Measurement of the $Z \rightarrow \nu \nu$ cross section and limits on anomalous $ZZ\gamma$ and $Z\gamma\gamma$ couplings in pp collisions at $\sqrt{s} = 1.96$ TeV

V.M. Abazov36, B. Abbott75, M. Abolins65, B.S. Acharya29, M. Adams51, T. Adams69, E. Aguilo6, M. Ahsan59, G.D. Alexeev36, G. Alkhazov40, A. Alton64, G. Alves55, G.A. Alves2, M. Anastasio35, L.S. Ancu35, T. Andeen53, M.S. Anzelc53, M. Aoki50, Y. Arnoud14, M. Arov59, M. Arthaud18, A. Askew49, B. Åsman44, O. Atramentov49, C. Avila8, J. Backus-Mayes82, F. Badaud13, L. Bagby50, B. Baldin50, D.V. Bandurin59, P. Banerjee39, S. Banerjee39, E. Barberis63, A.-F. Barfuss15, P. Bargassa80, P. Bargass80, P. Baringer38, J. Barreto2, J.F. Bartlett50, U. Bassler18, D. Bauer43, S. Beale6, A. Bean58, M. Begalli3, M. Begel73, C. Belanger-Champagne41, L. Bellantoni50, A. Bellavance50, J. Benitez55, S.B. Beri27, G. Bernard17, R. Bernhard23, I. Bertram42, M. Besancon18, R. Beuselinck43, V.A. Bezzubov39, P.C. Bhat50, V. Bhatnagar27, G. Blazey52, S. Blessing49, K. Bloom67, A. Boehrlein50, D. Boline52, T.A. Bolton59, E.E. Boos38, G. Borissov42, T. Bose77, A. Brandt78, R. Brock65, G. Broojmans70, V. Buescher22, V. Bunichev38, S. Burdin42, T.H. Burnett82, C.P. Buszello43, P. Calfayan25, B. Calpas15, S. Calvet16, J. Cammin71, M.A. Carrasco-Lizarraga33, E. Carrera49, W. Carvalho3, B.C.K. Casey50, H. Castilla-Valdez33, S. Chakrabarti72, D. Chakraborty52, K.M. Chan55, A. Chandra48, E. Cheu45, D.K. Cho62, S. Choi32, B. Choudhary28, L.V. Dudko38, D. Duggan49, A. Duperrin15, S. Dutt47, A. Dyshkant52, M. Eads67, D. Edmunds65, J. Ellison38, V.D. Elvira50, Y. Enari77, S. Eno61, P. Ermolov38, M. Escalier15, H. Evans54, A. Egede73, V.N. Evdokimov39, A.V. Ferapontov59, T. Ferbel61, F. Fiedler24, F. Fillthaut35, W. Fisher50, H.E. Fisk50, M. Fortner52, H. Fox42, S. Fu50, E. Geist19, W. Geng15, C.E. Gerber51, Y. Gershtein49, D. Gillberg6, G. Ginther71, B. Gomez8, A. Goussiou82, P.D. Grannis72, H. Greenlee50, Z.D. Greenwood60, E.M. Gregores4, G. Grenier20, Ph. Gris13, J.F. Grivaz16, A. Grohsjean25, S. Grünendahl50, M.W. Grünewald30, F. Guo72, J. Guo72, G. Gutierrez50, P. Gutierrez75, A. Haas70, N.J. Hadley61, P. Haefner25, S. Hagopian49, J. Haley68, I. Hall65, R.E. Hall17, L. Han7, K. Harder44, A. Harel71, J.M. Hauptman57, J. Hays43, T. Hebbeker21, D. Hedin52, J.J. Hegeman34, A.P. Heinson48, U. Heintz62, C. Hensel22, K. Herne44, G. Hesketh53, M.D. Hildreth55, R. Hörsyk81, T. Hoang49, J.D. Hobbs72, B. Hoe_neisen12, M. Hohlfeld22, S. Hossain75, P. Houben41, Y. Hu72, Z. Hubacek10, N. Huske17, V. Hryniewicz39, R. Illingworth50, A.S. Ito50, S. Jabeen62, J.M. Kohli27, J.-P. Konrath23, A.V. Kozelov39, J. Kraus55, T. Kuhn24, A. Kumar69, A. Kupco11, T. Kurca20, V. Kuzmin48, J. Kvita6, D. Lacroix13, D. Lam55, S. Lammers54, G. Landsberg77, P. Landru82, B. Lancia38, P.A. Kasper50, I. Katsanos70, V. Kaushik78, R. Kehoe79, S. Kermiche15, N. Khalatyan50, A. Khanov76, A. Kharchilava69, Y.N. Kharchee36, D. Khazitsev70, T.J. Kim31, M.H. Kirby53, M. Kirsch21, B. Klima50, J.M. Kohli27, J.P. Konrath23, A.V. Kozelov39, J. Kraus55, T. Kuhn24, A. Kumar69, A. Kupco11, T. Kurca20, V. Kuzmin48, J. Kvita6, D. Lacroix13, D. Lam55, S. Lammers54, G. Landsberg77, P. Lebrun20, H.J. Lubatti82, R. Luna-Garcia38, A.L. Lyon50, A.K.A. Maciel2, D. Mackin80, P. Müttig26, A. Magerkurth64, P.K. Mal82, H.B. Malbouisson3, S. Malhi67, V.L. Malyshev36, Y. Maravin59, B. Martin14, R. McCarthy72, M.M. Meijer35, A. Mehnitchouk29, L. Mendoza8, P.G. Mercadante6, M. Merkin26, K.W. Merritt50, A. Meyer21, J. Meyer22, J. Mitrevski70, R.K. Mommens44, N.K. Mondal29, R.W. Moor6, T. Moulik58, G.S. Muanza15, M. Mulhearn70, A. Murthy60, L. Mumm53, E. Nagy15, M. Naimuddin50, M. Narain77, H.A. Neal54, J.P. Negret8, N. Parua54, A. Patwa73, G. Pawloski80, B. Penning23, M. Perfiliev38, K. Peters44, Y. Peters26, P. Pétroff16, R. Piegaia1, J. Piper52, M.-A. Pleier22, P.L.M. Podesta-Lerma33, V.M. Podstavkov50, Y. Pogorelov55, M.-E. Pol2,
We present the first observation of the $Z\gamma \rightarrow \nu\bar{\nu}\gamma$ process at the Tevatron at 5.1 standard deviations significance, based on 3.6 fb$^{-1}$ of integrated luminosity collected with the D0 detector at the Fermilab Tevatron pp Collider at $\sqrt{s} = 1.96$ TeV. The measured $Z\gamma$ cross section multiplied by the branching fraction of $Z \rightarrow \nu\bar{\nu}$ is 32 ± 9 (stat. $+ \text{syst.}) \pm 2$ (lumi.) fb for the photon $E_\gamma > 90$ GeV. It is in agreement with the standard model prediction of 39 ± 4 fb. We set the most restrictive limits on anomalous trilinear $Z\gamma$ and $ZZ\gamma$ gauge boson couplings at a hadron collider to date, with three constraints being the world's strongest.

