
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is an author's version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/75055

 

 

 

Please be advised that this information was generated on 2021-09-26 and may be subject to

change.

http://hdl.handle.net/2066/75055


A n a ly s is  o f  D is tu rb e d  A c o u s tic  F e a tu r e s  

in  te r m s  o f  E m is s io n  C o s t

Laurens van de Werff, Johan de Veth, Bert Cranen & Louis Boves

A RT, Dept. of Language & Speech, University of Nijmegen, The Netherlands

laurensw@sci.kun.nl, deveth@let.kun.nl, cranen@let.kun.nl, boves@let.kun.nl

Abstract

An analysis method was developed to study the impact of 
training-test mismatch due to the presence of additive noise. 
The contributions of individual observation vector compo­
nents to the emission cost are determined in the matched and 
mismatched condition and histograms are computed for these 
contributions in each condition. Subsequently, a measure of 
mismatch is defined based on differences between the two his­
tograms. By means of two illustrative experiments it is shown 
to what extent this emission cost mismatch measure can be 
used to identify the features that cause the most important 
mismatch and how in certain cases this type of information 
may be helpful to increase recognition accuracy by applying 
acoustic backing-off to selected features only. Some limita­
tions of the approach are also discussed.

1. Introduction

One cause for training-test mismatch in Automatic Speech 
Recognition (ASR) is additive background noise that is pre­
sent during recognition, but not during training. In principle, 
four strategies can be followed to alleviate the effect of such 
mismatch on recognition performance [1]: (1) use noise robust 
acoustic features, (2) use noise robust models, (3) use a noise 
robust scoring procedure for matching observations to models, 
or (4) use a combination of these.

Although an improvement of recognition accuracy in the 
mismatched condition proves the effectiveness of a noise ro­
bustness technique, it remains unclear whether the improve­
ment was achieved by reducing the mismatch for all elements 
in the feature vector equally, or for a sub-set only. Also, in or­
der to predict whether further improvements can be achieved 
and whether this robustness technique can be expected to work 
well in other noise conditions, one needs a diagnostic tool. 
The tool should allow to investigate the relative contribution 
of each feature vector component to the overall training-test 
mismatch. Such a tool would be particularly important for 
guiding our acoustic backing-off work [2,3]. Acoustic back­
ing-off is a robust scoring procedure that aims to reduce the 
impact of distorted feature values on the decoding process. It 
focuses on those feature values whose properties clearly devi­
ate from the distribution of observations seen in the clean con­
dition, which give rise to high contributions to the emission 
cost. In order to better understand where differences in recog­
nition performance stem from and to determine to what extent 
a beneficial effect may be expected from acoustic backing-off, 
it is important to be able to determine the relative proportions 
of outlier values for each feature and to relate these to recogni­
tion accuracies obtained in clean and disturbed conditions, 
with and without applying backing-off. We therefore decided

to develop an analysis tool with which the training-test mis­
match conditions can be visualized per feature vector compo­
nent in terms of emission cost (EC) distributions. In this paper 
we discuss the properties of one such tool in the context of our 
research on robust scoring techniques.

The rest of the paper is organised as follows. Section 2 de­
scribes the analysis tool. In Section 3 the experimental set-up 
of several different training-test mismatch conditions is de­
scribed. Section 4 discusses the results of analysing the EC 
contributions of these mismatched conditions. Finally, the 
main conclusions are given in Section 5.

2. Emission Cost Contributions

We want to study how a particular noise distortion affects the 
scoring during recognition, by investigating how the contribu­
tions of each feature vector component to the total score are 
distributed. The emission cost per frame can be easily ob­
tained along the optimal path once the dynamic programming 
has finished: When the acoustic models in the ASR system are 
described as mixtures of continuous density Gaussian prob­
ability density functions (pdfs), and the vector components are 
assumed to be statistically independent so that diagonal co­
variance matrices can be used, the emission likelihood for 
each {acoustic observation vector, state} pair along the best 
Viterbi path becomes

M K
p  ̂ 0 1  Sj  ) = £  wjm n  j  (xk (t)) (1)

m=1 k=1
where x(t) denotes the acoustic vector, Sj is the state consid­
ered, wjm denotes the mth mixture weight for state Sj, and Gjmk 
the kth component of the mth Gaussian for state Sj.

