−1 =�j(1−�j)/(1+ �j).

Therefore, �j corresponds to the average probability across tables and �j corresponds
to the similarity (inverse of heterogeneity) in probability among tables, with smaller
values implying less similarity. The mean and the variance of Yj are

E(Yjs)=njs�j and var(Yjs)=njs�j(1−�j) [1+ (njs −1)�j(1+�j)−1],

with �j =1/�j . Hence the beta-binomial distribution reduces to the binomial when
�j =0, so that �j can be thought of as a measure of overdispersion of the beta-
binomial distribution relative to binomial variation. An alternative measure of het-
erogeneity, suggested by Prentice (1986), is the intra-class correlation coefficient
�j =�j /(1+�j)=1/(1+ �j), satisfying 0 ≤�j ≤ 1. (See Poortema, 1999, for a review
of alternative ways of modeling overdispersion.)
© 2009 The Author. Journal compilation © 2009 VVS.
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The logarithm of the product beta-binomial likelihood function for complete data
table s is

`cs(�0, �0, �1, �1; y0s, y1s)=
∑

j =0,1

Cjs + log �(�j)− log �(�j�j)− log �((1−�j)�j)

+ log �(yjs +�j�j)+ log �(njs −yjs + (1−�j)�j)

− log �(njs + �j),

[correction added on 1 September 2008, after first online publication: the following
phrase has been corrected] where the logarithm of the binomial coefficient

Cjs = log �(njs +1)− log �(yjs +1)− log �(njs −yjs +1)

depends on the observed data but not on the model parameters. The overall uncon-
ditional log-likelihood is the sum of the log-likelihoods of the individual tables.

The ML estimates of �j and �j can be obtained using a variety of optimization
techniques. Some of them require the gradients. The analytic first- and second-order
derivatives of the complete data log-likelihood with respect to �j and �j , presented
for later use, are

∂`cs

∂�j
= [�(zj1)−�(z̄j1)−�(zj0)+�(z̄j0)]�j ,

∂`cs

∂�j
= [�(zj1)−�(z̄j1)]�j + [�(zj0)−�(z̄j0)](1−�j)−�(zj)+�(z̄j),

∂2`cs

∂�2
j

= [�′(zj1)−�′(z̄j1)+�′(zj0)−�′(z̄j0)]�2
j ,

∂2`cs

∂�2
j

= [�′(zj1)−�′(z̄j1)]�2
j + [�′(zj0)−�′(z̄j0)](1−�j)2 −�′(zj)+�′(z̄j),

∂2`cs

∂�j∂�j
= [�′(zj1)−�′(z̄j1)]�j�j − [�′(zj0)−�′(z̄j0)](1−�j)�j +�(zj1)−�(z̄j1)

−�(zj0)+�(z̄j0),

where �(·) :=∂ log �(·)/∂(·) and �′(·) :=∂2 log �(·)/∂(·)2 are the digamma and
trigamma functions, respectively,

zj1 =yjs +�j�j , z̄j1 =�j�j , zj0 =njs −yjs + (1−�j)�j , z̄j0 = (1−�j)�j ,

zj =njs + �j and z̄j = �j .

The derivatives are easily shown to be equivalent to the specification provided by
Morgan (1992), using the recurrence relations for the polygamma functions reported
in Appendix A.1.

The ecological inference problem occurs if the cell counts are unobserved and
the only data available are the row and column sums of the entries observed as
marginal totals. If the row totals are postulated to be fixed and the column totals
are taken to be random observations, the distribution of Ys is a convolution of
© 2009 The Author. Journal compilation © 2009 VVS.
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two beta-binomial distributions (Böckenholt and Dillon, 2000; Wakefield, 2004),
conveniently expressed as

Los(�0, �0, �1, �1)=P(ys |n0s, ns, �0, �0, �1, �1)

=
yu

0s∑
g0s =yl

0s

P(g0s, ys|n0s, ns, �0, �0, �1, �1),

where the summation is over all possible values that y0s can take on given the row
and column margins, with lower bound yl

0s =max[0, ys − (ns −n0s)] and upper bound
yu

0s =min(n0s, ys). Using the summary notation

Cg
js = log �(njs +1)− log �(gjs +1)− log �(njs −gjs +1),

with g1s =ys − g0s, the convolution log-likelihood of the marginal observation for
table s is

`os(�0, �0, �1, �1; ys)=
yu

0s∑
g0s =yl

0s

{ ∑
j =0,1

Cg
js + log �(�j)− log �(�j�j)

− log �((1−�j)�j)+ log �(gjs +�j�j)

+ log �(njs −gjs + (1−�j)�j)− log �(njs + �j)
}

,

(g1s =ys −g0s).

