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Abbreviations
ADP Adenosine diphosphate

cAMP  Cyclic adenosine monophosphate

CD Cluster of differentiation

cGMP Cyclic guanosine monophosphate

CPB Cardiopulmonary bypass

CREB cAMP response element-binding protein

CREBa Activated cAMP response element-binding protein

FACS Fluorescence-activated cell sorting

FITC Fluorescein -5-isothiocyanat

FSC Forward Scatter

GP Glycoprotein

ICAM Intercellular adhesion molecule

IL Interleukin

IκB Inhibitory factor-κB

MAC Minimum alveolar anaesthetic concentration

mRNA Messenger ribonucleic acid

NF-κB Nuclear factor-κB

PE Phycoerythrin

PDE Phosphodiesterase

PKA Protein kinase A

PKAa Activated protein kinase A

PKC Protein kinase C

PKCa Activated protein kinase C

PSGL-1 P-selectin glycoprotein ligand-1

SSC  Side Scatter

TNF tumour necrosis factor

TRAP-6 Thrombin receptor-activated peptide-6
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General Introduction and Aim of the Thesis

1GENERAL INTRoDuCTIoN

The human immune system consists of a complex network of tissues, cells and proteins which 

are meant to protect the organism from invading pathogens or foreign materials. Inflammation, 

as the biological response to harmful stimuli, requires a cascade of biochemical events involv-

ing the local vascular system, the immune system, and various cells within the injured tissue.

Innate and acquired immunity play a pivotal role in the host defence response. Pain, stress, 

tissue damage and invading microorganisms are known modulators of the complex immune 

response of patients undergoing major surgery. The immune system of patients undergo-

ing cardiac surgery is often not only activated through the surgical stimulus but also by a 

systemic inflammatory response caused by the cardiopulmonary bypass. Cardiopulmonary 

bypass is known to set a complex and multifactorial inflammatory response in motion, which 

involves platelets and leukocytes as well as the coagulation, complement and kallikrein cas-

cade. These changes contribute to the development of an early pro-inflammatory response 

and a later prothrombotic state (1-11).

Anaesthesia itself or perioperative interventions of the anesthesiologist may also substan-

tially alter the immune function with potential impact on the postoperative course (12). For 

instance, transfusion of allogenic blood and administration of catecholamines may interfere 

with immunity (13, 14). Volatile anaesthetics, etomidate, propofol or thiopentone which are 

used to induce and maintain anaesthesia may directly affect function of immune competent 

cells. In addition to their effect on consciousness there is recent evidence that anaesthetics 

possess immunmodulatory and cardioprotective properties thus reducing ischaemia reper-

fusion injury (15, 16). Another kind of frequently used drugs in cardiac surgery are inotropic 

agents such as catecholamines and phosphodiesterase (PDE)-inhibitors. Considering their 

mode of action they should not only act on myocardial or smooth muscle but also on immu-

nocompetent cells which possess the same receptors (17, 18). Previous studies have shown 

that epinephrine and PDE-inhibitors modulate the non specific immune response and that 

stress and pain are associated with immune tolerance, increased susceptibility to infection 

and tumour spreading in animal models. Thus perioperatively administrated “stress hor-

mones” to maintain cardiac output such as epinephrine may also directly or indirectly affect 

the immunity of the surgical patient (19- 22). Volatile anaesthetics have also been reported 

to have antiadhesive and cardioprotective activity and protect for instance against ischaemic 

reperfusion injury (15, 23-29.)

The leukocyte and platelet adhesion cascade

The recruitment of leukocytes to the site of inflammation entails a cascade of cellular ad-

hesive events, which include initial attachment, rolling, firm adhesion, and transendothelial 

migration of the responding cells (30-32). Selectins expressed on the endothelial surface 



Chapter 1 

12

interact with their ligands on leukocytes to mediate the tethering and rolling phase of leu-

kocyte recruitment. These are weak adhesive interactions (33, 34). This initial weak adhesion 

brings leukocytes into contact with cytokines/chemoattractants released from the activated 

endothelium, such as interleukin 8 (IL-8) and platelet-activating factor (PAF), which transduce 

signals through their G protein–coupled receptors that activate integrins (35, 36). These acti-

vated leukocyte integrins then recognize their cognate ligands (e.g. ICAM family) to mediate 

the firm adhesion and arrest of leukocytes to the endothelium. Such integrin-mediated firm 

adhesion can occur through direct ligand engagement or indirect bridging mechanisms. An 

important bridging mechanism, the recognition of integrin CD11b of fibrinogen or fibrin 

deposited on the endothelial surface can promote the accumulation of leukocytes at the 

sites of inflammation (37, 38). Fibrinogen engagement by activated CD11b is also one of the 

several mechanisms that contribute to the formation of platelet-leukocyte conjugates, which 

are diagnostic of thrombotic events in vivo ( 39,40). P-selectin, a member of the selectin fam-

ily, is stored on the membranes of platelet α- granules and endothelial Weibel-Palade bodies. 

After inflammatory and thrombogenic events, P-selectin rapidly translocates to the surface 

of these cells and contributes to the weak adhesion of leukocytes to endothelial cells and the 

heterotypic aggregation of activated platelets to leukocytes (41,42).

In this context, the pathophysiological mechanisms and consequences of platelet–leukocyte 

interactions and their implications in many diseases have been investigated recently. In- 

Selectins 

Chemokines 

1. Tethering and rolling 

2. Activation

3. Firm adhesion
4. Transmigration 

Integrins 

Figure 1: The leukocyte adhesion cascade: The main steps preceding transmigration are shown : rolling, which is mediated by selectins, 
activation, which is mediated by chemokines, and arrest, which is mediated by integrins.
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1creased association between platelets and leukocytes has been reported in unstable angina, 

myocardial infarction, coronary interventions, cardiopulmonary bypass, thrombosis and 

sepsis (43-48). An interaction between platelets and leukocytes may link these processes and 

contribute by intercellular communication pathways to the pathophysiology of these dis-

eases. It is especially enhanced P-selectin expression on the platelet surface, which supports 

the adhesion of platelets to the P-selectin-ligand-1 (PSGL-1) on neutrophils, monocytes and 

lymphocytes (49, 50). The binding of platelets to neutrophils seems to induce attachment, 

rolling and the oxidative burst in neutrophils, as well as cytokine secretion in monocytes 

(51-54). Recruitment of neutrophils and monocytes to an inflammatory site in response 

to invading bacteria or non-infectious processes is a crucial step in the physiology of the 

acute inflammatory response. Adherence of neutrophils and monocytes to endothelial cells 

followed by transmigration through the endothelial cells depends on a network of several 

events involving neutrophil surface adhesion molecules, inflammatory cytokines and che-

moattractant chemokines. Transmigration of neutrophils and monocytes through endo-

thelial cells to surrounding organ tissues is not always beneficial. In ischaemia/reperfusion 

injury, activated neutrophils and monocytes contribute to organ damage by releasing toxic 

reactive oxidative species and increased cytokine release (55-60). These results suggest that 

the tight interaction among platelets, neutrophils, and monocytes has an important part in 

the host defence system.

The upregulation of cellular adhesion receptors and the formation of leukocyte–platelet 

conjugates may have important implications during and after cardiopulmonary bypass, 

in the development of an early pro-inflammatory response and a later prothrombotic 

state. There is, for instance, evidence of increased leukocyte-platelet adhesion in patients 

with graft occlusion after peripheral vascular surgery (3). Many patients suffering from the 

above-mentioned diseases, or undergoing coronary interventions or bypass surgery receive 

anaesthetics and inotropic agents that may modify the inflammatory response. Hence the 

effects of anaesthetics on ischemia-reperfusion injury and neutrophil adhesion have also 

been the object of several studies. While some study groups reported that isoflurane and 

sevoflurane protect against myocardial ischaemia-reperfusion injury (24-26) others, such as 

Morisaki and co-workers, found increased leukocyte rolling and adhesion in rats undergoing 

sevoflurane anaesthesia (61). A stable host defence system is of great importance during 

the perioperative period, it is therefore also important to clarify if and how anaesthetics and 

inotropic agents affect perioperative immunity.

Adhesion molecules

Adhesion molecules enable cells to contact and specifically interact with each other thus 

allowing communication between cells and the surrounding environment. This is crucial for 

developmental and functional activity. These proteins are typically transmembrane receptors 
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and are composed of three domains: an intracellular domain that interacts with the cytoskel-

eton, a transmembrane domain and an extracellular domain that interacts with other cell 

adhesion molecules. Several different families of receptors mediate these interactions. The 

families of cell adhesion molecules identified to date include selectins, integrins, Ig super-

family members, and cadherins. Members of these adhesion receptor families are critical in 

migration, inflammation and wound healing (32, 62, 63).

The mechanisms regulating adhesive interactions are complex. A single cell can express 

an array of different adhesion receptors, and a single receptor may bind to more than one 

ligand. Both expression and functional activity of adhesion molecules are influenced by a 

variety of factors, including the presence of activating factors such as specific antigen and 

inflammatory mediators. In addition, different adhesion receptors may operate successively 

in time. This has been well demonstrated for leukocyte extravasations into sites of inflamma-

tion, in which adhesion molecules from the selectin, integrin, and immunoglobulin receptor 

families work successively as part of an “adhesion cascade”.

 

Selectin Integrin 

Plasma membrane 

I - domain 

I - like domain

α - chain β - chain 

Cytoplasmic domain

transmembrane domain

consensus repeats

lectin-domain 

EGF-domain

Figure 2: Selectin and integrin structure
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1Selectins

Selectins constitute a family of carbohydrate-binding cell adhesion molecules comprised of 

three related cell surface molecules: L-selectin (CD62L), P-selectin (CD62P), and E-selectin 

(CD62E).

Selectins function in the initial step of recruitment of leukocytes (primarily neutrophils) to 

the site of an inflammatory reaction. Loose tethering to the endothelium results in a decrease 

in leukocyte velocity and rolling along the blood vessel wall. Leukocyte rolling in most ves-

sels begins within minutes following tissue injury, and numerous studies have indicated that 

these interactions are primarily mediated by selectins. The rapid transport of P-selectin from 

intracellular granules to the plasma membrane is thought to contribute to the early stage of 

rolling, while L- and E-selectin are involved in subsequent stages (62, 64, 65).

P-selectin:
P-selectin is stored preformed in Weibel-Palade bodies of endothelial cells and α-granules 

of platelets. Upon stimulation, P-selectin is phosphorylated and rapidly mobilized to the cell 

surface via a secretory pathway. P-selectin in the plasma membrane surface serves as a cell 

adhesion receptor to interact with other cell receptors. Expression of at the cell surface is, 

however, transient and decreases substantially within minutes. P-selectin can be shed from 

activated cells and circulate as soluble P-selectin in the plasma. Recent studies show that high 

levels of soluble P-selectin in blood result in a procoagulant state (41, 66, 67).

The prominent role of cellular P-selectin in leukocyte rolling and extravasation, as well as 

platelet-leukocyte interactions, is well established. In contrast to other platelet receptors, 

P-selectin does not mediate platelet-platelet interactions (68). P-selectin upregulates tissue 

factor in monocytes, binds carbohydrate ligands on leukocytes and thereby mediates leu-

kocyte rolling on activated endothelial cells and leads to leukocyte accumulation in areas of 

vascular injury associated with thrombosis and inflammation. The major ligand of P-selectin 

on leukocytes is PSGL-1 (41, 69).

L-selectin:
L-selectin is present on almost all leukocytes and virtually absent on a subset of memory 

lymphocytes. L-selectin binds several ligands. All L-selectin ligands identified so far share 

common features: they are sialylated, fucosylated, sulphated, and show similarity to sialyl 

Lewis x and Lewis x. An important function of selectins is defined by their ability to bind 

carbohydrate ligands within milliseconds, thereby capturing free-flowing leukocytes from 

the bloodstream. This allows subsequent leukocyte rolling, which markedly decreases the 

travelling speed of the leukocytes from >2000 μm/s to <50 μm/s. This specialized function, 

which represents a hallmark of leukocyte recruitment, requires rapid association and dis-

sociation of the selectin-ligand interaction and is well defined, especially for L-selectin. Fol-
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lowing activation, lymphocytes and neutrophils undergo a reversible loss of L-selectin from 

the cell surface. L-selectin is proteolytically cleaved from the cell surface by the action of a 

specific enzyme and the shed extracellular portion of the molecule, soluble or sL-selectin, is 

present in the plasma. There is broad conformity in the literature that sL-selectin levels in the 

plasma are elevated in infectious diseases and inflammation. Data support the concept that 

shedding of L-selectin from the leukocyte surface controls the rolling velocity, which in turn 

has an impact on the transit time of the leukocytes. Thus L-selectin shedding may reduce the 

exposure of the leukocytes to endothelial-derived inflammatory mediators and thereby may 

restrict extravasation (70-73).

Integrins

Integrins are a family of cell surface receptors that mediate interactions with extracellular 

matrix components and with other cells. Integrins mediate the firm adhesion of leukocytes 

by binding members of the immunoglobulin family of adhesion molecules expressed on 

endothelial cells. Integrins are heterodimeric molecules consisting of an α-subunit and a 

noncovalently-bound β-subunit. They represent a large protein family that is classified by the 

β-subunits. β1- (CD29), β2- (CD18), β3- (CD61), and β7-integrins are engaged in leukocyte 

recruitment, with β2-integrins playing the key role in mediating firm adhesion of human 

leukocytes subsequent to selectin-mediated rolling. Unlike selectins, β2-integrins (CD18) do 

not recognize ligand but require cellular activation to form stable shear-resistant bonds with 

endothelial ligands. Leukocyte rolling constitutes a prerequisite for β2-integrin-mediated 

firm adhesion in vivo, since β2-integrins are not able to bind their ligands unless the velocity 

of passing leukocytes is slowed down to a critical value by selectin-based rolling. Integrin ac-

tivation is induced by either a conformational change within each receptor, which increases 

apparent affinity for ligand, or integrin clustering, which enhances avidity for ligand (74-76). 

The importance of β2–integrin mediated adhesion in vivo is illustrated by the leukocyte 

adhesion deficiency type I syndrome in which there is either partial or total absence of 

β2-integrins on leukocytes. Patients with this inherited condition suffer from severe, recur-

rent bacterial and fungal infections. Their neutrophils exhibit rolling, but do not adhere to 

endothelial tissue and fail to emigrate from the blood stream to sites of inflammation (52, 65).

CD11b:
CD11b (Mac-1) is expressed at high levels on monocytes and granulocytes and at lower levels 

on a subset of T cells. CD11b is a major integrin on neutrophils and notorious for its capac-

ity to recognize many different ligands, such as the blood coagulation proteins fibrinogen 

and factor X, ICAM-1, the complement pathway product C3bi as well as several extracellular 

matrix proteins (77). Activation of monocytes and granulocytes by inflammatory stimuli 

leads to mobilization of intracellular stores of CD 11b and a rapid increase in its cell surface 
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1expression. Ligand recognition by CD11b is influenced by the activation state of the receptor. 

CD 11b is involved in the transendothelial migration of monocytes and neutrophils (69).

CD11a:
The most important β2-integrin that mediates firm adhesion is CD 11a (LFA-1) which is 

expressed on lymphocytes, granulocytes, monocytes, and macrophages, and the level of ex-

pression is increased upon activation. CD11a exerts its function primarily by binding ICAM-1, 

which is upregulated on the inflamed endothelium, but can also bind to ICAM-2 and ICAM-3 

(78-80).

GP IIb/IIIa:
As a member of the integrin family of proteins, GPIIb/IIIa (αIIbβ3) is a heterodimeric glyco-

protein complex found on the platelet surface and in the α-granules. When platelets are 

activated, GPIIb/IIIa undergoes a conformational change that permits the binding of its 

principal ligand, fibrinogen. Cross-linking through fibrinogen allows platelets to aggregate 

into a growing haemostatic plug. The initial binding of fibrinogen is reversible but undergoes 

a time dependent stabilization. Regardless of what triggers the platelet to activate, GPIIb/IIIa 

receptors represent the final common pathway to platelet aggregation and thrombus forma-

tion. Platelets and leukocytes may form aggregates via platelet-expressed P-selectin and 

its counter receptors PSGL-1 and Sialyl Lewis X, as well as via fibrinogen bridging between 

GPIIb/IIIa and CD11b (81-83).

Other cell adhesion molecules

GP Ib:
Glycoprotein Ib is a transmembrane subunit of the GP Ib–IX–V platelet adhesion receptor. The 

GP Ib–IX–V complex consists of four subunits, GP Iba, GP Ibb, GP IX, and GP V, each of which is 

a member of the leucine- rich repeat protein superfamily. GP Ib interacts with von Willebrand 

factor thus mediating the adhesion and aggregation of platelets at sites of vascular injury 

(84).

PSGL-1:
P-selectin glycoprotein ligand-1 is a mucin that binds to all three members of the selectin 

family with the highest affinity to P-selectin on platelets and endothelial cells. It is found on 

all white blood cells and therefore plays an important role in the recruitment of leukocytes 

into inflamed tissue and in the platelet-leukocyte interaction. Recent studies suggest that 

PSGL-1 binding to its counterreceptor P-selectin promotes CD11b-dependent homotypic 

neutrophil aggregation and neutrophil-platelet conjugation and α4/β1-dependent adhesion 

of monocytes to vascular cell adhesion molecule 1 (VCAM-1), responses typically dependent 
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on integrin activation (85-87). Hidari et al observed that engagement of PSGL-1 enhances 

tyrosine phosphorylation, activates mitogen-activated protein (MAP) kinases (ERK-1 and 

ERK-2) through MEK (MAP kinase kinase), and stimulates IL-8 secretion in neutrophils (88).

Volatile Anaesthetics

Volatile anaesthetics are inhalational anaesthetic substances which are used to induce and 

maintain a reversible loss of consciousness during surgical procedures.

The commonly used inhalational anaesthetics are isoflurane, sevoflurane and desflurane, 

while halothane as an older agent is rarely used nowadays.

Several investigations revealed that anaesthetists have been using anaesthetics with 

antiadhesive activity regularly in clinical practice for decades. Evidence from animal models 

suggests that halothane, isoflurane, and sevoflurane protect the heart against ischaemia-

reperfusion injury (24-27, 89-91). Proposed mechanisms are reduced production of hydroxyl 

radicals (89); activation of myocardial adenosine receptors (24), PKC (25), inhibitory guanine 

regulatory proteins (92), mitochondrial and sarcolemmal adenosine triphosphate- regulated 

potassium channels (93, 94), and stretch-activated channels (95); and inhibition of neutrophil 

adhesion to endothelial cells (26, 27). One investigation for instance revealed that adhesion 

of neutrophils to endothelial cells may be reduced because of an attenuated upregulation of 

CD11b, whereas endothelial adhesion molecules were not affected (23).