PACS numbers: 12.15.Ji, 12.60.Cn, 13.38.Dg, 13.40.Em, 13.85.Qk, 14.70.-e

The standard model (SM) of electroweak interactions is described by the non-Abelian gauge group $SU(2) \times U(1)$. The symmetry transformations of the group allow interactions involving three gauge bosons ($\gamma, W, \text{and} Z$)
through trilinear gauge boson couplings. However, the SM forbids such vertices for the photon and the Z boson at the lowest “tree” level, i.e., the values of the Zγγ and ZZγ couplings vanish. The cross section for the SM Zγ production is very small. However, the presence of finite (anomalous) Zγγ and ZZγ couplings can enhance the yields, especially at higher values of the photon transverse energy (ET). As we are marginally sensitive to one-loop SM contributions [1, 2] to these vertices, observation of an anomalously high Zγ production rate could, therefore, indicate the presence of new physics.

To preserve S-matrix unitarity, the anomalous couplings must vanish at high center-of-mass energies. Hence, the dependence on the center-of-mass energy has to be included in the definition of such couplings. This can be done by using a set of eight complex parameters hV(i = 1,..., 4; V = Z, γ) of the form hV = hV0(1 + s/λ2)ν [3]. Here, s is the square of the center-of-mass energy in the partonic collision, λ is a scale related to the mass of the new physics responsible for anomalous Zγ production, and hV0 is the low energy approximation of the coupling. Following Ref. [3], we will use ν = 3 for hV1 and hV3, and ν = 4 for hV2 and hV4. This choice of ν guarantees the preservation of partial-wave unitarity, and makes the vertex function terms proportional to hV1 and hV3 behave in the same way as terms proportional to hV2 and hV4 at high energies. Couplings hV0 and hV2 (hV0 and hV4) are CP-violating (CP-conserving). In this Letter, we set limits on the size of the real parts of the anomalous couplings: Re(hV0), which we refer to as ATGC in the following.