For a single 2×2 table, the conditional distribution of Y0s given Ys is an extended
beta-hypergeometric likelihood, obtained as

Lms(�0, �0, �1, �1)=P(y0s |ys, n0s, ns, �0, �0, �1, �1)

= P(y0s, y1s |n0s, ns, �0, �0, �1, �1)∑yu
0s

g0s =yl
0s

P(g0s, ys |n0s, ns, �0, �0, �1, �1)
. (1)

Let �= (�0, �0, �1, �1)T. Taking logarithms of both sides of (1) and rearranging we
have

`cs(�; y0s, y1s)=`os(�; ys)+`ms(�; y0s |ys), (2)

where `cs(�; y0s, y1s) is the complete, `ms(�; y0s |ys) the missing and `os(�; ys) the
observed data log-likelihood for table s.

3 Expectation–maximization

Maximum-likelihood estimation helps obtain model parameters for which the
observed data are most likely. The EM algorithm circumvents direct consideration of
`os(�; ys) by working with the complete data log-likelihood `cs(�; y0s, y1s) (Dempster
et al., 1977). Define �(t) to be the maximizer at iteration t, for t =0, 1, . . . . As the
© 2009 The Author. Journal compilation © 2009 VVS.
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observed data log-likelihood does not depend on Y0s, taking expectations of both
sides of (2) with respect to the current (posterior) conditional distribution
P(g0s |ys, �(t)) – hereafter referred to as E{· |ys, �(t)} – yields

Q(� |�(t))=
S∑

s =1

`os(�; ys)+
S∑

s =1

E{`ms(�; y0s |ys) |ys, �(t)},

where

Q(� |�(t))=
∑

s

E{`cs(�; y0s, y1s) |ys, �(t)}

=
∑

s

∑
g0s

log{P(g0s |�)P(ys |g0s, �)}P(g0s |ys, �(t)).

The EM algorithm starts from �(0) and then alternates between the expectation and
maximization steps until a stopping criterion has been met

E-step: compute Q(� |�(t)),
M-step: maximize Q(� |�(t)) with respect to �.

In the M-step, the estimates �(t +1) are obtained from �(t) as �(t +1) =arg max�

Q(� |�(t)). To perform this maximization, the gradient of Q with respect to � is
equated to zero

∂Q(� |�(t))
∂�

=
∑

s

∑
g0s

∂ log{P(g0s |�)P(ys |g0s, �)}/∂�P(g0s |ys, �(t))=0.

Solving for �jk, with �01 =�0�0, �00 = (1−�0)�0, �11 =�1�1 and �10 = (1−�1)�1, results
in the following iterative M-step scheme

�(�(t +1)
jk )= 1

s

∑
s

∑
g0s

{
�(z(t)

jk )−�(z(t)
j )+�(z̄(t)

j )
}

P(g0s |ys, �(t)), (3)

�(t +1)
j =�−1(�(t +1)

j1 )/�(t +1)
j ,

�(t +1)
j =�−1(�(t +1)

j0 )+�−1(�(t +1)
j1 ),

where zj1 =gjs +�j�j , zj0 =njs − gjs + (1 −�j)�j , zj =njs + �j , and z̄j = �j . Note that the
M-step requires inverting the digamma function. This inversion can be performed
efficiently using a Newton update procedure proposed by Minka (2003) and repro-
duced in Appendix A.2.

Minka (2003) also offers a fixed-point iteration algorithm to obtain parameter
estimates for the Dirichlet-multinomial distribution. The idea behind this alterna-
tive generalized EM algorithm is to guess an initial �(t), find a function that bounds
the log-likelihood from below which is tight at �(t), and then to optimize this func-
tion in closed form to arrive at a new guess �(t +1). This approach is also guaranteed
© 2009 The Author. Journal compilation © 2009 VVS.
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to converge to a stationary point of the likelihood. As described in Appendix A.3,
when applied to the current model, the fixed-point algorithm leads to the following
convergent iterative scheme for computing the ML estimates

�(t +1)
jl =�(t)

jl

∑
s

∑
g0s

{�(z(t)
jl )−�(z̄(t)

jl )}P(g0s |ys, �(t))∑
s

∑
g0s

{�(z(t)
j )−�(z̄(t)

j )}P(g0s |ys, �(t))
, (4)

where the parameter �jl is taken to be �01 =�0, �00 = �0, �11 =�1, �10 = �1, and

zj1 =gjs +�j�j , z̄j1 =�j�j , zj0 =njs −gjs + (1−�j)�j , z̄j0 = (1−�j)�j ,

zj =njs + �j , z̄j = �j .