Since Ueda demonstrated that halothane inhibits platelet aggregation in 1971, various 

studies have investigated the effects of volatile anaesthetics on platelet aggregation (96). 

Sevoflurane in particular has recently been the subject of several investigations, with some-

Table 1: Adhesion molecules mentioned in this thesis

Adhesion molecule Synonyms Major occurrence Major ligands
Selectins:

L-selectin CD 62L Leukocytes CD 34
Glycam-1
MAdCAm-1

P-selectin CD62P Endothelial cells
Platelets

PSGL-1
PSGL-1

Integrins:

αL/β2 CD11a/CD18
LFA-1

Leukocytes ICAM-1, -2, -3

αM/β2 CD11b/CD18
MAC-1

Neutrophils
Monocytes

ICAM-1
Fibrinogen
C3bi

αIIb/β3 CD41/CD61
GPIIb/IIIa

Platelets Fibrinogen
Fibronectin

Others:

PSGL-1 CD162 Leukocytes P-selectin
L-selectin
E-selectin



19

General Introduction and Aim of the Thesis

1times contradictory results. In 1996, Hirakata et al. reported that sevoflurane had strong 

effects on secondary platelet aggregation, probably through inhibition of thromboxane A2 

formation, whereas Honemann et al. found no influence on thromboxane A2 signalling (97, 

98). The results of Hirakata et al. were supported by a study of Dogan et al., who also showed 

impaired platelet aggregation after sevoflurane anaesthesia (99). More recently, Nozuchi 

and co-workers have demonstrated that sevoflurane does not inhibit platelet aggregation 

induced by thrombin (100). However, the results remain contradictory, and the direct effects 

on platelet surface antigens have not been studied. The glycoprotein receptors within the 

platelet membrane are of particular interest in this regard. As mentioned before they are 

essential for platelet adhesion and platelet-mediated primary and secondary aggregation. 

Among the most important glycoproteins are the GPIIb/IIIa complex, inducing platelet ag-

gregation via fibrinogen binding; the GPIb as a receptor of the von Willebrand factor; and the 

a-granule membrane protein P-selectin, mediating platelet endothial and leukocyte interac-

tions. Acquired or hereditary defects, as well as reduced expression of these glycoproteins, 

can result in platelet malfunction and impaired haemostasis. Therefore, changes in platelet 

aggregation induced by sevoflurane could be reflected here.

In vitro studies have shown that isoflurane alters the monocyte inflammatory response, 

such as inhibition of endotoxin-induced TNF-a and IL-1b secretion as well as inhibition of 

chemotaxis (101, 102). Isoflurane is also known to alter several aspects of leukocyte func-

tion. Previously, it has been shown that isoflurane attenuates ischaemia-reperfusion injury 

(57). One suggested mechanism is a decreased activation of neutrophil L-selectin, CD11a 

and CD11b, which could be responsible for a reduced accumulation of neutrophils at sites of 

ischaemia-reperfusion injury (23).

Inotropic agents

Positive inotropic agents such as epinephrine and milrinone increase myocardial contractility, 

and are used to support cardiac function in conditions such as decompensated congestive 

heart failure, cardiogenic shock, septic shock, myocardial infarction, cardiomyopathy, etc.:

Epinephrine:

Epinephrine is an endogenous stress hormone and neurotransmitter. It is a catecholamine, 

a sympathomimetic monoamine derived from the amino acids phenylalanine and tyrosine. 

Physiologically it is produced and released by the adrenal glands. Catecholamine concentra-

tions are increased as an early stress response after cardiac arrest, myocardial infarction, and 

trauma. Therapeutically, they are used in critically ill patients to treat low cardiac output and 

severe hypotension.
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Epinephrine’s actions are generally mediated through α- or β-adrenergic receptors: Leuko-

cytes, platelets and endothelial cells all carry adrenergic receptors (103,104). It is known, that 

in these cells α- adrenergic stimulation leads to activation of NF-κB and to the transcription 

of cytokine-mRNA with NF-κB binding sites on their promoters.

β-Adrenergic stimulation leads to an increase of cAMP, which activates PKA. Activated PKA 

is translocated to the nucleus. Activated PKA blocks NF- κB. This leads to an inhibition of 

cytokine-specific mRNA with NF-κB binding sites on their promoter. Activated PKA also leads 

to an activation of CREB and to a transcription of cytokine- specific mRNA with CREB binding 

sites on their promoters (105). NF-κB’s key-function in inducing an immune response makes 

β-receptor agonists strong immunosuppressive drugs and α-agonists proinflammatory 

agents.

Previous studies have shown that epinephrine modulates the unspecific immune response. 

It decreases neutrophil adherence, chemotaxis, and phagocytic capacity. It also inhibits 

tumor necrosis factor (TNF)-α and interleukin (IL)-1β production but enhances IL-8 and IL-10 

production and L-selectin expression in monocytes. Epinephrine also enhances P-selectin ex-

pression in platelets and the opening of glycoprotein (GP)IIb/IIIa binding sites for fibrinogen, 

and it favours platelet aggregation (106-112).

 

α-adrenergic receptor 

Ca 2+ ↑
IκB 

NF-κB/IκB 

PKC → PKCa 

protease

proteolytic degradation 

NF-κB mRNA 

Cytokine gene 

Figure 3: Schematic diagram of α-adrenergic regulation as described in the text.
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1

Little is known about the effects of epinephrine on platelet-neutrophil adhesion at concen-

trations observed during therapeutic inotropic support or major injury. Knowledge of such 

effects may have implications not only for understanding endogenous stress hormone influ-

ences during injury, but also for the therapeutic use of epinephrine in patients with septic 

shock cardiac failure or undergoing cardiac surgery.

Milrinone:

In the 1960’s the involvement of cyclic nucleotide second messengers in cell signalling 

and homeostasis became established. Since then, the regulation of this pathway by phos-

phodiesterase (PDE) inhibitors became an area of interest. Phosphodiesterases are a class 

of isoenzymes responsible for the hydrolysis of the intracellular second messengers cyclic 

adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) resulting 

in the formation of the corresponding, inactive 5`-monophosphate. PDE inhibitors block this 

activity, causing an accumulation of the cyclic nucleotides cAMP and cGMP that mediate the 

physiologic responses to a variety of transmitters, hormones and drugs. PDE isoenzymes can 

be discriminated based on substrate specificity or affinity and their regulation by specific 

activators and inhibitors. The expression and activity of these PDE isoenzymes varies among 

different tissues and cells. The PDE3 family, which hydrolyses both cAMP and cGMP, can be 

 

β-adrenergic
receptor 

NF-κB/IκB 

PKA  
cAMP

PKAa  
CREB 

NF-κB 

Cytokine gene 

CREBa mRNA 
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Figure 4: Schematic diagram of β-adrenergic regulation as described in the text.
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found in cardiac muscle, vascular smooth muscle, platelets and leukocytes. The PDE4 family 

hydrolyses only cAMP and is expressed in bronchial smooth muscles, leukocytes, mesangial 

and endothelial cells but not in platelets. Today PDE inhibitors are widely used in intensive 

care medicine, especially for the treatment of asthma and congestive heart failure. As the 

second messengers cAMP and cGMP transduce the effects of a variety of extracellular signals, 

they also influence immunomodulatory processes in all human inflammatory cells such as 

proinflammatory mediator production and cell differentiation. While it is well-known that el-

evation of intracellular cAMP possesses inhibitory effects on platelet aggregation and results 

in decreased degranulation and cytokine production in leucocytes as well as reduced CD11b 

expression in neutrophils, little is known about the effects of PDE inhibitors on platelet-

leukocyte interaction (113-120).

Milrinone, is a phosphodiesterase 3 (PDE3) inhibitor, which increases left ventricular-

contractility through inhibiting the breakdown of cAMP and, hence, elevating the cellular 

cAMP, which in turn activates cAMP-dependent protein kinases with a resultant increase in 

the transsarcolemmal influx of Ca2+ and the rate of Ca2+ uptake by the sarcoplasmic reticulum, 

independent of β1-adrenergic receptor stimulation. Because of its positive inotropic, vasodi-

lating and minimal chronotropic effects it is used in the management of severe heart failure. 

Patients undergoing cardiac surgery often receive PDE3 inhibitors in the treatment of cardiac 

failure, given that thrombotic and inflammatory events might be crucial in these patients 

it is important to study if therapeutic concentrations of PDE inhibitors also affect platelet-

leukocyte interactions

Fluorescent-activated cell sorting (FACS)

Fluorescence-activated cell sorting is a flow cytometry based technique for analyzing expres-

sion of cell surface and intracellular molecules, characterizing and defining different cell types 

in heterogeneous cell populations, assessing the purity of isolated subpopulations, and ana-

lyzing cell size and volume. It allows simultaneous multi-parameter analysis of single cells. It 

is predominantly used to measure fluorescence intensity produced by fluorescence-labelled 

antibodies detecting proteins or ligands that bind to specific cell-associated molecules.

For the staining procedure single-cell suspension from cell culture or tissue samples 

have to be made. The cells are then incubated in tubes or microtitre plates with unlabeled 

or fluorescent-labelled antibodies. Cells are then analysed in the flow cytometer, where the 

sample is hydrodynamically focussed to a tiny stream of single cells. Laser light is directed 

onto the sample as it flows through the chamber. There are detectors in front of the light 

beam (Forward Scatter or FSC) and several detectors side on to it (Side Scatter or SSC) in 

order to measure the light. Cells passing through the beam will scatter the light, which is then 

detected as forward scatter and side scatter. Another set of fluorescence detectors are used 

for the detection of fluorochromes themselves. Fluorochromes used for detection will emit 
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light when excited by a laser with the corresponding excitation wavelength. The combination 

of scattered and fluorescent light can be analyzed: The forward scatter correlates with the 

cell size and the side scatter with the density of the particle/cell (i.e. number of cytoplasmic 

granules, membrane size), so that cell populations can often be distinguished based on their 

difference in size and density. Further distinctions and characteristics can be specified by 

means of the fluorescence emission.

The Becton-Dickinson FACScan used in this study an air-cooled blue argon gas laser, with a 

fixed wavelength emission of 488 nm. It has three fluorescence detection channels which 

simultaneously detect green, yellow-orange, and red light. Fluorescein (FITC) is for the green 

channel, and phycoerythrin (PE) for the yellow-orange channel are the most commonly 

used fluorescent dyes. The list of measurable parameters by FACS is extensive and includes 

amongst others (121-126):

• volume and morphological complexity of cells

• cell surface antigens (Cluster of differentiation (CD) markers)

• intracellular antigens (various cytokines, secondary mediators etc.)

• oxidative burst

• DNA and RNA (cell cycle analysis, cell kinetics, proliferation etc.)

• chromosome analysis and sorting (library construction, chromosome paint)

• protein expression and localization

• nuclear antigens

• enzymatic activity

• pH, intracellular ionized calcium, magnesium, membrane potential

• apoptosis (quantification, measurement of DNA degradation, mitochondrial membrane 

potential, permeability changes, caspase activity)

• cell viability

 Side scatter 

Laser light 

Forward scatter 

Figure 5: The principle of flow cytometry
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AIM oF THE THESIS

The aim of this thesis is to investigate the effects of in cardiothoracic anaesthesia commonly 

used pharmaceuticals on platelet-leukocyte interaction.

The main objectives were:

- To evaluate whether the volatile anaesthetics isoflurane, sevoflurane and desflurane 

modify platelet and leukocyte adhesion.

- To evaluate the effects of these volatile anaesthetics on platelet and leukocyte adhesion 

molecule expression.

- To assess the effect of the α- and β- receptor stimulating catecholamine epinephrine and 

the PDE3 inhibitor milrinone on platelet-leukocyte conjugate formation.

- To elucidate the different effects of the various pharmaceuticals on platelet and leukocyte 

behaviour.
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ABSTRACT

Background: Previous studies have reported conflicting results about the effect of sevoflu-

rane on platelet aggregation. To clarify this point, we investigated the effects of sevoflurane 

on platelet antigen expression and function in vitro.

Methods: Human whole blood was incubated for 1 h with 0.5 and 1 minimum alveolar con-

centration sevoflurane, 21% O2, and 5% CO2. A control sample was kept at the same condi-

tions without sevoflurane. After stimulation with adenosine diphosphate or thrombin recep-

tor agonist peptide 6, samples were stained with fluorochrome conjugated antibodies, and 

the expression of platelet glycoproteins GPIIb/IIIa, GPIb, and P-selectin, as well as activated 

GPIIb/IIIa, were measured with two-color flow cytometry. In addition, platelet function was 

assessed by means of thromboelastography and using the platelet function analyzer 100.

Results: Already in subanesthetic concentrations, sevoflurane inhibits unstimulated and 

agonist-induced GPIIb/IIIa surface expression and activated GPIIb/IIIa expression on platelets 

in whole blood. The agonist-induced redistribution of GPIb into the open canalicular system 

was also impaired by sevoflurane, whereas no effect on P-selectin expression in activated 

platelets could be found. Sevoflurane significantly reduced the maximum thromboelasto-

graphic amplitude. Furthermore, platelet function analyzer 100 closure times were signifi-

cantly prolonged.

Conclusion: The results show that sevoflurane significantly impairs platelet antigen expres-

sion in vitro. It is especially the inhibition of GPIIb/IIIa expression and activation that impairs 

bleeding time as reflected in thromboelastographic measurements and platelet function 

analyzer 100 closure times. The exact inhibitory mechanism remains unclear.
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INTRoDuCTIoN

Since Ueda (1) demonstrated that halothane inhibits platelet aggregation in 1971, various 

studies have investigated the effects of volatile anesthetics on platelet aggregation. Sevo-

flurane in particular has recently been the subject of several investigations. In 1996, Hirakata 

et al. (2) reported that sevoflurane had strong effects on secondary platelet aggregation, 

probably through inhibition of thromboxane A2 formation, (3) whereas Honemann et al. (4) 

found no influence on thromboxane A2 signaling. The results of Hirakata et al. (2,3) were sup-

ported by a study of Dogan et al. (5), which also showed impaired platelet aggregation after 

sevoflurane anesthesia. More recently, Nozuchi et al. (6) have demonstrated that sevoflurane 

does not inhibit platelet aggregation induced by thrombin. However, the results remain 

contradictory, and the direct effects on platelet surface antigens still need to be studied.

Glycoprotein receptors within the platelet membrane are of particular interest in this re-

gard. They are essential for platelet adhesion and platelet-mediated primary and secondary 

aggregation. Acquired or hereditary defects, as well as reduced expression of these glycopro-

teins, could result in platelet malfunction and impaired hemostasis. (7,8) Therefore, changes 

in platelet aggregation induced by sevoflurane could be reflected here.

Among the most important glycoproteins are the GPIIb/IIIa complex, inducing platelet 

aggregation via fibrinogen binding; the GPIb as a receptor of the von Willebrand factor; 

and the α-granule membrane protein P-selectin, mediating platelet endothel and leukocyte 

interactions.

To gain further insight into the mechanisms involved in the inhibition of platelet aggrega-

tion induced by sevoflurane, we investigated the influence of sevoflurane on the expression 

of different platelet surface glycoproteins in whole blood by means of flow cytometry. The 

expression of the platelet glycoproteins GPIIb/IIIa and GPIb and P-selectin were detected 

with fluorochrome-conjugated antibodies. The activated GPIIb/IIIa complex was examined 

using PAC-1, an antibody which recognizes the conformationally changed fibrinogen bind-

ing site. Platelet-related hemostasis was furthermore assessed with thromboelastography 

and the platelet function analyzer 100 (PFA).

METHoDS

Flow cytometry allows measurement of the specific characteristics of a large number of single 

cells. Before analysis, cells are labeled with fluorescence-conjugated antibodies. Thereafter, 

the flow cytometer detects the emitted fluorescence and light-scattering properties of each 

cell.
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Antibodies and reagents

The following were purchased from BD Pharmingen (San Jose, CA): anti-CD41a-phycoerythrin 

(PE; clone, HIP8), a monoclonal antibody–recognizing platelet GPIIb/IIIa complex indepen-

dent of activation; anti-CD42b-PE (clone, HIP1), a monoclonal antibody for the subunit of 

GPIb; anti-CD62P-fluorescein-isothiocyanate (FITC; clone, AK-4), a monoclonal antibody 

directed against P-selectin expressed on platelet surface; and IgM-FITC (clone, G155-228) and 

IgG1-FITC (clone, MOPC-21), antibodies for nonspecific binding. PAC-1-FITC (Becton-Dickin-

son, San Jose, CA) recognizes a neoepitope on the GPIIb/IIIa complex after undergoing the 

activation-induced conformational change. Dulbecco’s phosphate-buffered saline without 

Ca2+ and Mg2+, bovine serum albumin, adenosine diphosphate (ADP), and paraformaldehyde 

were obtained from Sigma Chemicals (St. Louis, MO). Thrombin receptor agonist peptide 6 

(TRAP-6) was purchased from Bachem (Heidelberg, Germany).

Blood collection and incubation

After obtaining approval from the local ethics committee (Aachen, Germany) and informed 

written consent, blood samples were taken from healthy volunteers who had not received 

any medication for at least 2 weeks. Venous blood was collected without tourniquet from 

a cubital vein using a 21-gauge butterfly. The first 3 ml of blood was used to perform a 

hemogram and were then discarded. The next samples were drawn into polypropylene 

tubes containing sodium citrate (Sarstedt, Nuermbrecht, Germany). Nine parts of blood were 

anticoagulated with one part 3.8% trisodium citrate. All blood samples were immediately 

diluted to 1:1 with 37°C prewarmed Dulbecco’s phosphate-buffered saline and were placed 

in polypropylene tissue culture dishes (Sarstedt).

One diluted blood sample was processed immediately to obtain baseline values. A 

second sample served as control and was incubated for 1 h in an incubator containing an 

atmosphere of 21% O2 and 5% CO2 at 37°C. The third sample was incubated with 1 minimum 

alveolar concentration (MAC) sevoflurane (2 vol%) or 0.5 MAC sevoflurane (1 vol%) also for 

1 h. For the incubation, we used a recently developed chamber, which allows the delivery 

of volatile anesthetics at low gas flow rates in an atmosphere of 21% O2 and 5% CO2 at 37°C. 