With a mixture of M  Gaussians contributing to the emis­
sion likelihood it is impossible to write the emission cost [i.e., 
—log( p(x( t)| S  j ))] as a sum of K  independent contributions 
of individual feature vector components. However, replacing 
the sum of mixture components by the maximum over the 
weighted mixture components has a negligible effect on rec­
ognition performance [4]. Replacing the sum operator in Eq.
(1) by a maximum operator, makes it possible to write the EC 
as a sum of contributions of individual feature components:

EC = -  log( wjb ) -  £  log[ Gjbk (x t  ( t))] (2)
k=1

with wjb the weight and Gjbk the kth component of Gaussian b 
(‘best’) in state Sj that was found to be most likely in the 
weighted mixture of Gaussian components.

Histograms can be made of the contributions of individual 
features in Eq. (2) (i.e., the -log(Gjbk) terms) both for the clean 
and the mismatched condition. Denoting the EC distributions 
for the kth feature component in the clean condition as Hk,clean
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and for the mismatched condition as Hkmis, a measure of mis­
match can then be defined as follows:

N
M k = £  an\HKmis (n) -  H KcIem (n)| (3)

n=1
where N  is the number of bins in the histogram of EC contri­
butions, and a denotes a weighting factor allowing to empha­
size large EC contributions more than small ones1. Differences 
between the two histograms for small and large values of the 
EC are equally important when a = 1. However, since in a ro­
bust scoring technique like acoustic backing-off differences 
between the two histograms for large EC contributions are po­
tentially more interesting (a rather arbitrarily chosen) a = 1.1 
was used throughout this paper.

3. Experimental set-up

To evaluate the usefulness of the measure defined in (3), two 
experiments were carried out. In the first experiment training­
test mismatch was created by artificially corrupting data from 
the Polyphone database. This experiment mainly serves as a 
sanity check in a well-controlled environment, and to illus­
trate the main properties of the measure. The purpose of the 
second experiment was to explore the ability of the mismatch 
measure to select the most suitable candidate feature(s) for 
acoustic backing-off, if  any, for more ‘ realistic’ distortions. A 
small subset of the Aurora2 database [6] was used.

3.1. Experiment #1: Artificially distorted Polyphone data

In the Dutch Polyphone corpus, speech was recorded over 
the public switched telephone network in the Netherlands [5]. 
Among other things, speakers were asked to read a connected 
digit string containing six digits. 480 strings were used for 
training and 671 different strings for testing. Both training 
and test set were balanced with regards to the number of 
males and females, and regions in the country. None of the ut­
terances used had a high background noise level.

The acoustic vectors consisted of 14 filter-bank log- 
energy values, computed from 25 ms Hamming windows 
with 10 ms steps and a pre-emphasis factor of 0.98. The 14 
triangular filters were uniformly distributed on the Mel scale 
(covering 0 -  2143.6 Mel). For the 14 log-energy coefficients 
the average log-energy (computed over a whole utterance) 
was subtracted as channel normalization. A-coefficients were 
added, yielding 28-dimensional feature vectors.

For modelling the digits, 18 context-independent phone- 
based hidden Markov models (HMMs) were used, consisting 
of 3 states, with only self-loops and transitions to the next 
state. Each state was modelled as a mixture of four Gaussian 
probability density functions, with diagonal covariance.

To create a well-defined mismatch condition an artificial 
distortion was introduced to log-energy bands 6, 7, and 8 
(centres at 799, 1002, and 1232 Hz). The original value was 
replaced by the value corresponding to 4.3 dB below the 
maximum observed for that band if the original value was be­
low this threshold, else the original value was kept. The re­
placement was done for each observation vector in the test 
data. This type of distortion may be interpreted as a crude 
way of modelling band-limited, additive noise. In the worst 
cases, just over 21% of the feature values were affected.