Because the bound on the log-likelihood only matches the first-order derivatives,
convergence of the EM iterations is linear and the algorithm can thus be slow. There-
fore, while EM has an important theoretical advantage in that it provides statisti-
cal structure to the current missing data problem, it may be more convenient for
parameter estimation to switch to a quadratic convergence method such as New-
ton–Raphson (NR). The NR general update rule is �(t +1) =�(t) − H−1g, where H
is the Hessian matrix of the second-order derivatives of the observed data log-like-
lihood function and g the gradient vector of the log-likelihood, all evaluated at �(t).
The NR algorithm converges faster than EM, especially if there is a large range of
possible values for the missing interior cell counts. The observed data derivatives are
presented below.

4 Information loss

An important feature of the missing information principle formulated by Orchard
and Woodbury (1972) is that the first-order derivative of the observed data log-
likelihood with respect to the parameters can be obtained by taking the estimated
conditional expectation of the score of the complete data log-likelihood, given the
observed data (see also Woodbury, 1971; Laird, 1985; Steel, Beh and Chambers,
2004). That is, partially differentiating both sides of (2) with respect to �j = (�j , �j)T,
and then taking expectations of both sides with respect to the conditional distribu-
tion of the complete data given the observed data, yields

∂`os

∂�j
=E

{
∂`cs

∂�j

∣∣∣∣ys, �
}

=
yu

0s∑
g0s =yl

0s

∂`cs

∂�j
P(g0s |ys, �).

Differentiating the identity (2) twice and then averaging both sides over the
conditional complete data distributions generates an expression for the pure and
mixed second-order derivatives of the observed data log-likelihood for table s,
evaluated at the ML estimates of �
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∂2`os

∂�j∂�r
=E

{
∂2`cs

∂�j∂�r

∣∣∣∣ys, �
}

+E
{

∂2`ms

∂�j∂�r

∣∣∣∣ys, �
}

=E
{

∂2`cs

∂�j∂�r

∣∣∣∣ys, �
}

+ cov
{(

∂`cs

∂�j
,
∂`cs

∂�r

)∣∣∣∣ys, �
}

=E
{

∂2`cs

∂�j∂�r

∣∣∣∣ys, �
}

+E
{(

∂`cs

∂�j
,
∂`cs

∂�r

)∣∣∣∣ys, �
}

−E
{

∂`cs

∂�j

∣∣∣∣ys, �
}

E
{

∂`cs

∂�r

∣∣∣∣ys, �
}

=
∑
g0s

∂2`cs

∂�j∂�r
P(g0s|ys, �)+

∑
g0s

∂`cs

∂�j

∂`cs

∂�r
P(g0s|ys, �)

−
∑
g0s

∂`cs

∂�j
P(g0s|ys, �)

∑
g0s

∂`cs

∂�r
P(g0s|ys, �), (5)

with �j and �r each being replaced by either �0, �1, �0 or �1 when the derivatives are
with respect to these parameters, and E{(∂`cs/∂�j , ∂`cs/∂�r)|ys, �}=0, if r =1− j.

Negating the derivatives in (5) and summating over all S tables yields the observed
information matrices

io(�)= ic(�)− im(�),

where io(�) is the observed data observed information matrix, ic(�) the information
in the complete data, and im(�) the information in the unobserved data conditional
on the observed. This result, termed ‘the MIP’, is appealing in that it argues that
the observed information equals the complete information minus the missing infor-
mation.

The observed data Fisher (expected) information is obtained by taking expecta-
tions of both sides of (5) over the marginal distribution P(ys|�) – denoted as Eys{·}
– and multiplying the result by −1. The expected values of the pure and mixed sec-
ond-order derivatives of the observed data log-likelihood for table s are

Eys

{
∂2`os

∂�j∂�r

}
=Eys

{
E

(
∂2`cs

∂�j∂�r

∣∣∣∣ys, �
)}

+Eys

{
E

(
∂2`ms

∂�j∂�r

∣∣∣∣ys, �
)}

=
ns∑

ys =0

{ yu
0s∑

g0s =yl
0s

∂2`cs

∂�j∂�r
P(g0s|ys, �)+

∑
g0s

∂`cs

∂�j

∂`cs

∂�r
P(g0s|ys, �)

−
∑
g0s

∂`cs

∂�j
P(g0s|ys, �)

∑
g0s

∂`cs

∂�r
P(g0s|ys, �)

}
P(ys|�),

where

Eys{E(∂2`cs/∂�j∂�j |ys, �)}=−Eys{E((∂`cs/∂�j , ∂`cs/∂�j)|ys, �)},

Eys{E(∂2`cs/∂�j∂�1−j |ys, �)}=−Eys{E((∂`cs/∂�j , ∂`cs/∂�1−j)|ys, �)}
and
© 2009 The Author. Journal compilation © 2009 VVS.
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Eys{E((∂`cs/∂�j , ∂`cs/∂�r)|ys, �)}=0, if r =1− j.