To study the production of Zγ through trilinear gauge boson couplings. However, the SM forbids such vertices for the photon and the Z boson at the lowest “tree” level, i.e., the values of the Zγγ and ZZγ couplings vanish. The cross section for the SM Zγ production is very small. However, the presence of finite (anomalous) Zγγ and ZZγ couplings can enhance the yields, especially at higher values of the photon transverse energy (ET). As we are marginally sensitive to one-loop SM contributions [1, 2] to these vertices, observation of an anomalously high Zγ production rate could, therefore, indicate the presence of new physics.

To preserve S-matrix unitarity, the anomalous couplings must vanish at high center-of-mass energies. Hence, the dependence on the center-of-mass energy has to be included in the definition of such couplings. This can be done by using a set of eight complex parameters hV(i = 1,..., 4; V = Z, γ) of the form hV = hV0(1 + s/λ2)ν [3]. Here, s is the square of the center-of-mass energy in the partonic collision, λ is a scale related to the mass of the new physics responsible for anomalous Zγ production, and hV0 is the low energy approximation of the coupling. Following Ref. [3], we will use ν = 3 for hV1 and hV3, and ν = 4 for hV2 and hV4. This choice of ν guarantees the preservation of partial-wave unitarity, and makes the vertex function terms proportional to hV1 and hV3 behave in the same way as terms proportional to hV2 and hV4 at high energies. Couplings hV0 and hV2 (hV0 and hV4) are CP-violating (CP-conserving). In this Letter, we set limits on the size of the real parts of the anomalous couplings: Re(hV0), which we refer to as ATGC in the following.

In the past, studies of Zγ production have been performed by the CDF [4] and D0 [5, 6] collaborations at the Tevatron Collider, as well as at the CERN LEP Collider by the L3 [7], and OPAL [8] collaborations. The most recent combination of LEP results can be found in Ref. [9].

The D0 detector [10] consists of a central-tracking system, liquid-argon/uranium calorimeters, and a muon system. The tracking system comprises a silicon microstrip tracker (SMT) and a central fiber tracker (CFT), both located within a ≈ 2 T superconducting solenoid, and provides tracking and vertexing up to pseudorapidities of |η| ≈ 3.0 and |η| ≈ 2.5, respectively. The central and forward preshower detectors (CPS and FPS) are located within the superconducting coil and the calorimeters, and consist of three and four layers of scintillation strips, respectively. The liquid-argon/uranium central calorimeter is divided into a central calorimeter (CC) and two end calorimeters (EC), covering pseudorapidities up to |η| ≈ 1.1 and |η| ≈ 4.2, respectively. The calorimeters are segmented into an electromagnetic section (EM), comprised of four layers, and a hadronic section, divided longitudinally into fine and coarse sections. The calorimeter is followed by the muon system, consisting of three layers of tracking detectors and scintillation trigger counters and a 1.8 T iron toroidal magnet located between the two innermost layers. The muon system provides coverage to |η| ≈ 2. Arrays of plastic scintillators in front of the EM cryostats are used to measure the luminosity.

Data for this analysis were collected with the D0 detector in the period from 2002 to 2008, and correspond to an integrated luminosity of 3.6 fb⁻¹ after the application of data-quality and trigger requirements. Events must satisfy a trigger from a set of high-ET single EM-cluster triggers, which are (99 ± 1)% efficient for photons of ET > 90 GeV.

Photons are identified as calorimeter clusters with at least 95% of their energy deposited in the EM calorimeter, with transverse and longitudinal distributions consistent with those of a photon, and spatially isolated in the calorimeter and in the tracker. A cluster is isolated in the calorimeter if the isolation variable I = |Ecal(0.4)−EEM(0.2)|/EEM(0.2) < 0.07. Here, Ecal(0.4) is the total energy (corrected for the contribution from multiple pp interactions) deposited in a calorimeter cone of radius R = √((Δη)² + (Δϕ)²) = 0.4, and EEM(0.2) is the EM energy in a cone of radius R = 0.2. The track isolation variable, defined as the scalar sum of the transverse momenta of all tracks that originate from the interaction vertex in an annulus of 0.05 < R < 0.4 around the cluster, must be less than 2 GeV.

