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as in phantom membranes. However, any kind of accu-
rate statement about the model can be justified only in
the limit d. — oo and, strictly speaking, nothing can be
said rigorously for the real case of d = 3, D = 2 and
d.=1.

To characterize the long wavelength limit of the height
fluctuations we compare the results of atomistic simu-
lations to the predictions of this theory for the normal-
normal correlation functions G(¢) = (|n,|?). Starting
from Eq. (1) an expression for G(g) has been given from
general scaling considerations[6, 10, 15] in the form of an
effective Dyson equation

G, @) =Gyt (@) +2(g) (3)
where Gy is the value derived in harmonic approximation
TN
G = 4
(@) = =0 @

and the self energy is

w0 - A2 (L) )

with N the number of atoms, Sy = L,L,/N the area
per atom, T the temperature in units of energy, qo =
27+/B/k, B the two-dimensional bulk modulus [13] and
A an unknown numerical factor.

Until recently, this phenomenological continuum model
was the only way to describe the statistical mechanics
of membranes since all known real membranes [6] were
too complicated for atomistic models. The situation has
been changed drastically by the discovery of graphene [7]
which is the first example of a truly two-dimensional sys-
tem (just one atom thick) and, thus, a prototype crys-
talline membrane [8, 9]. The experimental observation of
ripples in freely hanged graphene [14] stimulated a large
theoretical activity [15, 16, 17, 18, 19, 20, 21]. In partic-
ular, using the accurate bond order potential for carbon
LCBOPII [22], we were able to simulate structural and
thermodynamical properties of graphene at finite tem-
peratures [15, 21] by straightforward Monte Carlo (MC)
simulations. The simulations confirmed the existence
of thermally induced intrinsic ripples at finite tempera-
tures resulting in strong anharmonic effects. However,
we found that the normal-normal correlation function
could not be described by Eq. (3) over the whole range
of ¢ [15]. In fact, G(q) followed the power law result-
ing from the harmonic approximation (phonon picture,
n = 0) at large enough ¢, but, after bending, at smaller
q’s we found a drop of the correlation functions not com-
patible with a power law. Our conjecture at that time
was that the extreme rigidity of graphene could be the
reason why it could not be described by the phenomeno-
logical theory of membranes in a continuum medium ap-
proach [10]. However, we felt that this point deserved
further investigation. Here, we focus on the low-g re-
gion in order to establish firmly whether a scaling law
exists and, if so, to determine the scaling exponent. To

this purpose, we simulate large systems, introduce new
MC moves for phase space sampling and examine more
than one model of the interatomic forces, including a
simple quasi-harmonic (QH) model that yields a not too
rigid membrane and the extremely rigid case of graphene
which is well described by LCBOPII. In addition, for the
QH model we verified ergodicity of our MC simulations
by comparing with Molecular Dynamics (MD) results.

We begin by considering a relatively simple QH model
with energy given by:

U = %ZZ Kr(rij — 7"5(1)2 + K0 Z (yijk - y5q)2

i i k#4,5

where the summations over 7 and k are over the nearest-
neighbors of atom i, v, = cosfy, and yeq = cosfeq,
with roq = 1.42 A and feq = 27/3 the ground state
equilibrium nearest neighbor distance and bond angle
in graphene. The stretching and the bending force con-
stants, K, = 22 eV A2 and Ky = 4 eV, respectively,
were chosen to yield elastic moduli for isotropic and uni-
axial compressions equal to those for the LCBOPII [21].

In Fig. 1 we show the function G(q)/N (dotted line)
calculated by extensive standard Monte Carlo simula-
tions in the canonical ensemble at 300 K for a system
with N = 37888, L, = 314.82 A and L, = 315.24 A and
periodic boundary conditions in the zy-plane. Starting
from the Bragg peak at ¢ = 47/(3ry) = 2.94 A1 and
going towards lower ¢ we find, first, the power law n = 0
due to the harmonic contribution, then, a smaller slope
followed by a drop at the smallest ¢ < 0.08 A~! which
corresponds to a wavelength of about 75 A. This drop
is similar to the one mentioned above and found previ-
ously in Ref. 15 with the LCBOPII for graphene. These
results are obtained by averaging over many configura-
tions in the canonical ensemble obtained by the ordinary
MC procedure which is based on random displacements
of randomly chosen individual atoms and volume (area)
fluctuations with a Metropolis acceptance rule. By us-
ing Eq. (4) we find that the bending constant for the
QH potential is Kk = 0.4 ¢V, much softer than the 1.1 eV
appropriate for graphene [15], due to neglected interac-
tions beyond first neighbors. The observation that also
the simple QH model shows a suppression of long wave-
length excitations made us think of the possibility that
standard MC is not an efficient sampling technique in
this case. To resolve this issue we (i) extended our MC
phase space sampling with a new type of collective trial
events that we call ‘wave moves’ described below, and (ii)
performed MD simulations for the QH model [23], allow-
ing a direct comparison with the MC results, with and
without wave moves. The equivalence of time averages in
MD simulations with ensemble averages in MC simula-
tions guarantees that the system is in thermodynamical
equilibrium (ergodic).

In Fig. 1 we compare the results of standard MC with
the results obtained by MD and by MC with the addition
of wave moves. The MD results coincide with the stan-