Negating the expected derivatives and summating over tables gives the observed
data Fisher information matrix which, upon setting � to the ML values, is presented
as

Io(�)= Ic(�)− Im(�).

This identity, as shown by Meng and Rubin (1991), may be rewritten as

Io(�)= Ic(�){I−�(�)}T, (6)

where I is a (4×4) identity matrix and �(�)= Im(�) [Io(�)+ Im(�)]−1 is the informa-
tion ratio matrix which measures the proportion of information about � that is miss-
ing by not also observing y0s in addition to ys (see also Imai et al., 2008). Hence this
result expresses the observed data Fisher information matrix as the complete data
Fisher information matrix and a shrinkage matrix that takes account of the loss of
information because of the missing cell entries. Inverting both sides of (6) gives the
estimates

Io(�)−1 = Ic(�)−1{I+�(�) [I−�(�)]−1}.

Thus the observed data (co)variance matrix equals the complete data (co)variance
matrix plus an incremental matrix that represents the additional uncertainty in 2×2
ecological tables.

5 Bias of ML estimators

Maximum-likelihood estimators may be biased estimators of the true parameter val-
ues. In many practical problems, this bias is of limited consequence as the absolute
bias decreases with the sample size (or total Fisher information) and as it is typi-
cally small relative to the standard error. In finite samples of limited size (and for
estimates with large standard errors), bias may be substantial, however, making it
important to study. Cox and Snell (1968) provide an order n−1 approximation
for the biases of the ML estimators of parameters of any distribution. Let b(�̂j) be
the n−1 bias of the estimator, with �̂j being either �̂j or �̂j . For the beta-binomial
convolution model considered here, the bias can be expanded in the form

b(�̂j)= 1
2

∑
I�j�r I�t�u

(
K�r�t�u +2J�r�t ,�u

)
, (7)

where the index parameters �r, �t and �u are each replaced by either �0, �1, �0 or �1

and the summation is over the resulting 43 elements of the sum. The explicit expres-
sion for the biases of �̂j and �̂j is presented in Appendix A.4. The superscripts in
(7) denote matrix inversion of the observed data expected information matrix I (the
subscript ‘o’ is suppressed to simplify notation), so that I�j�r = (I−1)�j�r , with
© 2009 The Author. Journal compilation © 2009 VVS.
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(I)�j�r
=

∑
s

Eys (−∂2`os/∂�j∂�r),

K�r�t�u
=

∑
s

Eys (∂
3`os/∂�r∂�t∂�u) and

J�r�t ,�u
=

∑
s

Eys (∂
2`os/∂�r∂�t, ∂`os/∂�u),

with the expectations taken over the marginal distribution P(ys|�), and �r, �t and �u

each being replaced by either �0, �1, �0 or �1, when the derivatives are with respect
to these parameters.

The expected third-order derivatives of the observed data log-likelihood are

Eys

(
∂3`os

∂�r∂�r∂�r

)
=−3Eys

(
∂`os

∂�r
,
∂2`os

∂�2
r

)
−Eys

(
∂`os

∂�r
,
∂`os

∂�r
,
∂`os

∂�r

)
,

Eys

(
∂3`os

∂�r∂�r∂�t

)
=−2Eys

(
∂`os

∂�r
,

∂2`os

∂�r∂�t

)
−Eys

(
∂`os

∂�t
,
∂2`os

∂�2
r

)

−Eys

(
∂`os

∂�r
,
∂`os

∂�r
,
∂`os

∂�t

)
,

Eys

(
∂3`os

∂�r∂�t∂�u

)
=−Eys

(
∂`os

∂�r
,

∂2`os

∂�t∂�u

)
−Eys

(
∂`os

∂�t
,

∂2`os

∂�r∂�u

)

−Eys

(
∂`os

∂�u
,

∂2`os

∂�r∂�t

)
−Eys

(
∂`os

∂�r
,
∂`os

∂�t
,
∂`os

∂�u

)
,

where

∂`os/∂�r =E(∂`cs/∂�r|ys, �),

∂2`os/∂�2
r =E(∂2`cs/∂�2

r |ys, �)+E(∂`cs
2/∂�r|ys, �)−E(∂`cs/∂�r|ys, �)2,

and

∂2`os/∂�r∂�t =E(∂2`cs/∂�r∂�t|ys, �)+E((∂`cs/∂�r, ∂`cs/∂�t)|ys, �)

−E(∂`cs/∂�r|ys)E(∂`cs/∂�t|ys, �),

with

E((∂`cs/∂�r, ∂`cs/∂�t)|ys, �)=0, if t =1− j.

The bias-corrected ML estimate �̂
c
j can be obtained using �̂

c
j = �̂j −b(�̂j), where �̂j is

the uncorrected estimate.

6 Empirical examples

We present two studies to illustrate selected results of the previous sections.