We obtain the photon sample by selecting events with a single photon candidate of ET > 90 GeV and |η| < 1.1, and require a missing transverse energy in the event of ET > 70 GeV, which effectively suppresses the multijet background. The ET is computed as the negative vector sum of the ET of calorimeter cells and corrected for the transverse momentum of reconstructed muons and the energy corrections to reconstructed electrons and jets. To minimize large ET from mismeasurement of jet energy, we reject events with jets with ET > 15 GeV. We also reject events containing reconstructed muons, and events with cosmic-ray muons identified through a timing of their signal in the muon scintillators. Events with additional EM objects with ET > 15 GeV are rejected. To suppress W boson decays into leptons, events with reconstructed high-pT tracks are removed. To reduce the copious non-collision background (events in which muons from the beam halo or cosmic rays undergo bremsstrahlung, and produce energetic photons), we use a pointing algorithm [12], exploiting the transverse and longitudinal energy distribution in the EM calorimeter and CPS. This algorithm is based on estimates of z positions of production vertices (zEM) along the beam direction assuming that given EM showers are consistent with those of a photon, and spatially isolated from the EM calorimeter and in the tracker. A cluster is isolated in the calorimeter if the isolation variable I = |Ecal(0.4)−EEM(0.2)|/EEM(0.2) < 0.07. Here, Ecal(0.4) is the total energy (corrected for the contribution from multiple pp interactions) deposited in a calorimeter cone of radius R = √((Δη)² + (Δϕ)²) = 0.4, and EEM(0.2) is the EM energy in a cone of radius R = 0.2. The track isolation variable, defined as the scalar sum of the transverse momenta of all tracks that originate from the interaction vertex in an annulus of 0.05 < R < 0.4 around the cluster, must be less than 2 GeV.

The D0 detector [10] consists of a central-tracking system, liquid-argon/uranium calorimeters, and a muon system. The tracking system comprises a silicon microstrip tracker (SMT) and a central fiber tracker (CFT), both located within a ≈ 2 T superconducting solenoid, and provides tracking and vertexing up to pseudorapidities of |η| ≈ 3.0 and |η| ≈ 2.5, respectively. The central and forward preshower detectors (CPS and FPS) are located within the superconducting coil and the calorimeters, and consist of three and four layers of scintillation strips, respectively. The liquid-argon/uranium central calorimeter is divided into a central calorimeter (CC) and two end calorimeters (EC), covering pseudorapidities up to |η| ≈ 1.1 and |η| ≈ 4.2, respectively. The calorimeters are segmented into an electromagnetic section (EM), comprised of four layers, and a hadronic section, divided longitudinally into fine and coarse sections. The calorimeter is followed by the muon system, consisting of three layers of tracking detectors and scintillation trigger counters and a 1.8 T iron toroidal magnet located between the two innermost layers. The muon system provides coverage to |η| ≈ 2. Arrays of plastic scintillators in front of the EM cryostats are used to measure the luminosity.

Data for this analysis were collected with the D0 detector in the period from 2002 to 2008, and correspond to an integrated luminosity of 3.6 fb⁻¹ after the application of data-quality and trigger requirements. Events must satisfy a trigger from a set of high-ET single EM-cluster triggers, which are (99 ± 1)% efficient for photons of ET > 90 GeV.
TABLE I: Summary of background estimates, and the number of observed and SM predicted events.

<table>
<thead>
<tr>
<th>Process</th>
<th>Number of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \rightarrow \ell \nu$</td>
<td>9.67 ± 0.30</td>
</tr>
<tr>
<td>non-collision</td>
<td>5.33 ± 0.39</td>
</tr>
<tr>
<td>$W/Z + \text{jet}$</td>
<td>1.37 ± 0.26</td>
</tr>
<tr>
<td>$W\gamma$</td>
<td>0.90 ± 0.07</td>
</tr>
<tr>
<td>Total background</td>
<td>17.3 ± 0.6</td>
</tr>
<tr>
<td>N_{SM}</td>
<td>33.7 ± 3.4</td>
</tr>
<tr>
<td>N_{obs}</td>
<td>51</td>
</tr>
</tbody>
</table>

Following the procedure described in Ref. [14], we estimate the fraction of non-collision and W/Z events with misidentified jets backgrounds in the final candidate events by fitting their DCA distribution to a linear sum of three DCA templates. These templates are: a template resembling the signal, a non-collision template, and a misidentified jets template. Most of the signal photons are concentrated in the region with DCA < 4 cm. Therefore, we restrict the analysis to this particular range.