3.2. Experiment #2: Noisy Aurora2 data

The Aurora2 database is a noisified version of the TI- 
digits database [6]. In this experiment we only used the clean 
condition and the condition with subway noise added at an 
overall SNR of 10 dB.

Before the calculation of the actual acoustic vectors, the 
noise reduction scheme described in [7] was applied. Next, 12 
Mel-cepstrum coefficients (cb ..., c12) were computed with 
the standard front-end that comes with Aurora2, together with 
overall log-energy [6]. Next, cepstrum mean subtraction was 
applied to cb ..., c12 using the full length of each recording. 
Finally, A-coefficients and AA-coefficients were computed 
(both over a window of 9 frames), for an eventual number of 
39 acoustic features.

For the Aurora2 digits a standardised ASR system is sup­
plied, which consists of strictly left-to-right whole word mod­
els [6]. Each model consists of 16 HMM states, modelled as a 
mixture of three Gaussian probability density functions with 
diagonal covariance matrices.

4. Results and discussion

4.1. Artificial distortions using Polyphone

The artificial distortions for log-energy bands 6 - 8 affect 
the distributions of these parameter values quite severely. 
Since all values smaller than 4.3 dB below the maximum were 
replaced by a fixed value, the histograms of the distorted log- 
energy coefficients have a very narrow peak. This distribution 
deviates so much (both in terms of mean and standard devia­
tion) from the clean parameter value distribution that during 
the decoding process, one should expect to see appreciable 
EC-contributions for most of the frames. Consequently, we 
expect that the mismatch measure defined in Eq. (3) is able to 
diagnose bands 6 - 8 as the main cause of the mismatch.

For the corresponding A-coefficients the distortion is 
probably less harmful. Since the majority of the features 6 - 8 
contain a fixed value their corresponding A-coefficient distri­
butions show an extremely high amount of zeros. Because the 
original clean distributions also have a mean value close to 
zero and a small standard deviation, not many large EC con­
tributions are expected for the A-coefficients.

To test these hypotheses, all test utterances were recog­
nized with an HMM system using the maximum mixture com­
ponent approximation2. For the clean and the distorted 
condition, the EC contributions according to the best mixture 
component along the optimal path were pooled over all test ut­
terances. Four illustrative examples of the resulting EC distri­
butions are shown in Fig. 1. The left column depicts the EC- 
distributions without (dashed) and with (solid) distortion for 
an undistorted coefficient (log-energy of band #4) and its cor­
responding A-coefficient; the right column depicts the EC- 
distribution of a distorted coefficient (log-energy of band #7) 
and its corresponding A-coefficient.
Clear differences between all EC distributions of the clean and 
disturbed condition can be observed, even for the two unaf­
fected components (panels A and C). The fact that the EC- 
contributions can differ for undisturbed features may be ex­
plained by the fact that the optimal Viterbi path for an utter­
ance in the disturbed condition can differ from the path in the

1 Because we were mainly interested in the relative EC contributions
of individual vector components, the contribution of the -log( w®) term When switching from the sum to the max approximation the word
in Eq. (2) was disregarded in the subsequent analyses. accuracy did not change: 88.6% (clean data), 56.0% (disturbed data).



clean condition. As a result, the EC histogram in the distorted 
condition may contain contributions from HMM states that 
were not part of the optimal path in the clean condition. Turn­
ing to EC-distributions of the distorted feature components, it 
can be seen that there are large differences between the histo­
grams of EC contributions for the static component. Fig. 1B 
shows that there are many more frames in the test set where 
feature #7 has an EC contribution of approximately 5 than in 
the training set. As expected, the differences are much smaller 
for the corresponding A-component (Fig. 1D).

EC contribution

Figure 1: Distribution o f EC contributions
before (dashed line) and after (solid line) application
o f the distortion. A. Log-energy coefficient in band #4.
B. Log-energy in band #7. C. A-log-energy o f band #4.
D. A-log-energy o f band #7.