6.1 Student workload and grades

The first application is a study to assess the relationship between student-reported
workload required to complete course units and teacher-awarded course grades show-
© 2009 The Author. Journal compilation © 2009 VVS.



34 R. Eisinga

ing student’s performance. Data were taken from the records and reports of ns =9 MSc
students who in 2006-2007 have evaluated S =10 courses offered by the Radboud Uni-
versity Nijmegen. The data available for analysis consist of the number of students who
reported more than nominal workload for course s in an anonymous evaluation ques-
tionnaire (n0s) and the number of students who received a grade of eight or higher (ys)
for course s, on a 10-point scale, potentially ranging from 0 (very bad) to 10 (excellent).
The marginal totals are n0 = (6, 6, 3, 4, 4, 1, 3, 8, 1, 6) and y = (9, 4, 7, 3, 7, 2, 5, 3, 9, 0).
The cross-classified counts are unavailable as the evaluations were submitted anon-
ymously. Table 2 displays the EM iterates obtained using (3).

Table 2. Expectation–maximization iterates.

t �(t)
0 �(t)

0 �(t)
1 �(t)

1 Q(�)(t) –2`o(�)(t)

0 0.500000 1.000000 0.500000 1.000000 −31.469871 47.868245
1 0.559371 1.004756 0.523584 1.023260 −31.125080 47.258738
2 0.587411 1.007772 0.528429 1.043160 −31.014048 47.115523
3 0.601756 1.008137 0.527058 1.061520 −30.959361 47.064992
4 0.609701 1.006755 0.524061 1.079192 −30.924327 47.037748
5 0.614420 1.004329 0.521030 1.096445 −30.898975 47.018535

10 0.622313 0.986462 0.512183 1.176663 −30.829666 46.957551
50 0.626118 0.873011 0.500493 1.504337 −30.660371 46.840406

100 0.626587 0.834535 0.498147 1.597617 −30.611626 46.832941
250 0.626680 0.825826 0.497640 1.619123 −30.600623 46.832693
400 0.626680 0.825771 0.497637 1.619265 −30.600553 46.832693
434 0.626680 0.825771 0.497637 1.619265 −30.600553 46.832693

The ML estimates �̂0 and �̂1 – determined by EM as 0.627 and 0.498, respec-
tively – suggest that students who reported above-nominal workload have on aver-
age a higher probability of obtaining a grade of eight or higher than those who
reported nominal workload or less. However, as indicated by the low values for the
�̂0 and �̂1 estimates, there is a substantial amount of heterogeneity in probability
across courses. The estimates �̂0 and �̂0 imply a beta distribution with shape para-
meters Beta(0.518, 0.308) [= (0.62668 × 0.825771, (1 − 0.62668) × 0.825771)] and �̂1

and �̂1 a Beta(0.806, 0.814) distribution. The probability density function of the two
distributions is U-shaped.

The estimated Fisher information about the parameters provided by the observed
data and its inverse are

Io(�̂)�0,�0,�1,�1
=

⎛
⎜⎜⎝

41.872 −0.519 21.307 −0.038
−0.519 1.168 −0.349 0.101
21.307 −0.349 42.960 −0.046
−0.038 0.101 −0.046 0.284

⎞
⎟⎟⎠,

Io(�̂)−1 =

⎛
⎜⎜⎝

0.032 0.010 −0.016 −0.002
0.010 0.889 0.002 −0.313

−0.016 0.002 0.031 0.002
−0.002 −0.313 0.002 3.634

⎞
⎟⎟⎠.
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Had the complete data 2 × 2 tables been available, the Fisher information matrix
and the variance–covariance matrix, evaluated at the observed data ML estimates,
would have been

Ic(�̂)�0,�0,�1,�1
=

⎛
⎜⎜⎝

66.757 −1.853 0 0
−1.853 2.984 0 0

0 0 70.916 0.015
0 0 0.015 0.641

⎞
⎟⎟⎠,

Ic(�̂)−1 =

⎛
⎜⎜⎝

0.015 0.010 0 0
0.010 0.341 0 0
0 0 0.014 −0.001
0 0 −0.001 1.560

⎞
⎟⎟⎠.