Sevoflurane (Abbott, Wiesbaden, Germany) was delivered as a volatile–air mixture using an 

anesthetic machine (Titus; Draeger, Luebeck, Germany). Carbon dioxide was administered 

into the chamber from an external gas connection. After equilibration of the atmosphere 

inside the chamber, the fresh gas flow was kept at 0.5 l/min during the experiments. Oxygen, 

carbon dioxide, and sevoflurane concentrations and the temperature in the chamber were 

monitored continuously using a Datex AS/3 anesthesia monitor, including a multigas ana-

lyzer (Datex Ohmeda, Helsinki, Finland).
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Sample preparation and flow cytometric analysis

To achieve comparable preconditions for staining with saturating antibody concentrations, 

the platelet count was adjusted in all samples to approximately 20 × 109/l by dilution with 

Dulbecco’s phosphate-buffered saline containing 1% bovine serum albumin. Samples were 

then divided and stimulated with ADP (1 µm final concentration) or TRAP-6 (6 µm final 

concentration). After 5 min, 40 µl of either unstimulated or stimulated samples was added 

to polypropylene tubes containing saturating concentrations of fluorochrome-conjugated 

antibodies and antibodies for nonspecific binding. All aliquots were allowed to stain for 15 

min at room temperature in the dark. The reaction was stopped with 1.5 ml cold Dulbecco’s 

phosphate-buffered saline containing 1% bovine serum albumin and 1% paraformaldehyde. 

The cells were stored up to 30 min at 4°C in the dark until flow cytometric measurements 

were performed.

Flow cytometric two-color analyses were performed on a FACSCalibur flow cytometer and 

were analyzed using CellQuest 3.1 software (Becton Dickinson). Before each measurement, 

the flow cytometer was calibrated with fluorescence microbeads (Calibrite Beads; Becton 

Dickinson).

Platelets were identified by forward and side scatter and PE staining. For each sample, the 

data of 10,000 single platelets were collected. For further analysis, the platelets were gated in 

a side scatter versus fluorescence 2 (PE) dot plot. The mean FITC and PE fluorescence intensi-

ties of the gated platelet populations were calculated from fluorescence histograms. The 

percentage of platelets positive for PAC-1 was determined with a PAC-1-FITC versus CD42b-PE 

dot plot. The percentage of platelets positive for CD62P was measured in a CD62P versus 

CD41a-PE dot plot. Results are expressed as percentage of platelets positive for a marker 

and the mean fluorescence intensity (MFI) of the marker, reflecting the numbers of epitopes 

expressed on a single platelet. MFI and percentage of positive cells were calculated after 

subtraction of nonspecific isotype-specific antibody binding (8).

Thromboelastography

Thromboelastography and PFA measurements were also performed on baseline, control, 

and sevoflurane samples. Thromboelastography was performed with the rotation throm-

boelastograph (ro-TEG®; Nobis Labordiagnostica, Endingen, Germany). For each thrombo-

elastography, 300 mL citrated blood was pipetted into the prewarmed (37C) cuvette of a 

rotation thromboelastograph, and coagulation was induced by adding 20 l CaCl2. Analyzed 

parameters included coagulation or time from sample placement until initial fibrin formation 

(R time), clot formation or time taken for a fixed degree of viscoelasticity to be reached by 

the forming clot (K time), maximum amplitude, or maximum clot firmness (reflection of the 

absolute strength of the fibrin clot).
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PFA measurements

Platelet function analyzer measurements were performed on a PFA-100 system (Dade, Miami, 

FL). This system assesses platelet function in citrated whole blood by monitoring the blood 

flow through an aperture cut in a membrane coated with collagen and epinephrine or ADP. 

The time required for the occlusion of the aperture (closure time) has been reported to be 

indicative of the platelet function. The maximum value for closure time is 300 s, and values 

greater than 300 s are reported as nonclosure. Thromboelastography and PFA measurements 

were performed only with 0.5 MAC sevoflurane.

Statistical Analysis

To provide a better overview of the range of individual glycoprotein expression, data are 

given as mean, minimum, and maximum values. Because the Kolmogorow-Smirnow test 

revealed a normal distribution of the data, we used analysis of variance followed by the 

Bonferroni multiple comparison test to compare sevoflurane, baseline, and control samples. 

A P value of less than 0.05 was considered significant.

RESuLTS

Time-dependent effects on platelet activation

To discover the effects of incubation time on platelet activation, we compared the results 

of the control samples with the baseline samples. After 60 min of incubation, none of the 

measured parameters showed a significant difference to baseline (see also tables 1–3).

Effect of sevoflurane on GPIIb/IIIa expression and PAC-1 binding

Although sevoflurane had no significant effect on GPIIb/IIIa complex expression in unstimu-

lated platelets, stimulation with ADP and TRAP-6 did not increase the number of GPIIb/IIIa 

epitopes expressed on the surface of those platelets incubated with sevoflurane (1 and 0.5 

MAC), whereas GPIIb/IIIa epitopes almost doubled in the baseline and control samples.

The monoclonal antibody PAC-1 was used to identify the activated GPIIb/IIIa complex. 

After incubation with sevoflurane (0.5 and 1 MAC), PAC-1 binding of unstimulated as well 

as ADP- or TRAP-6–stimulated platelets was significantly lower compared with baseline and 

control samples. MFI and the number of cells positive for PAC-1 increased only slightly in 

platelets exposed to sevoflurane, whereas both values showed a 10-fold increase in baseline 

and control samples after activation. Incubation with 0.5 MAC sevoflurane inhibited PAC-1 
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Table 1: Unstimulated and Agonist-induced Platelet Antigen Expression after Exposure to 1 MAC Sevoflurane

Baseline
Control

(60 min Incubation)
1 MAC Sevoflurane
(60 min Incubation)

CD41a [MFI] 1,150 (995–1,330) 1,180 (1,009–1,380 1,267 (1,071–1,562)

CD41a (1 mM ADP) [MFI] 2,157 (1,804–2,666) 2,068 (1,711–2,383) 1,272 (1,106–1,594)*

CD41a (6 mM TRAP-6) [MFI 2,343 (1,899–2,753) 2,297 (1,753–2,719) 1,277 (1,075–1,600)*

PAC-1 [MFI] 9.9 (1.7–20.3) 9.4 (2.3–19.1) 6.2 (2–12.2)

PAC-1 (1 mM ADP) [MFI] 137.3 (82.4–187.7) 135.3 (86.5–193.3) 14.3 (2–33.9)*

PAC-1 (6 mM TRAP-6) [MFI] 178.1 (118.6–253.2) 179.1 (128.1–276.2) 10.3 (2.7–32.8)*

PAC-1 [% pos. platelets] 3.6 (0.5–9.5) 3 (0.7–9.8) 0.6 (0.3–1.4)*

PAC-1 (1 mM ADP) [% pos. platelets] 91.8 (81.6–98.2) 91.8 (78.5–97.2) 11.7 (0.6–44.3)*

PAC-1 (6 mM TRAP-6) [% pos. platelets] 91.1 (82.3–98.1) 92.5 (87–97.9) 6.2 (0.2–21.5)*

CD42b [MFI] 1,416 (1,075–1,746) 1,452 (1,251–1,741) 1,497 (1,148–1,950)

CD42b (1 mM ADP) [MFI] 1,083 (928–1,279) 1,105 (928–1,247) 1,422 (1,144–1,790)*

CD42b (6 mM TRAP-6) [MFI] 816.7 (654–958) 793.9 (635–991.4) 1,388.3 (1,100–1,688)*

CD62P [MFI] 6.6 (4.6–8.9) 5.7 (4.4–8) 7.4 (5.7–8.8)*

CD62P (1 mM ADP) [MFI] 22.2 (11.9–46.6) 22.7 (11.3–42.7) 22 (9.4–29.8)

CD62P (6 mM TRAP-6) [MFI] 61.6 (39.5–81.7) 68.3 (52.1–81) 63.7 (48.6–78.8)

CD62P [% pos. platelets] 2.3 (2–2.9) 2.3 (1.2–3.1) 4.4 (3.2–5.5)*

CD62P (1 mM ADP) [% pos. platelets] 7 (4.5–9.1) 8.5 (3.9–15.6) 17.7 (6.6–31.1)*

CD62P (6 mM TRAP-6) [% pos. platelets] 66.3 (43.2–84.2) 76.8 (67.1–84.3) 64.4 (43.3–86.8)

Data are expressed as mean, minimum, and maximum values. * P < 0.05 versus control and baseline. MFI = mean fluorescence intensity.

Table 2: Unstimulated and Agonist-induced Platelet Antigen Expression after Exposure to 0.5 MAC Sevoflurane

Baseline
Control

(60 min Incubation)
0.5 MAC Sevoflurane
(60 min Incubation)

CD41a [MFI] 1,220 (1,069–1,435) 1,159 (1,048–1,381) 1,213 (949–1,364)

CD41a (1 mM ADP) [MFI] 2,245 (1,958–2,597) 2,076 (1,724–2,429) 1,301 (973–1,493)*

CD41a (6 mM TRAP-6) [MFI 2,493 (2,166–2,864) 2,308 (1,907–2,616) 1,216 (898–1,431)*

PAC-1 [MFI] 11 (2.6–25) 11.1 (3.1–21.4) 7.1 (2.1–13)*

PAC-1 (1 mM ADP) [MFI] 146.6 (83.9–189.4) 130 (93.7–173.3) 23 (8.5–50.7)*

PAC-1 (6 mM TRAP-6) [MFI] 168.6 (112.1–275) 158.9 (87–301.6) 14.7 (4.3–29.3)*

PAC-1 [% pos. platelets] 7.2 (1.3–17.1) 5.1 (1.1–11.4) 2.2 (0.3–6.8)*

PAC-1 (1 mM ADP) [% pos. platelets] 93.7 (82.4–97.6) 93.6 (86.7–97.5) 25.5 (3–59.9)*

PAC-1 (6 mM TRAP-6) [% pos. platelets] 93.4 (83.6–98.6) 91.1 (80.5–98.5) 16.2 (1.72–38.5)*

CD42b [MFI] 1,391 (1,260–1,616) 1,470 (1,170–1,644) 1,423 (1,040–1,663)

CD42b (1 mM ADP) [MFI] 1,038 (800–1,215) 1,135 (841–1,435) 1,363 (997–1,620)*

CD42b (6 mM TRAP-6) [MFI] 810 (574–1,193) 790 (660–1,067) 1,310 (1,016–1,550)*

CD62P [MFI] 5.8 (4.4–7.6) 6 (3.4–11.1) 7.9 (4.3–14.6)*

CD62P (1 mM ADP) [MFI] 20.3 (7.7–37.2) 20.5 (9.3–31.6) 23.8 (15.3–36.1)

CD62P (6 mM TRAP-6) [MFI] 66.56 (44.8–94.2) 67.2 (38.3–105.6) 60.1 (36.6–86.3)

CD62P [% pos. platelets] 3 (2.1–3.8) 2.9 (2–3.9) 4.4 (2.5–6.3)*

CD62P (1 mM ADP) [% pos. platelets] 7.9 (0.59–19) 8.4 (3.5–16.5) 26.3 (9.8–57.5)*

CD62P (6 mM TRAP-6) [% pos. platelets] 70.8 (49.1–85.5) 70.3 (50.1–92.5) 62.2 (37.2–90.9)

Data are expressed as mean, minimum, and maximum values. * P < 0.05 versus control and baseline. MFI = mean fluorescence intensity.
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binding less than did incubation with 1 MAC sevoflurane. Results are summarized in tables 

1 and 2.

Effects of sevoflurane on GPIb expression

Exposure to 1 and 0.5 MAC sevoflurane did not change surface expression of GPIb in un-

stimulated platelets. Interestingly, activation with ADP and TRAP-6 of platelets incubated 

with sevoflurane did not result in a decrease in surface-expressed GPIb, whereas both activa-

tors induced a significant decrease in surface GPIb in baseline and control platelets (tables 

1 and 2).

Effects of sevoflurane on p-selectin expression

Incubation with sevoflurane (0.5 and 1 MAC) resulted in a significant increase in CD62P-MFI 

and positive cells in unstimulated platelets. Stimulation with ADP increased the number of 

positive cells for P-selectin but not the MFI in platelets exposed to sevoflurane. Activation 

with TRAP-6 did not result in significant differences in surface expression of P-selectin in 

any of the three groups, although overall P-selectin expression was higher compared with 

unstimulated and ADP activated platelets (tables 1 and 2).

Thromboelastographic and PFA measurements

In comparison with baseline and control samples, the samples incubated with sevoflurane 

(0.5 MAC) showed a significantly increased R time and a significantly reduced maximum 

amplitude. Clot formation time could not be measured because the clot never reached the 

degree of viscoelasticity required for its determination. PFA closure times of the baseline and 

control samples for both cartridges remained within normal values, whereas closure times of 

Table 3: Thromboelastography and PFA Measurements

Baseline
Control

(60 min Incubation)
0.5 MAC Sevoflurane
(60 min Incubation)

Thromboelastography

R time (min) 10.7 (7–14.4) 11.3 (9.8–14.6) 17.7 (16.1–20.6)*

K time (min) 6.2 (5.4–6.9) 6.3 (4.6–10.6) †

Maximum amplitude (mm) 53 (49–55) 51 (50–53) 8 (6–11)*

PFA measurements

Collagen/ADP (s) 98.6 (97–100) 101.3 (92–116) >300*

Collagen/Epinephrine (s) 143.6 (132–162) 139.3 (132–150) >300*

Data are expressed as mean, minimum, and maximum value. * P < 0.05 versus control and baseline. † Clot formation time could not be 
measured because the clot never reached the degree of viscoelasticity required for its determination.
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the blood exposed to sevoflurane were greater than 300 s analog to nonclosure. Because the 

results obtained with 0.5 MAC sevoflurane were already highly significant, we did not repeat 

the thromboelastographic and PFA measurements with 1 MAC sevoflurane (table 3).

DISCuSSIoN

In the current study, we have been able to show that sevoflurane significantly altered platelet 

glycoprotein expression and platelet function, even in subanesthetic concentrations in vitro. 

Already in unstimulated blood, sevoflurane reduced basal PAC-1 binding and the percentage 

of PAC-1–positive cells. Stimulation of sevoflurane-incubated platelets with ADP or TRAP-6 

did not result in an increase of surface-expressed GPIIb/IIIa, nor did the amount of PAC-1 

binding on a single cell and the number of PAC-1–positive cells increase considerably. At 0.5 

MAC sevoflurane, PAC-1 binding and the percentage of positive cells for PAC-1 were greater 

in comparison with 1 MAC, suggesting a possible dose-dependent inhibition of receptor 

activation.

It is well-established that platelet adhesion is mediated via glycoprotein GPIb receptors 

through interaction with the von Willebrand factor and that further physiologic activation 

of platelets via intracellular signaling pathways leads not only to an increased expression of 

the GPIIb/IIIa receptor complex, but also to a conformational change and exposure of the 

fibrinogen binding site. Subsequent fibrinogen bridging allows firm attachment of adjacent 

platelets. This process is a prerequisite for platelet aggregation and thrombus formation. 

Therefore, an inhibition of the GPIIb/IIIa complex results in a prolonged bleeding time (9,10). 

Because PAC-1 only binds to activated GPIIb/IIIa epitopes, the reduced binding on platelets 

exposed to sevoflurane in vitro could reflect a serious incapacity to generate the fibrinogen 

binding site and could thus induce platelet aggregation.

These results were confirmed by the prolonged bleeding time in PFA measurements (11,12). 

Thromboelastography also revealed an incapacity to produce a sufficient clot firmness in 

sevoflurane-incubated blood. Furthermore, the thromboelastographic patterns resembled 

the patterns produced by abciximab-modified thromboelastography where the GPIIb/IIIa re-

ceptor is selectively blocked by a monoclonal antibody fragment (c7E3 Fab; ReoPro; Lilly, Bad 

Homburg, Germany), and the resulting maximum amplitude is a function of the fibrinogen 

concentration (13,14).

Considering the fact that an activated GPIIb/IIIa receptor complex is a prerequisite for 

primary and secondary platelet aggregation, our findings do not correspond with the studies 

of Hirakata et al. and Nozuchi et al. (6) Hirakata et al. (2,3) found that sevoflurane inhibited 

secondary platelet aggregation induced by ADP and epinephrine, and Nozuchi et al. (6) 

reported that sevoflurane did not inhibit aggregation induced by thrombin. In our study, 

after incubation with sevoflurane, neither a weak agonist, such as ADP, nor a strong agonist, 
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such as TRAP-6, was able to recruit and activate a sufficient number of GPIIb/IIIa epitopes on 

the platelet surface required for adequate fibrinogen binding. Therefore, not only secondary 

but also primary aggregation is impaired by sevoflurane. The different study results may be 

partly explained by the different methods used. In contrast to the cited studies, we analyzed 

platelets in whole blood instead of platelet suspensions. We also used sevoflurane as a gas, 

not as a liquid, and allowed platelets to incubate for 1 h.

Interestingly, not only was fibrinogen binding of platelets impaired by sevoflurane, but the 

often-described activation-induced redistribution of GPIb from the surface to the internal 

membranes of the open canalicular system also failed to occur (15-18). This leads to the 

conclusion that perhaps more than one inhibitory mechanism is involved. Our results stand 

in contrast to the results of Froehlich et al. (19), who observed a redistribution. Maybe the dif-

ferent incubation times and different concentrations of ADP and TRAP-6 led to the divergent 

findings.

Nevertheless, [alpha]-granule secretion on activation seems to be unaffected by sevoflu-

rane as determined by binding of a monoclonal antibody to P-selectin. P-selectin is located 

in the membranes of [alpha] granules and becomes externalized on the platelet surface after 

platelet activation and granule secretion (15,20). In unstimulated platelets, P-selectin surface 

expression was even higher in platelets exposed to sevoflurane.

The mechanism by which sevoflurane suppresses platelet response to various stimuli re-

mains unclear. The hypothesis of Hirakata et al. (2) that sevoflurane inhibits thromboxane A2 

formation by suppressing cyclooxygenase activity cannot explain the effects of sevoflurane 

on primary aggregation by inhibiting GPIIb/IIIa expression and activation. The findings of 

Hirakata et al. (2) can possibly be explained by the fact that GPIIb/IIIa mediates the formation 

of thromboxane A2, and GPIIb/IIIa receptor blockade impairs the formation of this secondary 

feedback agonist (21).