To estimate the impact of the distortion for individual fea­
ture vector components, the mismatch defined in Eq. (3) was 
determined. The result is shown in Fig. 2A. As expected on 
the basis of the differences in the histograms, the static com­
ponents that were distorted (6 - 8) have a large mismatch value 
(the value for log-energy band 6 is clipped, reaching an actual 
value of 779). Somewhat surprisingly, also a relatively large 
mismatch was found for coefficients 5 and 9. Most probably, 
this is due to the fact that we used log-energy coefficients, 
which are known to show a high degree of co-variation, espe­
cially between neighbouring features.

To test whether the mismatch measure (3) can provide ex­
tra insights in the effectiveness of robust distance computa­
tion, two extra recognition experiments were run with acoustic 
backing-off. In the first one, the robust local distance function 
was applied to all coefficients; in the second one, acoustic 
backing-off was restricted to coefficients 6 - 8. Table 1 shows 
the corresponding recognition accuracies for the clean and dis­
torted test utterances. As can be observed, application of 
acoustic backing-off for all coefficients does help to improve 
recognition performance in the mismatched condition. How­
ever, selective application of acoustic backing-off to only 
those three coefficients for which the EC mismatch was high­
est allows to fully restore the accuracy to the level observed 
for the clean condition.

Table 1: Recognition accuracies for clean and mismatched test 
utterances using different distance computation set-ups.

distance computation Clean mismatched
Conventional 88.6 % 56.0 %

Robust, all coefficients 88.3 % 80.5 %
Robust, only coefs 6,7,8 88.4 % 88.4 %
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Figure 2 : Mismatch as a function o f the feature vector 
component. Components 1 - 14 correspond to log- 
energy band coefficients; components 15 - 28 corre­
spond to the A-log-energy coefficients. A: Conven­
tional distance computation. B: Robust distance 
computation for all coefficients. C. Robust distance 
computation restricted to log-energy coefficients 6 - 8.

Fig 2B shows that applying backing-off to all coefficients 
indeed reduces the EC mismatch for coefficients 5 - 7 and for 
coefficient 9, but at the same time increases the mismatch for 
all other coefficients. Thus, using a robust distance computa­
tion for all coefficients introduces an unintended EC mismatch 
for coefficients that are not disturbed (as well as for coeffi­
cient 8 in this particular case). Due to this newly introduced 
mismatch, only a limited gain in recognition accuracy is ob­
tained. Fig 2C shows that if acoustic backing-off is only ap­
plied to the features that were most affected according to the 
mismatch measure, the unexpected EC mismatch increase is 
absent and most of the EC mismatch values are reduced.

4.2. Mismatched conditions in Aurora 2

The findings in section 4.1 suggests that an EC mismatch 
characterization as shown in Fig. 2 could be potentially help­
ful for selecting the feature components where robust EC 
computation would be most effective. To test this hypothesis, 
a similar procedure was applied for the Aurora2 database. For 
this data the EC mismatch appeared to be particularly large for 
overall log-energy (EC mismatch = 346) and for c4 (EC mis­
match = 163), while the remaining 37 feature components 
showed relatively small EC mismatch (values < 64). Based on 
these findings, three recognition experiments were run with 
robust distance computation: (1) for all coefficients, (2) for 
log-energy only, and, (3) for c4 only. The results are shown in 
Table 2. The accuracy for the clean condition was 99.2 %.

Table 2 : Recognition results for Aurora2 with 10 dB SNR 
subway noise; different distance computation set-ups.
Distance computation Del Subst Ins Accuracy
Conventional 70 199 26 90.9 %
Robust, all coefs 100 187 26 90.4%
Robust, only log-E 270 162 12 86.4 %
Robust, only c4 58 187 28 91.6 %

As can be seen in Table 2, recognition performance (col­
umn 5) deteriorates both when the robust local distance func­
tion is applied to all coefficients and to log-energy only. Thus, 
in contrast to experiment #1, application of acoustic backing- 
off to the component showing the largest mismatch does not 
improve recognition performance. On the other hand, applying
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acoustic backing-off to the coefficient that gave rise to the 
second largest mismatch (c4) does improve accuracy.