Perhaps the most notable difference with respect to the off-block elements is the rel-
atively strong covariance between the estimates �̂0 and �̂1. The estimated parameter
inter-correlation is r̂�0,�1

=−0.501. As to the block-diagonal elements, the greatest
information loss appears to occur for the �̂j parameters. The observed marginal data
provide relatively little information about the heterogeneity parameters and their
estimated variances are consequently large relative to the estimates themselves. This
may be due to the sparsity of the data. If all the observed data marginal counts
are increased by a factor of 10 and the parameters are subsequently re-estimated,
the ML estimates change to �̂�0,�0,�1,�1

= (0.627, 0.375, 0.558, 0.568) and the observed
data parameter variances to �̂2

o = (0.024, 0.107, 0.022, 0.162). This finding suggests
that �̂1 is most affected by the meagre marginal totals. The estimated biases,
calculated as b(�̂0, �̂0, �̂1, �̂1)= (−0.010, 0.609, 0.013, 1.694), support this view.
Whereas the �̂j parameters are only slightly biased, the estimated biases of the �̂j

parameters, �̂1 in particular, are severe.
These results may lead one to examine a convolution binomial model for these

data rather than a beta-binomial one. Application of the convolution binomial dis-
tribution yields similar estimates for �̂0 (0.610) and �̂1 (0.500), but this model, albeit
more parsimonious, has a worse fit to the observed data (−2`o(�̂)=64.421). In addi-
tion, note from Table 2 that the EM algorithm requires 434 iterations to converge.
The NR algorithm helps obtain the same ML estimates in five iterations, using
identical starting values and stopping criterion.

6.2 Party registration and race

The second example concerns an examination of the party registration–race data
analyzed by Wakefield (2004). The population data are from S =64 counties in
the southern US state of Louisiana collected in 1990, for which n0s and n1s are
black and white, respectively, and ys are Republican and (ns − ys) are Democratic
registration (N =1,980,775). For these 64 tables the cross-classified counts are avail-
able. The observed population-averaged proportions of Republican party registra-
tion are 0.035 for black people and 0.254 for white people. The standard deviations
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Table 3. ML parameter estimates and biases.

Beta-binomial Product
convolution beta-binomial
ecological data complete data

�̂0 0.075 0.031
�̂0 58.054 145.837
�̂1 0.174 0.195
�̂1 18.973 20.704
b(�̂0) −6.0×10−4 −3.9×10−7

b(�̂0) 301.117 7.519
b(�̂1) 1.7×10−4 −1.1×10−5

b(�̂1) 1.666 0.972

– obtained as 0.013 and 0.107, respectively – indicate that there is substantial varia-
tion in the proportions of white people with Republican registration across counties;
the fractions vary from 0.072 to 0.417. It may also be noted that the grand totals in
this application are large (the maximum value of ns is 217,967) and that the number
of possible complete data tables to be processed in computing the marginal expecta-
tions is in the order of 31.7 billion [≈∑64

s =1

∑ns
ys =0 yu

0s −yl
0s +1]. Hence it may take

some time for a computer to calculate the desired results.
The NR algorithm was used to estimate both the ML parameters of the beta-

binomial convolution model using the marginal totals only, and the ML parameters
of the product binomial distribution employing the internal cell counts. The results
are presented in Table 3.

The �̂j parameter estimates of the beta-binomial convolution model are relatively
close to the corresponding product beta-binomial estimates. The same goes for �̂1. A
large difference in magnitude is found for the heterogeneity parameter �̂0. However,
the discrepancy is not as gross as it may seem. The overall shapes of the probability
density function of Beta(0.075,58.054) and Beta(0.031,145.837) are rather similar.
The latter has a somewhat more extended tail to the right, but they are both very
peaked.

The biases of the ML parameters of the beta-binomial convolution model were
obtained using (7). The bias formula for the beta-binomial model is presented in
Appendix A.5. As can be seen in Table 3, the estimated biases of the �̂j para-
meters are negligibly small. The absolute biases of �̂j appear large, with the largest
bias found for �̂0. However, the parameters have a small bias compared with the
magnitude of the standard error.

For the beta-binomial convolution model applied to the 2 × 2 ecological tables,
the variance–covariance matrix is estimated as

Io(�̂)−1
�0,�0,�1,�1

=10−2

⎛
⎜⎜⎝

0.131 −188.404 −0.055 −1.025
−188.404 1, 828, 112.399 80.291 −24, 460.628

−0.055 80.291 0.035 −0.526
−1.025 −24,460.628 −0.526 1692.182

⎞
⎟⎟⎠,

and the variance–covariance matrix which would have been obtained had all within-
table counts been observed is
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Ic(�̂)−1
�0,�0,�1,�1

=10−2

⎛
⎜⎜⎝

0.002 −1.336 0 0
−1.336 11,177.834 0 0

0 0 0.011 −0.982
0 0 −0.982 1111.071

⎞
⎟⎟⎠.

This may be compared with the estimated (co)variance matrix for the product beta-
binomial model applied to the complete data cross-classified counts

Icc(�̂)−1
�0,�0,�1,�1

=10−2

⎛
⎜⎜⎝

0.001 −1.525 0 0
−1.525 75,577.540 0 0

0 0 0.011 −0.922
0 0 −0.922 1315.850

⎞
⎟⎟⎠.