A direct inhibitory effect of sevoflurane on the GPIIb/IIIa receptor, as well as an inhibition 

of intracellular signaling pathways, might be possible, whereas a direct effect on ADP and 

thrombin surface receptors seems to be improbable because both agonists interact with spe-

cific receptor types, including the purinase-activated receptors PAR1 and PAR4 for thrombin 

and the purinergic receptors P2Y1 and P2TAC for ADP. Although the signaling pathways that 

deliver messages from these receptors to the GPIIb/IIIa complex have not been completely 

characterized, it seems likely that a link exists from the G-protein–coupled agonist receptors 

to the GPIIb/IIIa receptor complex, including phospholipase C[beta], inositol phosphates, 

and protein kinase C. Therefore, not only a direct inhibitory effect of sevoflurane on the 

GPIIb/IIIa receptor but also a possible interference with parts of the signaling pathway is 

imaginable (22,23). Kohro and Yamakage (24) investigated the effect of halothane on platelet 

function and proposed a decrease in intracellular free Ca2+ and production of inositol 1,4,5 

-triphosphate as the possible inhibitory mechanism. A similar mechanism is imaginable for 



43

Sevoflurane inhibits platelet antigen expression

2

the effects of sevoflurane on platelets. However, further studies are necessary to confirm 

these speculations.

In summary, sevoflurane inhibits agonist-induced GPIIb/IIIa activation and surface ex-

pression on platelets in whole blood already in subanesthetic concentrations in vitro. The 

agonist-induced redistribution of GPIb into the open canalicular system was also impaired by 

sevoflurane, whereas no effect on P-selectin expression in activated platelets as an indicator 

of activation dependent [alpha] degranulation could be found. Although Hirakata et al. (3) 

observed an impaired platelet aggregation in patients anesthetized with sevoflurane, and 

Nathan et al. (25) noticed a higher blood loss in patients undergoing gynecologic ambulatory 

anesthesia with sevoflurane, it must be further evaluated whether our in vitro findings have 

clinical implications.
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ABSTRACT

Background: Adhesion of activated platelets to neutrophils and monocytes has an important 

role in the regulation of inflammatory processes. This study investigates whether halothane 

and isoflurane affect binding of activated platelets to leukocytes in human whole blood.

Methods: Citrated whole blood was incubated for 60 min with either 1 or 2 minimum 

alveolar concentration (MAC) halothane or isoflurane. After stimulation with adenosine-

5-diphosphate (ADP) or the thrombin receptor agonist protein TRAP-6, platelet–leukocyte 

adhesion and surface expression of CD62P on platelets were evaluated by flow cytometry.

Results: Halothane led to an inhibition of agonist-induced adhesion of activated platelets to 

neutrophils and monocytes. One MAC halothane reduced the formation of TRAP-6–induced 

platelet–monocyte conjugates. After exposure to 2 MAC halothane, agonist-induced plate-

let–monocyte and platelet–neutrophil adhesion were inhibited. Surface expression of CD62P 

on ADP– and TRAP-6–stimulated platelets were significantly reduced after 1 and 2 MAC 

halothane. After 2 MAC isoflurane, the authors observed an increase of the percentage of 

lymphocytes with bound platelets after activation with ADP. The percentage of neutrophils 

with bound platelets after activation with ADP or TRAP-6 was also increased in this group. 

Two MAC isoflurane led to an increase of the percentage of platelets expressing CD62P in the 

unstimulated and TRAP-6 stimulated samples, and of the amount of CD62P epitopes on the 

surface of platelets in the ADP-stimulated samples.

Conclusion: This study indicates that halothane inhibits, whereas isoflurane enhances, adhe-

sion of agonist-activated platelets to leukocytes. Interaction of both anesthetics with the 

expression of CD62P on platelets contribute to theses effects.
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INTRoDuCTIoN

Adhesion of activated platelets to polymorphonuclear neutrophils and monocytes has an 

important role in the regulation of inflammatory processes and thrombosis. Increased plate-

let–neutrophil and platelet–monocyte conjugates have been shown in cardiopulmonary 

bypass (1), myocardial infarction (2), postischemic reperfusion damage (3), thrombosis (4), 

and sepsis (5,6). An interaction between platelets and leukocytes may link these processes 

and contribute by intercellular communication pathways to the pathophysiology of these 

diseases.

It is well-established that activated platelets bind to neutrophils and monocytes via an 

interaction between CD62P on the platelet surface membrane and P-selectin ligand (PSGL-

1) on the surface of leukocytes (7,8). Binding of activated platelets to neutrophils induces 

respiratory burst (9) and mediates initial neutrophil attachment and rolling (10), which may 

lead to neutrophil accumulation at sites of injury. Binding of activated platelets to monocytes 

is reported to induce secretion of different proinflammatory chemokines (11,12). These re-

sults suggest that the tight interaction among platelets, neutrophils, and monocytes has an 

important part in the host defense system.

Halothane has been found to affect directly immune-competent cells. For example, during 

exposure to halothane, the respiratory burst activity of polymorphonuclear neutrophils is 

significantly reduced (13). Furthermore, halothane is also known to inhibit human platelet 

aggregation by interaction with Ca2+-dependent platelet activation processes (14) Because 

halothane is rarely used during clinical situations associated with increased platelet–leuko-

cyte formations, such as cardiopulmonary bypass, we also investigated the effect of isoflurane 

on platelet–leukocyte interaction.

In the current study, we attempted to clarify whether halothane and isoflurane influence 

adhesion of activated platelets to leukocytes to gain further insight into the mechanism of 

anesthetic-induced modulation of immune-competent cells and intercellular communica-

tion. Using activation-dependent monoclonal antibodies and two-color flow cytometry, we 

studied the effect of both anesthetics on platelet–leukocyte adhesion and expression of 

platelet adhesion membrane receptors in human whole blood.

MATERIALS AND METHoDS

In accordance with the human research standards of our institutional ethics committees 

(University Hospital, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany) and 

informed consent, blood samples were taken from 38 healthy volunteers (18 women, 20 men) 

who had no history of smoking or infections and had not ingested nonsteroidal antirheumat-

ics for at least 2 weeks before donation. Venous blood was carefully withdrawn without a 
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tourniquet from an antecubital vein using a 21-gauge butterfly into blood collection tubes 

(Sarstedt, Nümbrecht, Germany) containing a 1:10 volume of 3.2% sodium citrate. The first 3 

ml of blood was used to perform a hemogram (complete blood count, differential leukocyte 

count). Blood samples of each donor were immediately diluted 1:1 with 37°C prewarmed 

Dulbecco’s phosphate buffered saline without Ca2+ and Mg2+ (Sigma Chemicals, St. Louis, 

MO) in sterile polypropylene tissue culture dishes (Sarstedt). In a subset of experiments, 

one diluted blood sample was processed within 10 min after blood withdrawal for flow 

cytometric analysis to obtain baseline values. The remaining blood samples were incubated 

with either 1 or 2 minimum alveolar concentration (MAC) halothane or isoflurane for 60 min. 

The MAC value used for halothane in this study was 0.8%, and the value for isoflurane was 

1.2%. Control samples were placed at the same time point into an incubator (Heraeus BB 16, 

Hanau, Germany) with an atmosphere of 21% oxygen and 5% carbon dioxide at 37°C. After 

incubation, blood samples were immediately processed for stimulation procedures and flow 

cytometric analysis.

For the incubation of the blood samples with halothane or isoflurane, we developed 

a small box that allows delivery of different volatile anesthetics at low gas flow rates in an 

atmosphere with 5% carbon dioxide at 37°C. To avoid artificial leukocyte and platelet ac-

tivation, blood samples were not bubbled with fresh gas throughout the incubation time. 

Anesthetics were delivered as a volatile–air mixture (fraction of inspired oxygen [Fio2], 0.21) 

using a commercially available anesthetic machine (Cato; Dräger, Lübeck, Germany). Carbon 

dioxide (5%) was directly administered into the box using an external gas bottle. Initial fresh 

gas flow was 1 l/min, which was reduced to 250 ml/min after equilibration of the atmosphere 

inside the box. Oxygen, carbon dioxide, and anesthetic gas concentrations within the box 

were continuously monitored using a multigas analyzer (Datex Compact, Helsinki, Finland).

Flow cytometric analysis

Flow cytometric analysis was performed on a FACSCalibur flow cytometer and analyzed using 

CellQuest 3.1 software (Becton-Dickinson, San Jose, CA). Before each measurement, the flow 

cytometer was calibrated with fluorescence microbeads (Calibrite Beads; Becton-Dickinson). 

Antibodies (Mab) used were as follows: anti-CD45-FITC (clone HI30), Mab for leukocyte com-

mon antigen; anti-CD41a-PE (clone HIP8), Mab recognizing the platelet glycoprotein GPIIbIIIa; 

anti-CD62P-FITC (clone AK-4), Mab directed against CD62P expressed on platelet surface; and 

negative IgG1-FITC and IgG1-PE antibodies (clone MOPC-21) for nonspecific binding (all from 

Pharmingen, San Jose, CA).

Stimulation, immunofluorescence staining, and flow cytometric analysis were performed 

as previously described with minor modifications (2). In brief, to determine the effect of 

halothane and isoflurane on CD62P expression and binding of activated platelets to leu-

kocytes, blood samples were stimulated with either adenosine-5-diphosphate (ADP, final 
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concentration 2 µm; Sigma Chemicals) or the thrombin receptor agonist peptide TRAP-6 

(final concentration 6 µm; Bachem, Heidelberg, Germany) at room temperature. Stimulation 

was performed in closed Eppendorf tubes to prevent evaporation of the anesthetics. After 

5 min, 100 µl unstimulated or stimulated citrated whole blood was added to polypropylene 

tubes containing saturating concentrations of fluorochrome-conjugated antibodies and 

then stained for 15 min at room temperature in the dark. The reaction was stopped by adding 

2 ml lysing solution (Becton-Dickinson) for 10 min. After centrifugation (5 min, 350 g, 4°C), 

the samples were washed with 2 ml phosphate buffered saline containing 1% bovine serum 

albumin and centrifugated, and the remaining pellet was resuspended in 500 µl phosphate 

buffered saline containing 1% bovine serum albumin and 1% paraformaldehyde. The cells 

were stored up to 1 h at 4°C until flow cytometric measurements were performed.

Neutrophils, monocytes, and lymphocytes were differentiated by anti-CD45-FITC fluo-

rescence, and cell size and granularity in the forward and side scatter. Platelet adhesion to 

leukocytes was defined as cell particles positive for CD41a-PE in the leukocyte subgroups. 

The percentage of leukocytes with bound platelets and the CD41a-PE mean fluorescence in-

tensity of the positive leukocytes were measured. The CD41a-PE mean fluorescence intensity 

reflects the number of platelets bound per leukocyte (8). For each sample, 40,000 leukocytes 

were measured.

To determine CD62P expression on the surface of platelets, single platelets were identified 

by size (forward scatter) and CD41a-PE immunofluorescence in a logarithmic scaled dot plot. 

Results are expressed as percentage of platelets positive for CD62P and mean fluorescence 

intensity of CD62P-FITC. The CD62P-FITC mean fluorescence intensity reflects the number 

of epitopes expressed on the surface membrane of single platelets. For each sample, 10,000 

platelets were collected.

Gas chromatography and mass spectrometry

In a subset of experiments, concentrations of halothane and isoflurane were determined in 

the gas and fluid phases using gas chromatography and mass spectrometry on a HP 6890/

MSD 5973 Series instrument (Hewlett-Packard, Wilmington, DE) equipped with a head space 

injector system (Model 7050; Tekmar-Dohrmann, Cincinnati, OH) as previously described (13). 

Equilibration between the gas–fluid phase was completed within 15 min for both anesthet-

ics. The following concentrations and diluted blood/gas partition coefficient of halothane 

and isoflurane were determined for 1 MAC at 37°C: halothane, 0.73 ± 0.05 mm (partition 

coefficient, 2.01); isoflurane, 0.62 ± 0.04 mm (partition coefficient, 1.15).
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Statistical analysis

The Kolmogorov-Smirnov test showed that the flow cytometric data were not normally 

distributed. Therefore, results are expressed as median (25–75 percentile) unless otherwise 

indicated. Differences between the anesthetic exposed samples and control samples were 

tested by the Wilcoxon test. A value of P < 0.05 was regarded as significant.

RESuLTS

Hemogram

The average hemoglobin concentration of all of the volunteers was 14.0 ± 1.0 g/dl (mean ± 

SD), leukocyte count average was 6,200 ± 1,900/µl, and platelet count average was 224 ± 54 x 

103/µl. Differential leukocyte counts were 60.3 ± 7.5% neutrophils, 27.9 ± 7.2% lymphocytes, 

7.0 ± 2.9% monocytes, 3.6 ± 2.0% eosinophils, and 0.8 ± 0.6% basophils.

Effect of incubation time on platelet activation and platelet–leukocyte 
adhesion

To exclude artificial activation during the incubation time of the control blood samples, we 

compared baseline and control values of unstimulated and agonist-induced platelet–leuko-

cyte binding in a subset of experiments. The 60-min treatment in the incubator had no effect 

on either basal or agonist-induced CD62P expression on platelets, nor was there an increase 

in leukocytes with bound platelets (data not shown).

Effect of halothane on platelet–leukocyte adhesion

The influence of halothane at 1 and 2 MAC on platelet–leukocyte adhesion is summarized 

in table 1. Halothane had no effect on binding of unstimulated platelets to the three investi-

gated leukocyte subpopulations. Exposure of blood samples to 1 MAC halothane decreased 

the percentage of neutrophils and monocytes with bound platelets after stimulation with 6 

µm TRAP-6 compared with control samples.

In the 2 MAC halothane group, we observed a reduction of the percentage of lymphocytes 

with bound platelets after activation with ADP. After stimulation with TRAP-6, the amount of 

bound platelets on lymphocytes was lower in comparison with the control values (P < 0.05).

The percentage of neutrophils that were positive for the platelet marker CD41a after 

activation with either ADP or TRAP-6 was decreased after incubation with 2 MAC halothane. 
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Furthermore, halothane reduced the number of bound platelets per neutrophil associated 

with ADP stimulation.

The percentage of monocytes with adherent agonist-activated platelets remained un-

changed. However, CD41a mean fluorescence intensity, reflecting the number of adherent 

platelets on each single monocyte, was reduced significantly after stimulation with ADP and 

TRAP-6 in comparison with controls.

Effect of halothane on platelet surface CD62P expression

The effect of halothane on basal and agonist-induced platelet surface CD62P expression is 

shown in figure 1. Halothane per se had no effect on basal platelet CD62P expression. Both 

tested halothane concentrations significantly (P < 0.05) reduced the percentage of ADP– and 

Table 1: Spontaneous and Agonist-induced Platelet–Leukocyte Adhesion after Exposure to Halothane

Control
(60 min)

1 MAC Halothane
(60 min)

Control
(60 min)

2 MAC Halothane
(60 min)

Platelet–lymphocyte

% Positive lymphocytes 2.1 (1.8–3.0) 2.2 (1.8–3.2) 2.3 (2.1–2.6) 2.5 (2.2–2.6)

MFI CD41a on lymphocyte 109 (74–117) 97 (81–99) 123 (102–154) 135 (124–151)

Platelet–lymphocyte (2 μM ADP)

% Positive lymphocytes 2.5 (2.0–2.7) 2.5 (2.1–2.8) 3.7 (2.7–4.7) 3.2 (2.3–4.0)

MFI CD41a on lymphocyte 283 (220–342) 291 (251–302) 394 (258–532) 244 (189–299)*

Platelet–lymphocyte (6 μM TRAP-6)

% Positive lymphocytes 2.5 (2.1–3.5) 2.6 (1.8–3.3) 3.2 (2.9–3.7) 2.5 (2.3–3.1)*

MFI CD41a on lymphocyte 314 (248–562) 258 (187–326) 369 (245–459) 297 (222–400)

Platelet–neutrophil

% Positive neutrophils 2.3 (1.4–6.1) 2.7 (2.1–6.5) 3.2 (2.7–3.8) 2.5 (2.0–3.3)

MFI CD41a on neutrophil 180 (157–220) 181 (159–207) 144 (124–159) 135 (124–151)

Platelet–neutrophil (2 μM ADP)

% Positive neutrophils 10.9 (5.4–16.3) 12.9 (3.9–15.6) 8.6 (5.0–21.2) 6.2 (4.3–12.1)*

MFI CD41a on neutrophil 532 (434–635) 534 (375–638) 625 (406–681) 341 (295–392)*

Platelet–neutrophil (6 μM TRAP-6)

% Positive neutrophils 46.5 (27.8–65.1) 36.2 (14.1–48.1)* 17.6 (11.1–42.7) 20.3 (14.9–33.6)

MFI CD41a on neutrophil 1,553 (373–2,126) 1,698 (402–1,962 842 (612–1,966) 662 (357–949)*

Platelet–monocyte

% Positive monocytes 6.1 (4.0–12.7) 5.7 (3.7–14.8) 7.0 (4.8–11.0) 6.8 (2.9–9.9)

MFI CD41a on monocyte 222 (189–271) 229 (204–250) 188 (146–228) 158 (139–203)

Platelet–monocyte (2 μM ADP)

% Positive monocytes 41.9 (28.9–55.9) 40.1 (34.3–52.9) 30.1 (20.9–38.4) 25.7 (15.5–29.0)

MFI CD41a on monocyte 701 (527–810) 715 (494–773) 545 (424–625) 346 (285–476)*

Platelet–monocyte (6 μM TRAP-6)

% Positive monocytes 87.8 (65.0–91.4) 75.1 (51.1–84.8)* 65.3 (47.1–82.7) 54.7 (44.9–74.9)

MFI CD41a on monocyte 2,459 (610–2,977) 1,377 (574–2,516) 1,321 (858–2,154) 723 (424–866)*

 Values are presented as percentage of leukocytes with bound platelets and mean fluorescence intensity (MFI) in arbitrary units of CD41a on each 
leukocyte, representing the number of bound platelets (median [25–75 percentile] of nine independent experiments for each concentration of 
halothane). * P < 0.05 versus control in the absence of halothane. MAC = minimum alveolar concentration
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TRAP-6–activated platelets positive for CD62P and the amount of expressed CD62P epitopes 

(mean fluorescence intensity CP62P) in comparison with controls.