Other backgrounds to the $\gamma + E_T$ signal arise from electroweak processes such as $W \rightarrow \ell \nu$, where the electron is misidentified as a photon due to inefficiency of the tracker or hard bremsstrahlung, and $W\gamma$, where the lepton from the W boson decay is not reconstructed.

The $W \rightarrow \ell \nu$ background is estimated using a sample of isolated electrons. We apply the same kinematic requirements as in the photon sample, and scale the remaining number of events by the measured rate of electron-photon misidentification, which is 0.014 ± 0.001. The $W\gamma$ background is estimated using a sample of Monte Carlo (MC) events generated with PYTHIA [15]. These events are passed through a detector simulation chain based on the GEANT package [16], and reconstructed using the same software as used for data. After imposing the same selection requirements as for the photon sample, scale factors are applied to correct for differences between simulation and data. The summary of backgrounds is shown in Table I.

After applying all selection criteria, we observe 51 candidate events with a predicted background of 17.3 ± 0.6 events. To estimate the total acceptance of the event selection requirements, we use MC samples produced with a leading-order (LO) $Z\gamma$ generator [3], passed through a parameterized simulation of the D0 detector. The next-to-leading order (NLO) QCD corrections arising from soft gluon radiation and virtual one-loop corrections are taken into account through the adjustment of the photon E_T spectrum using a K-factor, estimated using a NLO $Z\gamma$ event generator [17]. As we require no jets with $E_T > 15$ GeV to be present in the final state, the NLO corrections, integrated over the photon E_T range after the photon $E_T > 90$ GeV requirement, are $\approx 2\%$ or smaller both for the SM and anomalous $Z\gamma$ production. The NLO corrections distribution is fitted with a smooth function, with an uncertainty of $\approx 5\%$ arising from the fit. The uncertainty on the K-factor from the jet energy scale and resolution is estimated to be $\approx 3\%$. Based on this simulation, the expected number of events from the SM signal is estimated to be 33.7 ± 3.4 events. The number of observed events (N_{obs}) and the number of predicted events (N_{SM}) are summarized in Table I.

The $Z\gamma$ cross section multiplied by the branching fraction of $Z \rightarrow \ell\ell$ is measured to be 32 ± 9 (stat. + syst.) ± 2(lumi.) fb for the photon $E_T > 90$ GeV, which is in good agreement with the NLO cross section of 39 ± 4 fb [17]. The main contribution to the total uncertainty on the measured cross section is the statistical uncertainty on the small number of events in the final sample, and is a factor of four to five larger than the individual systematic uncertainties on photon identification, choice of parton distribution functions (PDF), and kinematic criteria. The uncertainty on the theoretical cross section comes mainly from the choice of PDF (7%) and estimation of the NLO K-factor (5.5%). To estimate the statistical significance of the measured cross section, we perform 10^8 background-only pseudo-experiments and calculate the p-value as the fraction of pseudo-experiments with an estimated cross section above the measured one. This probability is found to be 3.1×10^{-7}, which corresponds to a statistical significance of 5.1 standard deviations (s.d.), making this the first observation of the $Z\gamma \rightarrow \ell\ell\gamma$ process at the Tevatron.

To set limits on the ATGC, we compare the photon E_T spectrum in data with that from the sum of expected $Z\gamma$ signal [3, 17] and the background (see Fig. 1) for each pair of couplings for a grid in which $h_{\gamma\gamma}$ runs from -0.12 to 0.12 with a step of 0.01, and $h_{\gamma\gamma}^Z$ varies from -0.08 to 0.08 with a step of 0.001. The MC samples are generated with the LO $Z\gamma$ generator (corrected for the NLO effects with an E_T-dependent K-factor [17]) for the form-factor $\Lambda = 1.5$ TeV.