Note that the estimated variances for �̂j obtained for the ecological data are close
to the variances obtained for complete data cross-classified counts. The covariances
between �̂j and �̂j are also roughly similar. The parameter variances for �̂j are very
large and fail to correspond.

7 Discussion

This paper examined the beta-binomial convolution model for the analysis of a
series of 2×2 tables with missing cell counts. The model is appropriate to use when
the totals of one margin are fixed at their observed values, and the other marginal
totals are said to be the sum of two independent beta-binomials. We considered ML
parameter estimation using the EM algorithm and Fisher information loss and bias
of the ML estimators.

When analyzing ecological data some simplifying assumptions or approximations
have to be necessarily made. The current paper takes the average probabilities and
the heterogeneity parameters to be constant across tables. A modification of the
model could be to regress the parameters on relevant covariates, thereby allowing
them to vary. Moreover, inference is accomplished by restricting the parameter space
to the set of 2 × 2 contingency tables that have the same fixed row sums as the
observed tables. If the assumption that part of the data is fixed is difficult to
fulfill, one may consider the adoption of a bivariate beta-binomial distribution with
neither margin fixed. The likelihood function then factorizes into a marginal beta-
binomial random variable for the row totals and two conditional beta-binomials for
the two rows, making implementation of the distributions and ML parameter
estimation straightforward. (See Hamdan and Nasro, 1986 and Kocherlakota and
Kocherlakota, 1992, for a discussion of the bivariate binomial distribution if the
data consist of only marginal information.)
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Appendix

A.1 Recurrence relations for polygamma functions

The digamma and trigamma functions satisfy the following difference equations

[�(n+�j�r)−�(�j�r)]�j =
n∑

y =1

�j

(�j�r +y −1)
,

[�′(n+�j�r)−�′(�j�r)]�2
j =

n∑
y =1

�2
j

(�j�r +y −1)2 ,

[�′(n+�j�r)−�′(�j�r)]�j�r =
n∑

y =1

�j�r

(�j�r +y −1)2 .

A.2 Inversion of the � function

The inversion of the digamma function x =�−1(y) has to be done iteratively, since
no closed-form solution exists. Minka (2003) proposes Newton’s method to obtain a
highly accurate iterative solution with guaranteed and rapid convergence. The com-
plete Newton iteration to solve �(x)=y for x given y is as follows. Set the initial
value

x(0) =
{

exp(y)+0.5 if y ≥−2.22
−1/(y + 	) if y <−2.22,

where 	 is the Euler–Mascheroni constant. Then iterate x(t +1) =x(t) +
(t), with 
(t) =
(y − �(x(t)))/�′(x(t)). Less than five Newton updates are adequate to achieve more
than ten–digit accurate values.

A.3 Generalized EM update procedure using fixed-point iteration

Using the following inequalities associated with the ratio �(x +�)/�(x) to construct
a lower bound on the log likelihood

�(�)
�(n+ �)

≥ �(�(t)) exp((�(t) − �)d)
�(n+ �(t))

,

�(y +��)
�(��)

≥ �(y +�(t)�(t))
�(�(t)�(t))

(�(t)�(t))−e0 (��)e0 if y ≥1,
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�((n−y)+ (1−�)�)
�((1−�)�)

≥ �((n−y)+ (1−�(t))�(t))
�((1−�(t))�(t))

((1−�(t))�(t))−e1 ((1−�)�)e1

if n−y ≥1,

where

d =�(n + �(t))−�(�(t)),

e0 = [�(y +�(t)�(t))−�(�(t)�(t))]�(t)�(t),

e1 = [�((n−y)+ (1−�(t))�(t))−�((1−�(t))�(t))](1−�(t))�(t),

we obtain [correction added on 1 September 2008, after first online publication: the
following inequality has been corrected]

∑
s

∑
g0s

log

{ ∏
j =0,1

exp{Cg
js}

�(�j)
�(njs + �j)

�(gjs +�j�j)
�(�j�j)

�((njs −gjs)+ (1−�j)�j)
�((1−�j)�j)

}

P(g0s|ys, �(t))

≥
∑

s

∑
g0s

log

{ ∏
j =0,1

exp{Cg
js}

�(�(t)
j ) exp{(�(t)

j − �j)dj}
�(njs + �(t)

j )

�(gjs +�(t)
j �(t)

j )

�(�(t)
j �(t)

j )

× �((njs −gjs)+ (1−�(t)
j )�(t)

j )

�((1−�(t)
j )�(t)

j )
(�(t)

j �(t)
j )−e0j (�j�j)e0j

× ((1−�(t)
j )�(t)

j )−e1j ((1−�j)�j)e1j

}
P(g0s|ys, �(t))≡Q′(�|�(t)).

Setting the gradient of Q′ wrt � to zero and solving for �jl yields the update step
(4).