Effect of isoflurane on platelet–leukocyte adhesion

The effect of isoflurane on platelet–leukocyte adhesion is summarized in table 2. After expo-

sure to 1 MAC isoflurane, binding of unstimulated and stimulated platelets to leukocytes was 

not altered in comparison with untreated control samples.

In the 2 MAC isoflurane group, we observed an increase of the percentage of lymphocytes 

with bound platelets after activation with ADP (P < 0.01). Furthermore, the percentage of 

neutrophils that were positive for the platelet marker CD41a after activation with either 

ADP or TRAP-6 was significantly increased after incubation with 2 MAC isoflurane (P < 0.01). 

Platelet–monocyte adhesion was not affected after incubation with 2 MAC isoflurane.

 
 

Fig. 1: Dose-dependent effect of halothane on unstimulated and agonist-induced (2 μM ADP; 6 μM TRAP-6) expression of CD62P on the 
platelet surface membrane. Data are presented as percentage of platelets positive for CD62P (A and B) and the mean fluorescence intensity 
(MFI) of expressed CD62P in arbitrary units (C and D). CD62P MFI represents the amount of CD62P epitopes expressed on the surface membrane 
per single platelet. Box plots show 25th and 75th percentiles, median, and range of nine independent experiments for each concentration of 
halothane. *P < 0.05 compared with control in the absence of halothane.
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Effect of isoflurane on platelet surface CD62P expression

The effect of isoflurane on basal and agonist-induced platelet surface CD62P expression is 

shown in figure 2. At 2 MAC, isoflurane increased the percentage of platelets positive for 

CD62P in the unstimulated and TRAP-6–stimulated samples in comparison with control 

samples (P < 0.05). Furthermore, in the ADP-stimulated samples, isoflurane lead to an in-

crease of the CD62P mean fluorescence intensity, reflecting the amount of CD62P epitopes 

of the surface of platelets (P < 0.01).

Table 2: Spontaneous and Agonist-induced Platelet–Leukocyte Adhesion after Exposure to Isoflurane 

Control
(60 min)

1 MAC Isoflurane
(60 min)

Control
(60 min)

2 MAC Isoflurane
(60 min)

Platelet–lymphocyte

% Positive lymphocytes 4.1 (3.3–4.6) 4.5 (3.1–4.9) 2.8 (2.4–3.2) 2.9 (2.4–3.9)

MFI CD41a on lymphocyte 139 (102–175) 155 (119–193) 148 (116–168) 147 (125–183)

Platelet–lymphocyte (2 μM ADP)

% Positive lymphocytes 4.5 (3.7–5.0) 4.5 (4.4–5.2) 3.0 (2.4–3.3) 3.5 (2.6–3.8)*

MFI CD41a on lymphocyte 277 (157–503) 256 (181–458) 246 (219–295) 257 (205–300)

Platelet–lymphocyte (6 μM TRAP-6)

% Positive lymphocytes 3.6 (3.2–4.8) 4.5 (3.6–5.0) 3.2 (2.8–3.5) 4.0 (3.1–4.5)†

MFI CD41a on lymphocyte 225 (166–306) 322 (217–392) 233 (176–338) 300 (224–428)

Platelet–neutrophil

% Positive neutrophils 3.5 (2.5–5.7) 4.2 (3.7–7.1) 3.0 (1.9–4.4) 3.7 (2.9–4.8)

MFI CD41a on neutrophil 209 (171–289) 185 (131–269) 180 (165–231) 172 (136–226)

Platelet–neutrophil (2 μM ADP)

% Positive neutrophils 9.4 (6.3–11.3) 10.2 (8.0–16.0) 10.9 (7.6–18.1) 21.0 (14.8–40.9)*

MFI CD41a on neutrophil 598 (321–674) 516 (303–674) 346 (297–493) 501 (383–539)

Platelet–neutrophil (6 μM TRAP-6)

% Positive neutrophils 59.0 (20.8–66.7) 62.5 (50.1–73.6) 40.0 (18.4–51.0) 61.9 (42.4–75.0)†

MFI CD41a on neutrophil 764 (451–2,260) 1,124 (743–2,127) 1,156 (500–1,459) 1,065 (674–1,769)

Platelet–monocyte

% Positive monocytes 7.9 (4.6–16.5) 9.6 (7.4–20.8) 9.7 (4.3–17.7) 11.6 (6.3–19.1)

MFI CD41a on monocyte 248 (160–352) 227 (186–301) 265 (221–396) 220 (181–315)

Platelet–monocyte (2 μM ADP)

% Positive monocytes 49.7 (36.4–59.4) 45.2 (36.6–563.9) 48.0 (32.4–74.4) 67.0 (38.8–87.0)

MFI CD41a on monocyte 775 (503–974) 748 (405–861) 628 (453–765) 745 (401–948)

Platelet–monocyte (6 μM TRAP-6)

% Positive monocytes 93.1 (76.4–95.0) 95.0 (92.3–96.5) 85.8 (74.5–92.6) 94.2 (90.0–96.0)

MFI CD41a on monocyte 1,225 (743–3,326) 1,842 (1,232–3,617) 915 (797–1,579) 1,317 (1,090–2,122)

 Values are presented as percentage of leukocytes with bound platelets and mean fluorescence intensity (MFI) in arbitrary units of CD41a on 
each leukocyte,
representing the number of bound platelets (median [25–75 percentile] of 10 independent experiments for each concentration of isoflurane.
* P < 0.01 versus control in the absence of isoflurane. † P < 0.05 versus control.
MAC = minimum alveolar concentration.
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DISCuSSIoN

In the current study, we investigated the effect of halothane and isoflurane on adhesion of 

unstimulated and ADP– or TRAP-6–activated platelets to leukocytes in human whole blood 

in vitro. The major findings are as follows (1). One MAC halothane inhibits the percentage 

of neutrophils and monocytes with bound platelets after stimulation with TRAP-6 (2). Two 

MAC halothane reduces binding of ADP– and TRAP-6–activated platelets to lymphocytes, 

neutrophils, and monocytes (3). Expression of platelet surface CD62P, which has a major role 

in the mechanism of platelet–leukocyte adhesion, associated with ADP or TRAP-6 stimulation 

is suppressed by halothane (4). Two MAC isoflurane increases the percentage of neutrophils 

with bound platelets after stimulation with ADP or TRAP-6 as well as the percentage of 

lymphocyte–platelet formations in the ADP-stimulated samples (5). After exposure to 2 MAC 

 
Fig. 2: Dose-dependent effect of isoflurane on unstimulated and agonist-induced (2 μM ADP; 6 μM TRAP-6) expression of CD62P on the 
platelet surface membrane. Data are presented as percentage of platelets positive for CD62P (A and B) and the mean fluorescence intensity 
(MFI) of expressed CD62P in arbitrary units (C and D). CD62P MFI represents the amount of CD62P epitopes expressed on the surface membrane 
per single platelet. Box plots show 25th and 75th percentiles, median, and range of 10 independent experiments for each concentration of 
isoflurane. *P < 0.05, #P < 0.01 compared with control in the absence of isoflurane.
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isoflurane, the percentage of platelets expressing CD62P is increased after stimulation with 

TRAP-6, whereas ADP-induced platelet activation results in an enhanced expression of CD62P 

epitopes on the surface of platelets.

In contrast to previous studies using isolated leukocyte populations or platelet-rich plasma, 

we used a whole blood system and a previously described two-color flow cytometry assay 

to study platelet–leukocyte adhesion. The advantage of a whole blood system is that cells 

are not artificially activated by isolation processes, and cells are studied in an almost-natural 

environment, with many intercellular mechanisms still intact (15). However, the value of this 

system is limited by the lack of endothelial cells.

It is well-established that activated platelets bind to leukocytes (8) and modulate their 

immunologic function (11,12). Furthermore, adhesion of platelets to leukocyte seems not 

to be an in vitro phenomena because several studies showed increased platelet–leukocyte 

conjugates in cardiopulmonary bypass (1), myocardial infarction (2), postischemic reperfu-

sion damage (3), thrombosis (4), and sepsis (5,6). Therefore, we were interested to evaluate 

whether halothane or isoflurane may alter platelet–leukocyte adhesion in vitro. Halothane 

is known to inhibit the function of both leukocytes (13,16) and platelets (14), whereas iso-

flurane has only minor or negligible impact on the function of platelets (17,18). However, in 

contrast to halothane, isoflurane is commonly used in clinical situations, in which increased 

platelet–leukocyte adhesion has been reported.

CD62P is a glycoprotein located in the membranes of [alpha] granules, which become 

externalized on the surface membrane on activation of platelets (19). CD62P has a prominent 

role in mediating cellular interactions among platelets, leukocytes (20), and endothelial cells 

(21). Accordingly, after stimulation with either ADP or TRAP-6, activated platelets bind rapidly 

to monocytes in human whole blood via an interaction between CD62P on platelet surface 

and PSGL-1 on the surface of monocytes (7,8). TRAP-6, as a strong platelet agonist, is more 

effective in generating platelet–monocyte adhesion and CD62P expression than the weak 

agonist ADP. In our study, 1 MAC halothane inhibited the percentage of monocytes with 

bound platelets only after stimulation with TRAP-6, but ADP-induced binding of platelets and 

monocytes was unaffected. At 2 MAC halothane, platelet–monocyte adhesion was reduced 

after stimulation with both agonists. Furthermore, our results indicated that the inhibiting 

effect of halothane on platelet–monocyte adhesion seems to be mediated by a decreased 

expression of CD62P on activated platelets. The observed lack of effect on ADP-induced 

platelet–monocyte adhesion after 1 MAC halothane can be explained by the fact that the 

percentage of platelets expressing CD62P on its surface was not altered. In this group, only 

the mean fluorescence intensity of CD62P was moderately reduced by 1 MAC halothane, 

reflecting a lower amount of CD62P epitopes expressed on the surface membrane of plate-

lets. We suggest that the lower amount of expressed CD62P epitopes on the platelet surface 

membrane had no influence on platelet–monocyte adhesion because the overall number of 

activated platelets positive for CD62P remained unchanged.
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Interestingly, Fröhlich et al. (18) reported an upward regulation of CD62P on the surface 

of unstimulated platelets in the presence of a halothane concentration of 1 MAC or greater, 

but halothane did not interfere with the platelet response to ADP stimulation. However, the 

difference between this particular study and the current study could be because Fröhlich et 

al. (18) used platelet-rich plasma, whereas we used human whole blood, to investigate the 

effect of halothane on platelets. Furthermore, ADP stimulation was performed with a supra-

maximal concentration (final concentration 25 µm) that might have prevented the detection 

of an inhibitory halothane effect on platelet activation.

Neutrophil respiratory burst and recruitment of neutrophils to sites of inflammation are 

modulated upon mutual contact with activated platelets (9,10). Although binding between 

platelets and neutrophils is primarily mediated via the CD62P/PSGL-1 adhesion proteins, a 

reduction in ADP and TRAP-6 induced platelet–neutrophil adhesion was observed in our 

study only after exposure to 2 MAC halothane. A possible explanation could be that plate-

let–neutrophil adhesion is partially mediated by a non-CD62P mechanism. Kirchhofer et al. 

(22) demonstrated complete inhibition of platelet–neutrophil adhesion by using a CD62P-

blocking antibody in the presence of a GPIIbIIIa antagonist but only partial inhibition in the 

absence of a GPIIbIIIa antagonist. Because platelets can bind fibrinogen via the activated 

GPIIbIIIa receptor and neutrophils can bind fibrinogen via CD11b/CD18 (23,24), it is possible 

that platelet–neutrophil adhesion also involves a fibrinogen bridging mechanism. However, 

it remains to be determined whether halothane interacts with fibrinogen binding between 

platelets and neutrophils.

Isoflurane is known to have no effect on platelet aggregation (17), but an increase in the 

expression of CD62P on the surface membrane of resting platelets was observed at concen-

trations of 2 MAC and greater (18). The current study confirms and extends these findings by 

showing that isoflurane also enhances agonist-induced expression of CD62P. Furthermore, 

the enhanced ADP– and TRAP-6–induced expression of CD62P after exposure to 2 MAC iso-

flurane contribute to the observed increase of platelet–lymphocyte and platelet–neutrophil 

conjugation formation. However, platelet–monocyte adhesion was not altered. Therefore, it 

remains possible that the enhancing effect of isoflurane on the formation of platelet–lym-

phocyte and platelet–neutrophil conjugation may partly be mediated by a CD62P/PSGL-1 

independent pathway.

Evidence suggest that binding of activated platelets to either monocytes or neutrophils 

has an important role in the regulation of inflammatory responses. Recently, it was dem-

onstrated that activated platelets induced monocyte cytokine synthesis of interleukin (IL)-

1[beta], IL-8, and monocyte chemotactic protein (MCP-1) after adhesion via CD62P (11,12). 

The proinflammatory cytokines IL-1[beta] and IL-8 are important in the pathophysiology of 

the local and systemic inflammatory response of the host defense. IL-1[beta] triggers a broad 

range of inflammatory responses, including induction of further cytokines, upregulation 

of adhesion molecules, activation of T lymphocytes, and respiratory burst and lysosomal 
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enzyme release by neutrophils (25,26). IL-8 promotes chemotaxis (27), release of neutrophil 

lysosomal enzymes (28), neutrophil rolling (29), and adherence to endothelial cells (30), 

as well as transendothelial migration (29,31). MCP-1 enhances monocyte chemotaxis (32). 

Neutrophils are the first line of defense against bacterial infections by engulfing and digest-

ing bacteria. Interaction between platelets and neutrophils also leads to the induction of 

neutrophil respiratory burst (9) and recruitment of neutrophils (10) to sites of vascular or 

inflammatory injury. Reduced or missing respiratory burst activity, as seen in chronic granu-

lomatous disease, leads to repeated and life-threatening infections, such as pneumonia 

or multiple abscesses in the lungs and liver. Therefore, the ability of halothane to inhibit 

binding of activated platelets to monocytes and neutrophils, as well as the enhancement 

of platelet–neutrophil adhesion by isoflurane, might contribute to a disturbance of the in-

flammatory response to a microbial injury. However, the physiologic inflammatory response 

consists of an initially proinflammatory phase followed by an antiinflammatory phase, which 

is necessary to manage infections. Therefore, it is uncertain whether the modulation of the 

platelet–leukocyte adhesion by halothane and isoflurane may have deleterious or beneficial 

effects on the perioperative immune function.

Limitations of the Study

In this study, we investigated agonist-induced platelet–leukocyte adhesion in static flow 

conditions. Studies in more physiologic conditions of shear stress of endothelium could have 

produced different results. Furthermore, platelets are known to modulate leukocyte function 

also by soluble mediators, such as CD40L (33) or TGF[beta]-1 (34). However, to evaluate the 

effect of halothane and isoflurane on these platelet-released mediators is beyond the scope 

of this study.

The model used in this study allows for analysis of the in vitro effect of volatile anesthet-

ics on platelet–leukocyte adhesion. The findings indicate that halothane inhibits, whereas 

isoflurane enhances, adhesion of agonist-activated platelets to leukocytes. The effects seem 

to be partly mediated by a altered expression of CD62P on the surface of platelets.

The authors thank Kai Gutensohn, M.D. (Department of Transfusion Medicine, University Hos-

pital Eppendorf, Hamburg, Germany), and Wolfgang Lösche, M.D. (Center for Vascular Biology 

and Medicine, Friedrich-Schiller University, Jena, Germany), for their assistance in planning 

this study and critical review of the protocol and manuscript.
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ABSTRACT

Background: Isoflurane is reported to reduce ischemia-reperfusion injury. Lower expression 

of CD11b may be responsible for attenuated postischemic neutrophil adhesion to vascular 

endothelium. However, neutrophil adhesion to vascular endothelium is a multistep process 

involving several selectins and β2-integrins. Therefore, we assessed whether isoflurane affects 

the activation of the selectins P-selectin glycoprotein ligand-1 (PSGL-1) and L-selectin and the 

β2-integrins CD11a and CD11b.

Methods: Whole blood was incubated for 60 min with 0.5 or 1 minimum alveolar anesthetic 

concentration (MAC) isoflurane. After incubation, neutrophils were activated with N-formyl-

methionyl-leucyl-phenylalanine (FMLP) or phorbol-12-myristate-13-acetate (PMA). Activa-

tion of adhesion molecules was evaluated via flow cytometry.

Results: 1 MAC isoflurane reduced the expression of CD11a in the unstimulated samples. 

After stimulation with FMLP and PMA, shedding of L-selectin was lower in the presence of 

isoflurane. Furthermore, 1 MAC isoflurane reduced FMLP-induced activation of CD11a and 

CD11b compared with unexposed blood samples.

Conclusion: These results demonstrate that isoflurane affects the activation of three adhe-

sion molecules involved in the multistep process of neutrophil recruitment. First, isoflurane 

inhibits the activation of L-selectin, which mediates the neutrophil tethering and rolling on 

the vascular endothelium. Second, isoflurane attenuates the activation of both β2-integrins—

CD11a and CD11b—which mediate firm adhesion and transendothelial migration.



65

The Effect of Isoflurane on Neutrophil Selectin and β2-Integrin Activation In Vitro

4

INTRoDuCTIoN

Recruitment of neutrophils through vascular endothelium to inflamed organ tissue is critical 

for host defense against invading pathogens, but it paradoxically contributes to organ dys-

function in conditions such as ischemia-reperfusion injury. Neutrophil accumulation during 

ischemia-reperfusion injury begins with neutrophil tethering and rolling, which is mediated 

by the interaction of the selectins P-selectin glycoprotein ligand-1 (PSGL-1) and L-selectin 

with their endothelial counterligands. In the next step, tight attachment to endothelium cells 

involves the neutrophil β2-integrin CD11b. Finally, neutrophils transmigrate into the intersti-

tial compartment via the binding of CD11a to endothelial intercellular adhesion molecule 

(ICAM)-1 (1). Tissue injury occurs because of the release of oxygen free radicals and cyto-

toxic enzymes and increased cytokine release from activated neutrophils (1–3). Furthermore, 

microvascular occlusion by platelet-leukocyte aggregates (4) and increased endothelium 

permeability have also been demonstrated to contribute to ischemia-reperfusion injury (5).