The fact that using acoustic backing-off during the scoring 
of the log-energy parameter does not improve recognition per­
formance may seem strange at first glance, the more so be­
cause a detailed inspection of the mismatch revealed a 
decrease for almost all other vector components (not shown) 
in the relative EC contribution; for those few that did increase, 
the increase was small. Apparently, a decreased mismatch 
along the optimal Viterbi path (as defined in Eq. (3)) does not 
guarantee fewer recognition errors.

On second thought, this observation can be understood. 
The main reason for introducing acoustic backing-off was to 
deal with situations where incidentally a vector component has 
a value that is very unlikely according to the trained distribu­
tions, but where it is very difficult to estimate how unlikely. 
Especially if one suspects training-test mismatch the observed 
value might be distorted due to an unknown process of which 
one is unable to gather proper statistics. In these cases one 
should avoid the decoding process to be guided by the dis­
tance between observation value and distribution means of 
competing states [2]. The current situation is different, though. 
Inspection of the errors (Table 2: columns 2 - 4), shows that 
the number of substitution and insertion errors decreases, but 
that this effect is counteracted by a larger increase in the num­
ber of deletion errors. Due to the use of a robust distance 
measure, a speech observation vector is more often mistaken 
for silence: reducing the cost associated with a large log- 
energy mismatch, and, maybe worse, fixing this cost at a cer­
tain level, has caused an increase in the confusability between 
speech and non-speech sounds. Observation vectors that were 
classified as ‘definitely not silence’ without acoustic backing- 
off (using information from log-energy) can now unjustly be 
assigned to silence, because mainly spectral similarity is taken 
into account.

Figure 3: Distribution o f the log-energy values in the 
clean (dashed line) and noisy condition (solid line).

The distribution of the log-energy in the clean and noisy 
condition, shown in Fig. 3, may help to understand this. In the 
clean condition the distribution of log-energy in silence will 
account for the left mode of the dashed curve. As is clear from 
the solid line, there are no noisy speech sounds that look simi­
lar to silence in the clean situation (explaining why we have 
high EC contributions for this parameter). Despite the mis­
match, however, log-energy could still be used to sort sounds 
in low-intensity and high-intensity sounds. By applying acous­
tic backing-off this distinction is discarded.

5. Conclusions
A tool for analysing training-test mismatch was proposed, 
based on histograms of the EC contributions (determined 
along the Viterbi alignment path) of individual feature vector 
components over an entire test set. The mismatch is derived 
from the difference between the histograms of EC contribu­
tions for the clean and the mismatched condition. It was

found that the mismatch measure is capable of determining 
whether a given noise type causes some feature components 
to contribute more to the overall mismatch than others. One 
way to use this information is to identify candidate features 
for selective acoustic backing-off. More extensive research 
with other databases and noise types is needed to show 
whether any regularity can be discovered in the features that 
show the largest mismatch.

Recognition experiments in which the impact of the se­
lected components was reduced by means of our robust dis­
tance scoring technique, showed that the proposed selection 
method indeed can improve performance (e.g. in the artifi­
cially distorted Polyphone coefficients and the c4 component 
in the Aurora2 case). However, this does not always consti­
tute an effective way to improve performance. In particular, 
when applying acoustic backing-off to log-energy in the 
Aurora2 data, we found that the number of confusions be­
tween silence and speech sounds was increased. We believe 
that it was unwise to apply acoustic backing-off for the log- 
energy Gaussians that model silence. In order to test this hy­
pothesis the diagnostic tool needs to be extended so that it can 
visualize EC contributions for specific models, states or mix­
ture components.

More generally, our results suggest that acoustic backing- 
off should not be applied when outliers are systematically tied 
to specific states or models. In order to apply robust statistics 
they must be incidental. If they are not, other measures (like 
model adaptation) are in order. Extending the diagnostic tool 
so that EC-contributions can be visualized as a function of 
time, mixture component, state, or model will help to detect 
such situations.
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