A.4 Biases of �j and �j for the beta-binomial convolution model

Using the general expression (7), the bias of �̂j is obtained as

b(�̂j)=
1
2

{ ∑
k =0,1

[I�j�j I�k�k (K�j�k�k +2J�j�k, �k)

+ I�j�j I�k�k
(
K�j�k�k +2J�j�k, �k

)
+ I�j�k I�k�k

(
K�k�k�k +2J�k�k, �k

)
+ I�j�k I�1−j�1−j

(
K�k�1−j�1−j +2J�k�1−j , �1−j

)
+ I�j�k I�1−k�1−k

(
K�k�1−k�1−k +2J�k�1−k, �1−k

)
+ I�j�1−j I�k�k

(
K�1−j�k�k +2J�1−j�k, �k

)
+ I�j�j I�j�k

(
3K�j�j�k +2J�j�j , �k +4J�j�k, �j

)
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+2I�j�j I�1−j�k
(
K�j�1−j�k +J�j�1−j , �k +J�j�k, �1−j

)
+2I�j�k I�j�1−j

(
K�k�j�1−j +J�k�j , �1−j +J�k�1−j , �j

)
+2I�j�k I�j�k

(
K�k�j�k +J�k�j , �k +J�k�k, �j

)
+2I�j�j I�1−j�k

(
K�j�1−j�k +J�j�1−j , �k +J�j�k, �1−j

)
+2I�j�k I�j�1−j

(
K�k�j�1−j +J�k�j , �1−j +J�k�1−j , �j

)
+2I�j�1−j I�1−j�k

(
K�1−j�1−j�k +J�1−j�1−j , �k +J�1−j�k, �1−j

)
+2I�j�1−j I�1−j�k

(
K�1−j�1−j�k +J�1−j�1−j , �k +J�1−j�k, �1−j

)
+2I�j�k I�j�1−j

(
2K�k�j�1−j +J�k�j , �1−j +2J�k�1−j , �j +J�j�1−j , �k

)
]

+ I�j�1−j I�1−j�1−j
(
K�1−j�1−j�1−j +2J�1−j�1−j , �1−j

)
+ I�j�j I�j�1−j

(
3K�j�j�1−j +2J�j�j , �1−j +4J�j�1−j , �j

)
+2I�j�1−j I�j�1−j

(
K�1−j�j�1−j +J�1−j�j , �1−j +J�1−j�1−j , �j

)
+2I�j�j I�j�1−j

(
2K�j�j�1−j +J�j�j , �1−j +2J�j�1−j , �j +J�j�1−j , �j

)}
, j =0, 1.

(A.4)

The expression for b(�̂j) is obtained by interchanging the index parameters � and �
in the RHS of (A.4).

A.5 Biases of �j and �j for the beta-binomial model

The bias of the ML estimators for the beta-binomial model is obtained using

b(�̂j)=
1
2
{I�j�j I�j�j (K�j�j�j +2J�j�j , �j)+ I�j�j I�j�j (K�j�j�j +2J�j�j , �j)

+ I�j�j I�j�j (K�j�j�j +2J�j�j , �j)

+ I�j�j I�j�j (3K�j�j�j +2J�j�j , �j +4J�j�j , �j)

+2I�j�j I�j�j (K�j�j�j +J�j�j , �j +J�j�j , �j)}, j =0, 1, (A.5)

where the superscripts denote matrix inversion of the complete data expected infor-
mation matrix I (the subscript ‘c’ is omitted for notational convenience), so that

I�j�r = (I−1)�j�r ,

with

(I)�j�r
=−

∑
s

Eys (∂
2`cs/∂�j∂�r),

K�r�t�u
=

∑
s

Eys (∂
3`cs/∂�r∂�t∂�u) and

J�r�t ,�u
=

∑
s

Eys (∂
2`cs/∂�r∂�t, ∂`cs/∂�u),
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with �r, �t and �u each being replaced by either �j or �j . The expression for b(�̂j) is
obtained by interchanging �j and �j in the RHS of (A.5).

The third-order derivatives of the complete data log-likelihood wrt �r,t,u(=�j , �j)
are

∂3`cs

∂�r∂�r∂�r
=−3Eys

(
∂`cs

∂�r
,
∂2`cs

∂�2
r

)
−Eys

(
∂`cs

∂�r
,
∂`cs

∂�r
,
∂`cs

∂�r

)
,

∂3`cs

∂�r∂�r∂�t
=−2Eys

(
∂`cs

∂�r
,

∂2`cs

∂�r∂�t

)
−Eys

(
∂`cs

∂�t
,
∂2`cs

∂�2
r

)

−Eys

(
∂`cs

∂�r
,
∂`cs

∂�r
,
∂`cs

∂�t

)
,

where the expectation is taken over the marginal distribution P(ys|�).
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