Inhibiting neutrophil rolling and attachment to vascular endothelium as a therapeutic 

approach is an attractive way to potentially prevent reperfusion injury at a very early stage. 

In animal models, monoclonal antibodies (MAbs) against adhesion molecules and soluble 

adhesion molecules have been effective in attenuating ischemia-reperfusion injury (1,6).

Several investigations revealed that anesthesiologists have been using anesthetics with 

antiadhesive activity regularly in clinical practice for decades. In animal models, isoflurane, 

sevoflurane, and even halothane protected against myocardial ischemia-reperfusion injury 

(7–11). One suggested mechanism was the attenuated expression of CD11b on activated 

neutrophils after exposure to volatile anesthetics (12). However, CD11b is not the sole adhe-

sion molecule involved in the process of neutrophil recruitment. The initial step, tethering 

and rolling, is primarily mediated by selectins, such as PSGL-1 (13) and L-selectin (14), whereas 

firm attachment depends on the β2-integrins CD11a and CD11b with counterligands on the 

endothelium (15). Thus, we investigated the effect of isoflurane at 0.5 and 1 minimum alveo-

lar anesthetic concentration (MAC) on the activation of selectins and β2-integrins involved 

in the multistep process of neutrophil recruitment, by using an established whole-blood 

model. Furthermore, adhesion molecule activation was determined during basal conditions 

and after stimulation with N-formyl-methionyl-leucyl-phenyla-lanine (FMLP) and phorbol-12-

myristate-13-acetate (PMA).

METHoDS

In accordance with the approved IRB protocol, venous blood from healthy adult donors (10 

men and 6 women) was collected into sterile blood collection tubes (Sarstedt, Nümbrecht, 

Germany) containing a 1:10 volume of 3.2% sodium citrate. Afterward, citrated blood was 
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diluted 1:1 with modified Hanks’ buffered salt solution (without Ca2+ or Mg2+; Sigma Chemi-

cal Co., St. Louis, MO). The MAC value used in this study was 1.2% for isoflurane. Incubation 

of blood samples was performed as previously described (16). In brief, blood samples were 

incubated in a small chamber with 21% oxygen and 5% carbon dioxide at 37°C. Isoflurane 

was delivered with a standard anesthetic machine (Sulla 909; Dräger, Lübeck, Germany), and 

concentrations of all gases were continuously monitored with a multigas analyzer (Datex 

Compact; Datex, Helsinki, Finland). Blood samples were exposed to either 0.5 or 1.0 MAC 

isoflurane for 60 min. Untreated control blood samples were placed in a standard incubator 

(BB 16; Heraeus, Hanau, Germany) providing identical atmospheric conditions. After the end 

of the incubation time, all samples were immediately processed for stimulation and staining 

procedures.

The effect of isoflurane on the expression of neutrophil selectins and β2-integrins was in-

vestigated with unstimulated blood samples and after activation of neutrophils by using two 

different stimuli. FMLP is a physiological agonist of the FMLP receptor on the neutrophil cell 

surface. Activation of the FMLP receptor results in downregulation of PSGL-1 and L-selectin, 

whereas expression of CD11a and CD11b is increased. In contrast, PMA directly activates 

protein kinase C (PKC), which also leads to downregulation of the two selectins and upregula-

tion of both β2-integrins. Stimulation of blood samples with FMLP (final concentration, 100 

nM; Sigma) and PMA (100 nM; Sigma) was performed in sealed polypropylene tubes to avoid 

evaporation of isoflurane. Blood samples were incubated with the stimulating agent for 10 

min at 37°C. Thereafter, 100 µL of blood was added to polystyrene tubes (Falcon; Becton-

Dickinson, San Jose, CA) containing fluorochrome-conjugated MAbs. Activation of selectins 

and β2-integrins was evaluated by using the following MAbs: the PSGL-1 binding MAb KPL-1, 

the L-selectin binding MAb Dreg 56, the CD11a binding MAb HI111, and the CD11b binding 

MAb ICRF44 (all from Pharmingen, San Diego, CA). Leukocytes were stained with anti-CD45 

(clone HI30), and negative immunoglobulin G1-PE (clone MOPC-21) was used as isotype con-

trol. Before the beginning of this study, all MAbs were titrated by flow cytometry to determine 

saturating conditions.

Blood cells were stained for 30 min at 4°C in the dark. Staining was stopped by adding 2 mL 

of lysing solution (FACS Lysing Solution; Becton-Dickinson) for 10 min. After centrifugation (5 

min, 350g, 4°C), the samples were washed with 2 mL of phosphate-buffered saline containing 

1% bovine serum albumin and centrifuged, and the cell pellet was resuspended in 400 µL of 

phosphate-buffered saline containing 1% bovine serum albumin and 2% paraformaldehyde.

Blood cells were analyzed on a FACSCalibur flow cytometer (Becton-Dickinson), which was 

calibrated before each measurement with CaliBRITE beads (Becton-Dickinson). Neutrophils 

were identified by their scatter characteristics and CD45 staining in the FL1 channel. The data 

of 20,000 neutrophils were stored in list mode. The activation of PSGL-1, L-selectin, CD11a, 

and CD11b on the neutrophil cell surface was analyzed by measuring the mean fluorescence 

intensity (MFI) of the specific MAb in the FL2 channel.
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If not indicated otherwise, data are presented as mean and SD. Differences between 

isoflurane-exposed and untreated control samples assessed in parallel were evaluated with 

Student’s t-tests. P < 0.05 was considered significant.

RESuLTS

One MAC isoflurane reduced the MFI of CD11a in comparison with the unexposed samples. 

All other measured adhesion molecules were not affected by isoflurane under unstimulated 

conditions (Tables 1 and 2). The results of the effect of isoflurane on the FMLP-induced activa-

tion of neutrophil adhesion molecules are shown in Tables 1 and 2. In the presence of 0.5 

MAC isoflurane, FMLP-induced shedding of L-selec-tin was significantly inhibited, whereas 

expression of PSGL-1, CD11a, and CD11b was not affected. In the 1 MAC isoflurane group, 

we observed a reduced shedding of L-selectin and an inhibition of the upregulation of the 

CD11a and CD11b MFI. As shown in Tables 1 and 2, isoflurane at 1 MAC also inhibited the 

downregulation of L-selectin from the neutrophil surface after stimulation with PMA, whereas 

the MFI of the β2-integrins was not altered.

Table 1: Effect of 0.5 MAC Isoflurane on the Activation of L-Selectin, PSGL-1, CD11a, and CD11b on Neutrophils In Vitro

Variable Control 0.5 MAC isoflurane
PSGL-1 (unstimulated) [MFI] 422 ± 86 371 ± 87

PSGL-1 (FMLP) [MFI] 353 ± 82 348 ± 100

PSGL-1 (PMA) [MFI] 376 ± 94 371 ± 117

L-selectin (unstimulated) [MFI] 1151 ± 354 959 ± 319

L-selectin (FMLP) [MFI] 128 ± 60 237 ± 153*

L-selectin (PMA) [MFI] 817 ± 373 613 ± 158

CD11a (unstimulated) [MFI] 626 ± 74 605 ± 75

CD11a (FMLP) [MFI] 732 ± 87 737 ± 65

CD11a (PMA) [MFI] 759 ± 132 794 ± 108

CD11b (unstimulated) [MFI] 233 ± 39 235 ± 70

CD11b (FMLP) [MFI] 1838 ± 810 1915 ± 990

CD11b (PMA) [MFI] 2112 ± 1111 2296 ± 1177

Data (arbitrary units) are mean ± sd of eight independent experiments, * p < 0.05 versus control
PSGL-1 = P-selectin glycoprotein ligand-1; MFI = mean fluorescence intensity; FMLP = N-formyl-methionyl-leucyl-phenylalanine
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DISCuSSIoN

Our results indicate that isoflurane affects the activation of three adhesion molecules involved 

in the multistep process of neutrophil recruitment. First, isoflurane inhibits the activation of 

L-selectin, which mediates the neutrophil tethering and rolling on the vascular endothelium. 

Second, isoflurane attenuates the activation of both β2-integrins CD11a and CD11b, which 

mediate firm adhesion and transendothelial migration.

Evidence from animal models suggests that halothane, isoflurane, and sevoflurane protect 

the heart against ischemia-reperfusion injury (7–11). Proposed mechanisms are reduced 

production of hydroxyl radicals (7); activation of myocardial adenosine receptors (8), PKC 

(9), inhibitory guanine regulatory proteins (17), mitochondrial and sarcolemmal adenosine 

tri-phosphate-regulated potassium channels (18,19), and stretch-activated channels (20); and 

inhibition of neutrophil adhesion to endothelial cells (10,11). One investigation revealed that 

adhesion of neutrophils to endothelial cells may be reduced because of an attenuated upreg-

ulation of CD11b, whereas endothelial adhesion molecules were not affected (12). However, 

binding of neutrophils mediated by CD11b with their counterligands on endothelial cells is 

preceded by neutrophil tethering and rolling on the vascular endothelium, which is an early 

step of neutrophil recruitment during the inflammatory reaction. Neutrophil tethering and 

rolling depends on the interaction of the selectins PSGL-1 and L-selectin with their respective 

endothelial counterligands in a series of adhesion and de-adhesion events (13–15). Therefore, 

the aim of this study was to investigate whether isoflurane affects the expression of selectins 

and β2-integrins involved in the multistep process of neutrophil adhesion and migration 

through endothelial cells, by using an established whole-blood assay.

Table 2: Effect of 1 MAC Isoflurane on the Activation of L-Selectin, PSGL-1, CD11a, and CD11b on Neutrophils In Vitro

Variable Control 1 MAC Isoflurane

PSGL-1 (unstimulated) [MFI] 508 ± 142 474 ± 115

PSGL-1 (FMLP) [MFI] 383 ± 52 385 ± 49

PSGL-1 (PMA) [MFI] 452 ± 100 413 ± 55

L-selectin (unstimulated) [MFI] 1281 ± 270 1251 ± 217

L-selectin (FMLP) [MFI] 170 ± 88 218 ± 92*

L-selectin (PMA) [MFI] 691 ± 341 961 ± 255*

CD11a (unstimulated) [MFI] 732 ± 52 704 ± 49*

CD11a (FMLP) [MFI] 827 ± 59 803 ± 50*

CD11a (PMA) [MFI] 847 ± 55 785 ± 131

CD11b (unstimulated) [MFI] 285 ± 145 305 ± 80

CD11b (FMLP) [MFI] 2083 ± 432 1794 ± 325*

CD11b (PMA) [MFI] 1775 ± 611 1458 ± 933

Data (arbitrary units) are mean ± sd of eight independent experiments, * p < 0.05 versus control
PSGL-1 = P-selectin glycoprotein ligand-1; MFI = mean fluorescence intensity; FMLP = N-formyl-methionyl-leucyl-phenylalanine
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An important function of L-selectin for the initial contact with endothelial cells has been 

shown in studies using MAbs (21) and several polysaccharides (22). L-selectin is constitutively 

expressed on the cell surface of neutrophils, and signal transduction through chemoattrac-

tant receptors results in rapid activation of L-selectin by phosphorylation (23), followed by 

proteolytic cleavage from the neutrophil cell surface (24). Activation of L-selectin increases 

its binding activity, enabling initial contact with endothelial mucin-like carbohydrate ligands 

(25). Furthermore, recent studies showed that phosphorylation of L-selectin after chemoat-

tractant activation occurs in conjunction with the dissociation of calmodulin from the cyto-

plasmatic domain of L-selectin before proteolysis from the neutrophil cell surface (26,27). In 

this study, isoflurane inhibited the chemoattractant-induced downregulation of L-selectin. 

Spontaneous shedding of L-selectin from unstimulated leukocytes (26), which is mediated by 

a membrane-associated L-selectin sheddase, could be inhibited by metalloproteinase inhibi-

tors (24). Accordingly, a direct effect of isoflurane on the proteolytic sheddase seems unlikely, 

because L-selectin expression was not altered on unstimulated neutrophils. Therefore, we 

suggest that inhibition of the chemo-attractant-induced downregulation of L-selectin by 

isoflurane might be due to a reduced activation of L-selectin. Because activation of L-selectin 

enables initial contact to endothelial cells, our findings may provide a further mechanism 

of the isoflurane-induced inhibition of neutrophil adhesion to endothelial cells in ischemia-

reperfusion injury.

The leukocyte β2-integrins CD11a and CD11b are involved in numerous aspects of leuko-

cyte function, including tight adhesion to endothelial cells, transmigration phagocytosis, and 

neutrophil activation (15). Patients lacking these integrins are susceptible to severe infections 

(28), but excessive activation contributes to sustained inflammation, reperfusion injury, and 

tissue damage (1,2). The results of this study confirmed those from Möbert et al. (12), who 

suggested that inhibition of the upregulation of CD11b is one relevant mechanism respon-

sible for the reduced adhesion of neutrophils to endothelial cells. As a possible underlying 

mechanism, the authors speculated that the volatile anesthetics might have entered the 

plasma membrane, resulting in membrane expansion and thereby decreasing the upward 

regulation of CD11b. In this study we used two different chemoattractants to gain further 

insight into the underlying mechanism of the isoflurane-induced inhibition of CD11b. The 

ability of PMA, a direct activator of PKC, to induce activation of CD11b not inhibited by 

isoflurane supports the conclusion that plasma membrane expansion is unlikely to be the 

underlying mechanism.

Engagement of FMLP at the G protein-linked receptor leads to the activation of phospho-

lipase C and D, generation of inositol triphosphate, activation of PKC, and calcium influx (29). 

However, signaling events downstream of PKC leading to CD11b activation are only incom-

pletely established but seem to involve the activation of Src family kinases and mitogen-

activated protein kinase p38 (30). However, two investigations showed that FMLP-induced 

activation of CD11b also occurs independently of PKC and mitogen-activated protein kinase 
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p38 (30,31), suggesting an alternative signaling pathway. Because isoflurane did not affect 

PMA-induced activation of CD11b, we speculate that isoflurane may alter either the signaling 

pathway upstream of PKC or the PKC-independent signaling pathway. However, further stud-

ies are required to identify the effect of isoflurane on chemoattractant-induced neutrophil 

signaling pathways.

CD11a is expressed on neutrophils and mediates interactions of neutrophils with the 

endothelium and transendothelial migration via binding to endothelial ICAM-1 (32,33). After 

activation with either FMLP or PMA, CD11a is redistributed over the cell membrane, thus 

forming high-avidity clusters and inducing ligand binding activity (34). In this study, stimu-

lation with either FMLP or PMA resulted in increased CD11a MFI on the neutrophil surface, 

representing activation of the CD11a ligand binding activity. Because isoflurane reduced the 

mean CD11a fluorescence intensity in the unstimulated samples and after stimulation with 

FMLP, it is possible that isoflurane may inhibit the binding of CD11a to endothelial ICAM-1. 

We suggest that the inhibition of CD11a ligand binding activity might be another reason for 

the reduced adhesion of neutrophils to endothelial cells in the presence of isoflurane.

In conclusion, the results of this study indicate that the inhibiting effect of isoflurane on 

neutrophil recruitment may be mediated by a decreased activation of L-selectin and by at-

tenuation of activation of the β2-integrins CD11a and CD11b on the neutrophil surface.
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ABSTRACT

Background: The interaction between platelets and leukocytes plays an important role in 

inflammatory and thrombotic processes. We investigated whether the volatile anaesthetics 

sevoflurane and desflurane alter the formation of platelet–leukocyte aggregates and the 

expression of P-selectin on platelets.

Methods: Whole blood was incubated with 1 and 2 minimum alveolar concentration (MAC) 

sevoflurane or desflurane. Unstimulated and adenosine diphosphate, or thrombin receptor 

agonist peptide-6-stimulated samples were stained with flourochrome-conjugated antibod-

ies. The formation of platelet–leukocyte conjugates and the expression of P-selectin on 

platelets were measured using flow cytometry.

Results: Sevoflurane was found to enhance the binding of platelets to lymphocytes, neu-

trophils and monocytes, it also increased the expression of P-selectin on platelets especially 

in the stimulated samples. Desflurane decreased the percentage of lymphocyte–platelet, 

neutrophil–platelet and monocyte–platelet conjugates principally in unstimulated samples.

Conclusion: The results show that these two volatile anaesthetics have differing effects 

on the formation of platelet–leukocyte conjugates in vitro. Sevoflurane also enhanced the 

expression of P-selectin on platelets.
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INTRoDuCTIoN

The pathophysiological mechanisms and consequences of platelet–leukocyte interactions 

and their implications in many diseases have recently been investigated (1–3). Increased 

association between platelets and leukocytes has been reported in unstable angina (4), 

myocardial infarction (5), coronary interventions (6), cardiopulmonary bypass (7), thrombosis 

(8,9) and sepsis (10,11). It especially enhanced P-selectin expression on the platelet surface, 

which supports the adhesion of platelets to the P-selectin-ligand-1 (PSGL-1) on neutrophils, 

monocytes and lymphocytes (1,9,12). The binding of platelets to neutrophils seems to induce 

attachment, rolling and the oxidative burst in neutrophils, as well as cytokine secretion in 

monocytes (13,14). Upregulation of cellular adhesion receptors and the formation of leuko-

cyte–platelet conjugates may have important implications during and after cardiopulmonary 

bypass, in the development of an early pro-inflammatory response and a later prothrombotic 

state. Many patients suffering from the above-mentioned diseases, or undergoing coronary 

interventions or bypass surgery receive anaesthetics that may modify the immune response. 

During the peri-operative period a stable host defence system is of great importance. It is 

therefore important to clarify if and how anaesthetics affect peri-operative immunity (15).

Sevoflurane reportedly inhibits not only the neutrophil oxidative response, but also 

neutrophil adhesion to endothelial cells (16,17). However, little is known about the effects 

of sevoflurane or desflurane on spontaneous and induced platelet–leukocyte adhesion. In 

this study, we investigated the influence of sevoflurane and desflurane on spontaneous and 

activation-induced platelet–leukocyte adhesion using two-colour flow cytometry.