Assuming Poisson statistics for the signal and Gaussian distribution of all the systematic uncertainties on the generated samples and on the backgrounds, we calculate the likelihood of the photon E_T distribution in data given the prediction for hypothesized ATGC. To set limits on any individual ATGC at the 95% confidence level (C.L.), we set the other anomalous couplings to zero. The resulting limits in the neutrino channel alone are $|h_{\gamma\gamma}^Z| < 0.036$, $|h_{\gamma\gamma}| < 0.019$, and $|h_{\gamma\gamma}^Z| < 0.035$, $|h_{\gamma\gamma}| < 0.019$. To further improve the sensitivity, we generate the $Z\gamma \rightarrow \ell\ell\gamma$ ($\ell = e, \mu$) MC samples for these couplings and $\Lambda = 1.5$ TeV, and set limits on ATGC for the 1 fb$^{-1}$ data sample used in the previous $Z\gamma$ analysis [6]. The combination of all three channels yields the most stringent limits on the ATGC set at a hadron collider to date: $|h_{\gamma\gamma}^Z| < 0.033$, $|h_{\gamma\gamma}| < 0.0017$, and $|h_{\gamma\gamma}^Z| < 0.033$, $|h_{\gamma\gamma}| < 0.0017$. This is roughly a factor of
three improvement over the results published in Ref. [6]. The limits on the h_{20}^Z, h_{30}^Z, and h_{40}^h couplings improve on the constraints from LEP2, and are the most restrictive to date. The limits on the CP-violating couplings h_{10}^Y and h_{20}^Y are, within the precision of this measurement, the same as the limits on h_{20}^Z and h_{40}^h, respectively. Hence, we can constrain the strength of the couplings but not the phase. As the described method is sensitive only to the magnitude and the relative sign between couplings, the one- and two-dimensional limits are symmetric with respect to the SM coupling under simultaneous exchange of all signs. The 95% C.L. one-dimensional limits and two-dimensional contours are shown in Figs. 2a and 2b for the CP-conserving $Z\gamma\gamma$ and $Z\bar{Z}\gamma$ couplings, respectively.

![Graph](image.png)

FIG. 1: Photon E_T spectrum in data (solid circles), sum of backgrounds (dash-dot line), and sum of MC signal and background for the SM prediction (solid line) and for the ATGC prediction with $h_{20}^h = 0.09$ and $h_{40}^h = 0.005$ (dashed line). The shaded band corresponds to the ± 1 s.d. total uncertainty on the predicted sum of SM signal and background.

In summary, we observe 51 $\nu\bar{\nu}\gamma$ candidates with 17.3 ± 0.6 (stat.) ± 2.3 (syst.) background events using 3.6 fb$^{-1}$ of data collected with the D0 detector at the Tevatron. We measure the most precise $Z\gamma \to \nu\bar{\nu}\gamma$ cross section to date at a hadron collider of 32 ± 9 (stat.) ± 2 (syst. ±2 (lumi.)) fb for the photon $E_T > 90$ GeV, in agreement with the SM prediction of 39 ± 4 fb [17]. The statistical significance of this measurement is 5.1 s.d., making it the first observation of the $Z\gamma \to \nu\bar{\nu}\gamma$ process at the Tevatron. We set the most restrictive limits on the real parts of the anomalous trilinear gauge couplings at hadron colliders at the 95% C.L. of $|h_{20}^Z| < 0.033$, $|h_{10}^Y| < 0.0017$ and $|h_{20}^Z| < 0.033$, $|h_{40}^h| < 0.0017$. Three of these limits are world’s best to date. These limits approach the range of expectations for the contributions due to one-loop diagrams in the SM [1, 2].

![Graph](image.png)

FIG. 2: Two-dimensional bounds (ellipses) at 95% C.L. on CP-conserving (a) $Z\gamma\gamma$ and (b) $ZZ\gamma$ couplings. The crosses represent the one-dimensional bounds at the 95% C.L. setting all other couplings to zero. The dashed lines indicate the unitarity limits for $\Lambda = 1.5$ TeV.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany).

[a] Visitor from Augustana College, Sioux Falls, SD, USA.
[b] Visitor from Rutgers University, Piscataway, NJ, USA.
[c] Visitor from The University of Liverpool, Liverpool, UK.
Visitor from II. Physikalisches Institut, Georg-August-University, Göttingen, Germany.

Visitor from Centro de Investigacion en Computacion - IPN, Mexico City, Mexico.

Visitor from ECFM, Universidad Autonoma de Sinaloa, Culiacán, Mexico.

Visitor from Helsinki Institute of Physics, Helsinki, Finland.

Visitor from Universität Bern, Bern, Switzerland.

Visitor from Universität Zürich, Zürich, Switzerland.

Deceased.

Pseudorapidity, \(\eta \), is defined as \(\eta = -\ln [\tan (\frac{\theta}{2})] \), where \(\theta \) is the polar angle measured with respect to the proton beam direction.

Distance of closest approach is defined as the shortest distance between the particle’s trajectory and the \(z \)-axis in the \(x - y \) plane.