METHoDS

Antibodies and reagents

We used the following antibodies and reagents from BD Pharmingen (San Jose, CA, USA): 

anti-CD41a-PE (clone HIP8) a monoclonal antibody recognizing platelet GPIIb/IIIa complex 

independent of activation; anti-CD45-FITC (clone HI30) a monoclonal antibody for the leuko-

cyte common antigen; anti-CD62P-FITC (clone AK-4) a monoclonal antibody directed against 

P-selectin expressed on platelet surface; negative IgG1-FITC and IgG1-PE antibodies (clone 

MOPC-21), antibodies for non-specific binding, and lysing solution. Dulbecco’s phosphate-

buffered saline without calcium and magnesium (PBS), bovine serum albumin (BSA), ADP 

and paraformaldehyde were obtained from Sigma Chemicals (St. Louis, MO, USA). Thrombin 

receptor agonist peptide-6 (TRAP-6) was purchased from Bachem (Heidelberg, Germany).
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Blood collection and incubation

Following local research ethics committee approval and written informed consent, blood 

samples were taken from 10 healthy volunteers who had not received any medication for at 

least 2 weeks. Venous blood was collected without the use of a tourniquet from an antecu-

bital vein using a 21-G needle. The first 3 ml of blood was used to perform a blood cell count 

and then discarded, the next three samples were drawn into polypropylene tubes containing 

sodium citrate (Sarstedt, Nuembrecht, Germany). Nine parts of blood were anti-coagulated 

with one part of 3.8% trisodium citrate. All blood samples were immediately diluted 1:1 with 

37°C prewarmed PBS and placed in polypropylene tissue culture dishes (Sarstedt).

One diluted blood sample was processed immediately to obtain baseline values. A second 

sample served as control and was placed in an incubator containing an atmosphere of 21% 

oxygen and 5% carbon dioxide at 37°C. The third sample was incubated at the same time 

point with 1 minimum alveolar concentration (MAC) sevoflurane (2 vol.%) or desflurane (6%), 

respectively, 2 MAC sevoflurane (4 vol.%) or desflurane (12%) for 1h. For the incubation we 

developed a chamber which allowed the delivery of volatile anaesthetics at low gas flow 

rates in an atmosphere of 21% oxygen and 5% carbon dioxide at 37°C. Sevoflurane (Abbott, 

Wiesbaden, Germany) and desflurane were delivered as a volatile/air mixture using an 

anaesthetic machine (Sulla 808 V-D, Draeger, Luebeck, Germany). Carbon dioxide was admin-

istered into the chamber using an external gas connection. Following equilibration of the 

atmosphere inside the chamber the fresh gas flow was kept constant at 0.25 l min−1 during 

the experiments. Previous measurements using gas chromatography and mass spectrometry 

demonstrated that equilibration between the gas fluid-phase was completed within 15 min. 

Oxygen, carbon dioxide, volatile anaesthetic concentrations and temperature were moni-

tored continuously using a Datex AS/3 anaesthesia monitor including a multigas analyser 

(Datex Ohmeda, Helsinki, Finland).

Staining procedure and flow cytometric analysis

Blood samples were stimulated with either ADP (2µm) or TRAP-6 (6µm). After 5 min, 100µl 

of stimulated or unstimulated whole blood was added to saturating concentrations of 

fluorochrome-conjugated antibodies and stained for 15 min in the dark. The staining proce-

dure was stopped by adding 1.5ml lysing solution. After 10 min the samples were centrifuged 

(350g, 4°C, 5 min), washed with PBS containing 1% BSA and centrifuged again. The remaining 

pellet was resuspended in 500µl PBS containing 1% BSA and 1% paraformaldehyde.

Flow cytometric ‘two colour’ analyses were performed on a FACSCalibur flow cytometer 

and analysed using cellquest Version 3.1 (Becton Dickinson, San Jose, CA, USA). Prior to each 

measurement, the flow cytometer was calibrated with fluorescence microbeads (Calibrite 

Beads, Becton Dickinson).
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To determine platelet–leukocyte aggregates, leukocyte subpopulations (neutrophils, 

monocytes, lymphocytes) were differentiated by cell size (forward scatter), granularity (side 

scatter) and binding of anti-CD45-FITC using linear scaling. For each sample, 40000 leuko-

cytes were collected. The leukocyte subgroups were separately gated and platelet–leukocyte 

aggregates were defined as cells found positive for CD41a and CD45 in these subgroups. 

The percentage of CD41a positive conjugates represents the percentage of leukocytes with 

at least one bound platelet. In addition, the mean fluorescence intensity (MFI) of CD41a 

per bound leukocyte was determined. This has previously been shown to correspond in a 

semiquantitative way to the number of platelets bound per leukocyte (12).

To determine CD62P expression, the platelet population was defined by size and CD41a-PE 

immunofluorescence using the logarithmic scaling. From each sample, 10000 platelets were 

measured. The percentage of platelets found positive for CD62P was determined (18).

Statistical analysis

The Kolmogorov–Smirnov test showed that the data were normally distributed. Thus, the 

results are expressed as mean (SD). Differences between the anaesthetic exposed samples, 

and the control samples were tested by means of paired t-tests (ncss 6.0.7., NCSS, Kaysville, 

USA). In all cases a p-value <0.05 was considered significant.

RESuLTS

Blood cell count

All measured blood cell counts were found to be within normal limits. The mean (SD) haemo-

globin level was 13.9 (0.5) g.dl−1, the leukocyte count was 5.3 (0.6) × 103.µl−1 and platelet aver-

age was 299 (39) × 103.µl−1. Mean (SD) differential white blood cell counts were: neutrophils 

2.8 (0.4)%, lymphocytes 1.8 (0.2)%, monocytes 0.4 (0.1)%, eosinophils 0.18 (0.08)%, basophils 

0.05 (0.02)%.

Time-dependent effects on platelet–leukocyte adhesion

In order to measure the effects of incubation time on the control samples, we compared the 

baseline and control values of unstimulated and agonist induced platelet–leukocyte adhe-

sion. The 1h treatment had no effect on unstimulated or agonist-induced platelet–leukocyte 

binding and CD62P-expression on platelets (data not shown).
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Effect of sevoflurane on platelet–leukocyte adhesion

The effect of 1 and 2 MAC of sevoflurane on platelet–leukocyte binding is summarised in 

Table 1. Exposure to 1 MAC sevoflurane had no effect on the binding of platelets to leuko-

cytes in unstimulated samples. Samples exposed to 1 MAC sevoflurane showed a significantly 

(p<0.05) higher percentage of platelets bound to neutrophils following stimulation with 6µl 

TRAP-6 (Fig. 1). The number of platelets bound to monocytes was also higher than in the 

control samples, but this difference did not reach statistical significance.

In samples exposed to 2 MAC sevoflurane we observed significantly (p<0.05) more 

platelet– lymphocyte conjugates in unstimulated and ADP-stimulated blood cells (Fig. 2A). 

Whereas in the control samples stimulation with ADP or TRAP increased only the CD41a MFI 

on lymphocytes (reflecting the number of adherent platelets on each single lymphocyte), 

and not the percentage of lymphocytes with adherent agonist-activated platelets.

The number of platelets bound to neutrophils was significantly (p<0.05) elevated following 

activation with ADP or TRAP-6 (Fig. 2B). Monocyte–platelet adhesion also showed a signifi-

cant (p<0.05) increase following stimulation with TRAP-6 in comparison with control samples 

(Fig. 2C).

Effect of sevoflurane on P-selectin and CD41a expression on platelets

Following exposure to 1 MAC sevoflurane we observed an increase in the percentage of 

platelets expressing P-selectin in unstimulated and TRAP-6-activated samples. However, 

these findings did not reach statistical significance.

 

Fig. 1: Effect of 1 MAC sevoflurane on unstimulated and agonist-induced (2µm ADP, 6µm TRAP-6) formation of neutrophil–platelet conjugates. 
Filled columns: control samples, empty columns: sevoflurane samples. *p < 0.05.
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In the samples incubated with 2 MAC sevoflurane we also observed an increase in the per-

centage of platelets expressing P-selectin in unstimulated and TRAP-6 activated samples. In 

contrast to the result of the incubation with 1 MAC sevoflurane, the above-described finding 

reached statistical significance (Table 1 and Fig. 2D).

CD41a expression did not show significant differences between control and sevoflurane 

samples.

Effect of desflurane on platelet–leukocyte adhesion

At 1 MAC, desflurane significantly (p<0.05) decreased the percentage of neutrophils with 

bound platelets in the unstimulated samples (Fig. 3).

At 2 MAC, desflurane significantly decreased (p<0.05) the number of platelets bound to all 

three leukocyte subpopulations in unstimulated samples (Fig. 4A–C). Furthermore, the num-

ber of platelets bound to monocytes after activation with ADP was reduced in the desflurane 

group (Fig. 4C).

 

Fig. 2: Unstimulated and agonist-induced (2 µm ADP, 6 µm TRAP-6) lymphocyte–platelet conjugate (A), neutrophil–platelet conjugate (B) and 
monocyte–platelet conjugate (C) formation after 1 h incubation with sevoflurane. (D) Percentage of platelets positive for P-selectin expression 
under the same conditions. Filled columns: control samples, empty columns: sevoflurane samples. *p< 0.05.
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Table 1: Unstimulated and agonist-induced granulocyte-platelet-aggregation after exposure to 1 MAC and 2 MAC Sevoflurane.

Control
1 MAC 

Sevoflurane
Control

2 MAC 
Sevoflurane

Lymphocyte-platelet-aggregates [%] 3.3 (±1) 3.7 (±2) 3.3 (±1) 4.3 (±2)*
Lymphocyte-platelet-aggregates (2µM ADP) [%] 3 (±0.6) 3.2. (±1) 3.2 (±1) 4.3 (±1)*
Lymphocyte-platelet-aggregates (6µM TRAP-6)
[%]

3 (±0.5) 3.9 (±1) 3.2 (±1) 3.4 (±0.8)

CD41a on lymphocytes [MFI] † 200 (±36) 188 (±90) 152 (±60) 144 (±57)

CD41a on lymphocytes (2µM ADP) [MFI] 415 (±148) 341 (±122) 375 (±60) 340 (±81)
CD41a on lymphocytes (6µM TRAP-6) [MFI] 371 (±67) 315 (±78) 403 (±100) 357 (±92)
Neutrophil-platelet-aggregates [%] 6.2 (±3) 8.4 (±3) 6.4 (±3) 6.8 (±3)
Neutrophil –platelet-aggregates (2µM ADP) [%] 20.8 (±10) 23.5 (±9) 19.8 (±15) 28.3 (±18)*
Neutrophil –platelet-aggregates (6µM TRAP-6) 
[%]

38.4 (±20) 61.4 (±24) * 38.9 (±19) 54.8 (±23)*

CD41a on neutrophils [MFI] 220 (±70) 220 (±73) 197 (±57) 193 (±49)
CD41a on neutrophils (2µM ADP) [MFI] 667 (±243) 622 (±189) 727 (±395) 656 (±201)
CD41a on neutrophils (6µM TRAP-6) [MFI] 1223 (±629) 1101 (±562) 1413 (±451) 1269 (±417)
Monocyte-platelet-aggregates [%] 23.1 (±12) 26.2 (±12) 17.9 (±10) 18.1(±6)
Monocyte –platelet-aggregates (2µM ADP) [%] 68 (±28) 67 (±16) 57.9 (±23) 62.9 (±20)
Monocyte -platelet-aggregates (6µM TRAP-6) [%] 85 (±17) 95 (±5) 75.5 (±11) 88.7 (±8)*
CD41a on monocytes [MFI] 282 (±78) 276 (±83) 228 (±64) 223 (±76)
CD41a on monocytes (2µM ADP) [MFI] 1400 (±836) 1192 (±435) 887 (±324) 803 (±344)
CD41a on monocytes (6µM TRAP-6) [MFI] 2013 (±1029) 1947 (±1076) 1658 (±387) 1660 (±558)
CD62P [% pos. platelets] 5.3 (±2) 6.4 (±3) 3.5 (±2) 5.5 (±3)*
CD62P (2µM ADP) [% pos. platelets] 45.3 (±21) 44.7 (±9) 32.1 (±22) 36 (±26)
CD62P (6µM TRAP-6) [% pos. platelets] 65.8 (±21) 75.8 (±19) 91.8 (±7) 97.1 (±3)*

Data is expressed as mean and standard deviation. * p < 0.05 versus control, †MFI: mean fluorescence intensity

 

Fig. 3: Effect of 1 MAC desflurane on unstimulated and agonist-induced (2 µm ADP, 6 µm TRAP-6) formation of neutrophil–platelet conjugates. 
Filled columns: control samples, empty columns: desflurane samples. *p < 0.05
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Effect of desflurane on P-selectin and CD41a expression on platelets

Following incubation with either 1 or 2 MAC desflurane the percentage of platelets express-

ing P-selectin was not altered compared with the control samples.

As already seen in the sevoflurane samples, stimulation with ADP or TRAP increased only 

the CD41a MFI on lymphocytes, and not the percentage of lymphocytes with adherent 

agonist-activated platelets in the control samples. Significant differences in CD41a expres-

sion were not seen between control and desflurane samples (Table 2).

Fig. 4: Unstimulated and agonist-induced (2 µm ADP, 6 µm TRAP-6) lymphocyte–platelet conjugate (A), neutrophil–platelet conjugate (B) and 
monocyte–platelet conjugate (C) formation after 1 h incubation with desflurane. Filled columns: control samples, empty columns: desflurane 
samples. *p < 0.05.
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DISCuSSIoN

We investigated the effects of sevoflurane and desflurane on platelet–leukocyte adhesion. 

Interestingly, the two volatile anaesthetics showed differing effects on the formation of 

platelet–leukocyte conjugates. Sevoflurane enhanced the binding of platelets to lympho-

cytes, neutrophils and monocytes and the expression of P-selectin on platelets, particularly 

in the stimulated samples. Desflurane, however, was found to decrease the percentage of 

lymphocyte–platelet, neutrophil–platelet and monocyte–platelet conjugates principally in 

unstimulated samples. With both anaesthetics these effects were more pronounced at the 

higher (2 MAC) concentration.

Previous studies have shown that activated platelets interact with leukocytes and vascular 

endothelial cells and modify their immunological function (13,19,20). Important mediators 

of platelet–leukocyte adhesion are the surface adhesion molecule P-selectin on platelets 

and the counter-receptor PSGL-1 on leukocytes. P-Selectin is a glycoprotein located in the 

Table 2: Unstimulated and agonist-induced granulocyte-platelet-aggregation after exposure to 1 MAC and 2 MAC Desflurane.

Control
(60 min. 

incubation)

1 MAC 
Desflurane

(60 min 
incubation)

Control
(60 min. 

incubation)

2 MAC 
Desflurane

(60 min 
incubation)

Lymphocyte-platelet-aggregates [%] 3.58 (±0.8) 3.4 (±1) 3.5 (±1) 2.5 (±0.1)*
Lymphocyte-platelet-aggregates (2µM ADP) [%] 3.9 (±1) 3.1 (±1) 3.4 (±1) 2.5 (±0.5)
Lymphocyte-platelet-aggregates (6µM TRAP-6)
[%]

3.4 (±1) 3.1 (±1) 3.4 (±1) 2.7 (±0.3)

CD41a on lymphocytes [MFI] † 148 (±62) 134 (±66) 189 (±95) 153 (±67)

CD41a on lymphocytes (2µM ADP) [MFI] 300 (±117) 271 (±94) 318 (±93) 251 (±68)
CD41a on lymphocytes (6µM TRAP-6) [MFI] 378 (±134) 323 (±88) 355 (±155) 341 (±146)
Neutrophil-platelet-aggregates [%] 6 (±0.9) 4.2 (±2)* 4.9 (±2) 3.3 (±1)*
Neutrophil –platelet-aggregates (2µM ADP) [%] 12.4 (±7) 12.2 (±7) 15.5 (±1) 15.5 (±2)
Neutrophil –platelet-aggregates (6µM TRAP-6) 
[%]

37.1 (±23) 41.1 (±21) 33.6 (±8) 35.7 (±7)

CD41a on neutrophils [MFI] 160 (±60) 182 (±59) 251 (±98) 234 (±56)
CD41a on neutrophils (2µM ADP) [MFI] 448 (±162) 496 (±207) 474 (±169) 437 (±120)
CD41a on neutrophils (6µM TRAP-6) [MFI] 1262 (±634) 1492 (±412) 999 (±562) 932 (±337)
Monocyte-platelet-aggregates [%] 21.3 (±8) 15.7 (±7) 27.4 (±11) 13.5 (±4)*
Monocyte –platelet-aggregates (2µM ADP) [%] 37.8 (±7) 35.6 (±11) 61.6 (±18) 51.3 (±17)*
Monocyte -platelet-aggregates (6µM TRAP-6) [%] 81.4 (±15) 80.9 (±17) 68.1 (±18) 72.4 (±17)
CD41a on monocytes [MFI] 205 (±72) 206 (±59) 313 (±121) 304 (±63)
CD41a on monocytes (2µM ADP) [MFI] 845 (±339) 833 (±327) 715 (±145) 722 (±258)
CD41a on monocytes (6µM TRAP-6) [MFI] 1867 (±794) 1588 (±212) 1353 (±879) 1332 (±413)
CD62P [% pos. platelets] 5.7 (±3) 5.2 (±2) 5.2 (±2) 5.4 (±2)
CD62P (2µM ADP) [% pos. platelets] 46.3 (±11) 46.1 (±15) 40.9 (±22) 40.7 (±21)
CD62P (6µM TRAP-6) [% pos. platelets] 77 (±21) 80.8 (±19) 118 (±69) 119 (±94)

Data is expressed as mean and standard deviation. * p < 0.05 versus control, †MFI: mean fluorescence intensity
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membranes of α-granules that becomes externalised on the platelet surface following 

platelet activation and granule secretion. Therefore, increased expression of platelet surface 

P-selectin might induce increased platelet adhesion to circulating leukocytes (19–21).

Following incubation with 2 MAC sevoflurane we found significantly elevated P-selectin 

expression in unstimulated and TRAP-6-activated platelets. This increased P-selectin expres-

sion could be the reason for the enhancing effect of sevoflurane on lymphocyte–platelet 

adhesion in unstimulated blood and the increased amount of monocyte–platelet conjugates 

and neutrophil–platelet conjugates in TRAP-6-activated blood (22). Even though the increase 

in platelets expressing P-selectin following stimulation with ADP was not statistically signifi-

cant, it could account for the elevation of lymphocyte–platelet and monocyte–platelet aggre-

gates. These findings correspond with the results of Fröhlich et al. (16) who also observed an 

upregulation of P-selectin on unstimulated platelets following incubation with sevoflurane. 

Interestingly, this effect of sevoflurane on P-selectin expression is not limited to platelets but 

has been observed by other study groups on endothelial cells. Morisaki et al. (23) reported 

increased leukocyte rolling and adhesion in rats undergoing sevoflurane anaesthesia, prob-

ably caused by an upregulation of P-selectin expression on endothelial cells.

We found that 2 MAC desflurane inhibited the number of platelet–leukocyte complexes. 

With the exception of monocyte–platelet adhesion following stimulation with ADP, this ef-

fect was observed mainly in the unstimulated samples, so that the impact of desflurane on 

platelet adhesion might be rather weak, as it was easily overridden by activation. In contrast 

to sevoflurane, desflurane did not alter the P-selectin expression on platelets. Therefore, it 

is likely that the inhibitory effect of desflurane is mediated via a non-P-selectin mechanism. 

Brown et al. (24) showed that blocking antibodies to platelet P-selectin partially inhibited ad-

hesion. However, blockade of the neutrophil beta(2) integrin CD11b/CD18 also inhibited the 

percentage of neutrophils that bound to platelets. This leukocyte–platelet adhesion seems to 

be mediated by interaction of CD11b/CD18 with fibrinogen bound to GPIIb/IIIa on platelets 

(25–27). Therefore, it is possible that desflurane interacts with fibrinogen binding between 

leukocytes and platelets, potentially through modulation of CD11b/CD18 expression on leu-

kocytes. However, it remains to be investigated whether desflurane interacts with leukocyte 

surface glycoprotein expression, thus inhibiting platelet–leukocyte conjugate formation.

What are the clinical relevance of these findings? It is well known that binding of plate-

lets, especially to neutrophils and monocytes, plays an important role in the regulation of 

inflammatory processes. Adhesion of platelets can promote leukocyte rolling, arrest and 

transmigration as well as liberation of cytokines (IL-1β, IL-18) and the monocyte chemotactic 

protein (13,14,20).

Pain, stress, necrotic tissue, invading micro-organisms and cardiopulmonary bypass are 

known modulators of the complex immune response of patients undergoing major surgery. 

However, anaesthesia and the anaesthetic agents themselves may directly affect the function 

of immune-competent cells and substantially alter the immune response with a potential 
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impact on the postoperative course (15,28). However, these actions may only be apparent 

with high or supraclinical concentrations and/or long-term exposure. There is evidence that 

long-term sedation with thiopental in neurosurgical patients is associated with infective 

complications in a dose-dependent manner. At present, no data are available regarding the 

significance of the observed alterations associated with various anaesthetic procedures in 

the incidence of postoperative complications associated with an altered immunity.

It is not possible to say whether the observed alterations in our in vitro study on leuko-

cyte–platelet complex formation following incubation with sevoflurane or desflurane are 

associated with postoperative complications related to an altered immunity, as the setting 

in which the formation of leukocyte–platelet complexes was determined in our study might 

differ from in vivo conditions. Although, in contrast to other studies we used whole blood in-

stead of isolated leukocyte populations – with the advantage that the blood cells are studied 

in their natural environment with all plasma proteins present and that artificial cell activation 

caused by the isolation process is avoided.

However, there are some limitations to this study. First, all of the experiments were per-

formed under static conditions without taking into account the effects of blood flow, shear 

rate or stress. Second, stimulation with ADP or TRAP-6 only mimics part of the changes 

caused by endothelial injury or inflammation (21). Therefore, it is possible that the observed 

changes in platelet–leukocyte adhesion found in our study are well tolerated in vivo and are 

without great significance in routine clinical practice. Nevertheless, our study is a first step 

in the understanding of the effects that volatile anaesthetics may have on the interaction 

between platelets, leukocytes and cellular immunity. Further work is required to broaden 

our understanding of these effects, and to examine the exact relevance these may have on 

clinical practice.
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ABSTRACT

Background: Recruitment of monocytes to inflamed tissue is a crucial step in the acute 

inflammatory reaction. Adherence of monocytes to endothelial cells followed by transmi-

gration depends on monocyte surface adhesion molecules, inflammatory cytokines and 

chemoattractant chemokines. In the present study, we determined the effect of isoflurane on 

monocyte adhesion receptor expression in vitro.

Methods: Citrated whole blood was incubated for 60min with either 0.5 or 1 MAC isoflurane. 

In unstimulated blood samples and after stimulation with N-formyl-methionyl-leucyl-phe-

nylalanine (FMLP) monocyte cell-surface expression of the selectins PSGL-1 and L-selectin, 

and the β2-integrins CD11a and CD11b were evaluated by flow cytometry.

Results: Isoflurane reduced significantly the expression of PSGL-1 on unstimulated mono-

cytes, whereas the remaining selectins and β2-integrins were not affected. At both concen-

trations, the FMLP-induced removal of PSGL-1 from the monocyte surface was increased. 

Furthermore, at 1 MAC isoflurane the FMLP-induced increase in CD11a expression was 

significantly inhibited. The surface expression of L-selectin and CD11b was not affected fol-

lowing exposure to isoflurane.

Conclusion: Isoflurane increases the removal of the selectin PSGL-1 from the monocyte sur-

face. Since PSGL-1 is important during the initial step of monocyte adhesion to endothelial 

P-selectin, the decrease in monocyte surface PSGL-1 may have profound effects on mono-

cyte–endothelial interactions. Furthermore, the effects of isoflurane on monocyte adhesion 

molecule expression are different from those reported for neutrophils.
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INTRoDuCTIoN

The host defence system relies on both innate and adaptive components. The innate response 

is largely dependent on monocytes. These cells phagocytose and kill invading bacteria, and 

co-ordinate the following immunological response by cytokine release as well as antigen 

presentation. Therefore, recruitment of monocytes to an inflammatory site in response to 

invading bacteria or noninfectious processes such as trauma or ischaemia-reperfusion injury 

is a crucial step in the physiology of the acute inflammatory reaction. Adherence of mono-

cytes to endothelial cells followed by transmigration through endothelial cells depends on 

a network of several events involving monocyte surface adhesion molecules, inflammatory 

cytokines and chemoattractant chemokines.

Primary adhesion and rolling of monocytes to endothelial cells is mediated by binding 

of the selectins P-selectin glycoprotein ligand-1 (PSGL-1) and L-selectin with its counterre-

ceptors on the endothelial cell surface (1–3). Subsequent monocyte arrest, tight adhesion, 

spreading on the endothelium and transmigration to sites of tissue inflammation depends 

on binding of CD11a and CD11b to endothelial intercellular adhesion molecule 1 (ICAM-1) 

(1, 4). However, in addition to their important function in monocyte transmigration, selectins 

(5) and β2-integrins (6) also generate outside-in cellular signalling that modulates monocyte 

functions. Recently it was shown that ligation of CD11b induces the expression of TNF-α, 

IL-1β and the macrophage inflammatory proteins (MIP) 1α and 1β (6).

In vitro studies have shown that isoflurane alters the monocyte inflammatory response, 

such as inhibition of endotoxin-induced TNF-α and IL-1β secretion (7) as well as inhibition of 

chemotaxis (8). Since adhesion molecule receptors are closely involved in the transmigration 

of monocytes to sites of tissue inflammation and in the modulation of the monocyte cyto-

kine release, we were interested to examine the effect of isoflurane on monocyte adhesion 

molecule expression in an established in vitro whole blood model. Monocyte selectin and 

β2-integrin expression in unstimulated and FMLP-activated whole blood was measured using 

two-colour flow cytometry.

MATERIALS AND METHoDS

After approval of our institutional review board and informed consent, venous blood was 

taken from 18 healthy volunteers who had no history of infections and had not ingested 

nonsteroidal antirheumatics or steroids for at least 10 days prior to donation. Blood was col-

lected into sterile blood collection tubes (Sarstedt, Nümbrecht, Germany) containing a 1/10 

volume of 3.2% sodium citrate. Afterwards, the citrated blood was further diluted 1:1 with 

37°C prewarmed modified Hanks’ buffered salt solution (HBSS; without Ca2+ and Mg2+, Sigma 

Chemical, St. Louis, MO).
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The isoflurane MAC value used in this study was 1.2 Vol%. Blood samples were exposed to 

0.5 or 1 MAC isoflurane for 60 min. Incubation of blood samples was performed as previously 

described (9). Briefly, blood samples were incubated in a 5-l airtight box with 21 Vol% oxygen 

and 5 Vol% carbon dioxide at 37°C. To avoid artificial monocyte activation, blood samples 

were not bubbled with fresh gas. Isoflurane was delivered using a standard anaesthetic ma-

chine (Sulla 909, Dräger, Lübeck, Germany), and concentrations of all gases were continuously 

monitored with an multigas-analyser (Datex Compact, Helsinki, Finland). Untreated control 

blood samples were placed at the same timepoint in a incubator (Heraeus BB 16, Hanau, 

Germany) providing identical atmospheric conditions. After the end of the incubation time, 

all samples were immediately processed for stimulation and staining procedures.

The effect of isoflurane on the expression of selectins and β2-integrins on the monocyte 

membrane surface was investigated with unstimulated blood samples, and after stimulation 

with FMLP (100 nM, Sigma). Stimulation procedures were performed in sealed polypropyl-

ene tubes to avoid evaporation of the anaesthetics. After 10-min incubation at 37°C, 100 

µl of blood was transferred to polystyrene tubes (Falcon, Becton-Dickinson, San Jose, CA) 

containing fluorochrome-conjugated monoclonal antibodies. Monocyte expression pattern 

of selectins and β2-integrins were evaluated using phycoerythrin (PE)-conjugated antibodies 

against PSGL-1 (clone KPL-1), L-selectin (clone Dreg 56), CD11a (clone HI111) and CD11b 

(clone ICRF44, all from Pharmingen, San Diego, CA). Leukocytes were stained with the pan 

leucocyte marker CD45 (clone HI30, fluorescein isothiocyanate-conjugated) and CD14-PerCP 

(clone MφP9, Becton-Dickinson), a monoclonal antibody that recognizes specific monocyte 

surface antigens. Negative IgG1-PE (clone MOPC-21) was used as isotype control.

The blood samples were stained for 30 min at 4°C in the dark and the reaction was stopped 

by adding 1 ml of lysing solution (FACS Lysing Solution, Becton-Dickinson) for 10 min. After 

centrifugation (5 min, 350×g , 4°C), the samples were washed twice with PBS containing 

1% bovine serum albumin (BSA), centrifuged and the cell pellet resuspended in 500 µl PBS 

containing 1% BSA and 2% paraformaldehyde. The cells were stored up to 30 min at 4°C until 

flow cytometric measurements were performed.

Blood cells were analyzed using a FACSCalibur flow cytometer (Becton-Dickinson), which 

was calibrated daily prior to each measurement with CaliBRITE beads (Becton-Dickinson) 

using the FACSComp software program (Becton-Dickinson). Leukocytes were identified 

and differentiated into subgroups by their cell size and granularity in the forward and side 

scatter, as well as by their CD45-FITC fluorescence. Monocytes were further differentiated 

from neutrophils and lymphocytes by their CD14-PerCP fluorescence (Fig.1). The data of 3000 

monocytes were stored in list mode. The expression pattern of PSGL-1, L-selectin, CD11a and 

CD11b were analyzed by measuring the PE mean fluorescence intensity (MFI) of the specific 

antibody (Fig.1).
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Data are presented as mean and standard deviation. Differences between the anaesthetic-

exposed and control samples assessed in parallel were compared using t-tests. A value of P < 

0.05 was regarded as significant.

RESuLTS

After incubation with 0.5 or 1.0 MAC isoflurane, expression of PSGL-1 was reduced by 17% in 

the unstimulated blood samples compared with the control, whereas the remaining selectins 

and β2-integrins were not affected (Table 1, Table 2). In the 1 MAC isoflurane group, changes 

in the expression pattern of LFA-1 and PSGL-1 were also seen in the FMLP-stimulated samples 

(Table 2). The FMLP-induced increase in CD11a expression was significantly inhibited only 

at 1 MAC isoflurane, whereas removal of PSGL-1 from the monocyte surface was increased 

following exposure to 0.5 or 1 MAC isoflurane. The surface expression of L-selectin and CD11b 

was not affected following exposure to isoflurane.

 

Fig. 1: Adjustment of the acquisition dot plot for analysis of the expression of monocyte adhesion receptor. Monocytes were gated in the 
sideward scatter (SSC) vs. CD14 PerCP fluorescence (FL3) as acquired on the flow cytometer. Expression of adhesion receptor was detected and 
quantified with specific phycoerythrin-conjugated antibodies. The effect of 1 MAC isoflurane on the basal expression of P-selectin glycoprotein 
ligand-1 (PSGL-1) is shown in the overlays of a representative histogram. In the histogram, the PSGL-1 expression of the untreated control blood 
sample and the isotype is also shown. Incubation with 1 MAC isoflurane reduced the monocyte PSGL-1 expression by 31% in comparison with 
the control values.
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DISCuSSIoN

The innate immune response is largely dependent on monocytes, which co-ordinate the im-

mune response in inflamed tissue by cytokine release and antigen presentation. Monocyte 

recruitment from the blood stream into inflamed or injured tissues is mediated by multistep 

cascades that require the sequential engagement of monocyte and endothelial adhesion 

receptors (1–5), including monocyte selectins (PSGL-1, L-selectin) and β2-integrins (CD11b, 

CD11a). Although the primary function of selectins and β2-integrins is to promote monocyte 

extravasation, the selectins PSGL-1 and L-selectin and the β2-integrin CD11b are capable of 

transmitting outside-in signals elicited by ligation of the specific adhesion receptor with its 

counterreceptor (5,6). This outside-in signalling leads to the activation of other adhesion 

receptors or induces cytokine and chemokine release, which could have profound effects on 

further recruitment of other inflammatory cells to sites of inflammation and tissue injury. Iso-

flurane is known to alter several aspects of leucocyte function. Previously, it has been shown 

that isoflurane attenuates ischaemia-reperfusion injury (10). One suggested mechanism is 

a decreased activation of neutrophil L-selectin, CD11a and CD11b (9, 11), which could be 

responsible for a reduced accumulation of neutrophils at sites of ischaemia-reperfusion in-

Table 1: Effect of 0.5 MAC Isoflurane on the Activation of L-Selectin, PSGL-1, CD11a, and CD11b on Monocytes In Vitro

Variable Control 0.5 MAC Isoflurane

PSGL-1 (unstimulated) [MFI] 793 ± 181 664 ± 171*

PSGL-1 (FMLP) [MFI] 684 ± 159 591 ± 170*

L-selectin (unstimulated) [MFI] 512 ± 169 506 ± 162

L-selectin (FMLP) [MFI] 224 ± 101 212 ± 81

CD11a (unstimulated) [MFI] 1468 ± 131 1407 ± 217

CD11a (FMLP) [MFI] 2185 ± 194 2316 ± 305

CD11b (unstimulated) [MFI] 251 ± 50 303 ± 118

CD11b (FMLP) [MFI] 1310 ± 388 1558 ± 515

Data (arbitrary units) are mean ± sd of eight independent experiments, *p< 0.05 versus control, PSGL-1 = P-selectin glycoprotein ligand-1; MFI 
= mean fluorescence intensity; FMLP = N-formyl-methionyl-leucyl-phenylalanine

Table 2: Effect of 1 MAC Isoflurane on the Activation of L-Selectin, PSGL-1, CD11a, and CD11b on Monocytes In Vitro

Variable Control 1 MAC Isoflurane

PSGL-1 (unstimulated) [MFI] 935 ±187 782 ± 122*

PSGL-1 (FMLP) [MFI] 865 ± 223 718 ± 88*

L-selectin (unstimulated) [MFI] 673 ± 106 714 ± 129

L-selectin (FMLP) [MFI] 313 ± 136 358 ± 139

CD11a (unstimulated) [MFI] 1725 ± 186 1719 ± 161

CD11a (FMLP) [MFI] 2605 ± 264 2482 ± 202*

CD11b (unstimulated) [MFI] 288 ± 67 310 ± 107

CD11b (FMLP) [MFI] 1398 ± 460 1440 ± 405

Data (arbitrary units) are mean ± sd of eight independent experiments, *p< 0.05 versus control, PSGL-1 = P-selectin glycoprotein ligand-1; MFI 
= mean fluorescence intensity; FMLP = N-formyl-methionyl-leucyl-phenylalanine
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jury. However, at present there are only limited information about the effect of isoflurane on 

monocyte function. Recently, Mitsuhata et al. reported that isoflurane inhibits the endotoxin-

induced TNF-α and IL-1β secretion (7). Because isoflurane alters the activation of adhesion 

receptors on neutrophils (9), we investigated the effect of isoflurane on monocyte selectin 

and β2-integrin activation.

In the present study we used an in vitro whole blood model and two-colour flow cytometry 

to clarify if isoflurane alters the expression of monocyte adhesion receptors. Expression of 

monocyte adhesion receptors was measured in unstimulated cells and following activation 

with the bacterial peptide FMLP, which is a physiological agonist for the FMLP receptor on the 

monocyte cell surface. Recently, we have shown that our experimental setting allows rapid 

equilibration of the isoflurane concentration between the gas and fluid phase (12). However, 

due to the slightly smaller partition coefficient of isoflurane in diluted whole blood (12), the 

dissolved amount of isoflurane in our setting is 15% lower compared with fresh whole blood 

(13).

PSGL-1 is the essential ligand mediating rolling on endothelial cells, which is the first step 

in transendothelial leucocyte recruitment (2). Activation of leucocytes decreases surface 

expression of PSGL-1 by an as yet unidentified mechanism and decreases binding to endo-

thelial P-selectin under conditions of flow (14). The data presented in this paper demonstrate 

that isoflurane reduces surface PSGL-1 expression in unstimulated and FMLP-stimulated 

monocytes. The underlying mechanism could be a general activation of the monocyte or a 

direct effect on the removal of PSGL-1 from the cell surface by isoflurane without activating 

other cell functions. As no increase in the CD11b expression or decrease in surface L-selectin 

expression was detected in this study, we conclude that direct activation of monocytes by 

isoflurane, comparable to that following FMLP or platelet activating factor (PAF), is unlikely 

to be the reason for the removal of PSGL-1 from the monocyte cell surface. In vitro studies 

showed that moderate decreases in PSGL-1 surface expression dramatically reduced bind-

ing to immobilized P-selectin under flow conditions (2,14). Since isoflurane reduced surface 

PSGL-1 expression even in unstimulated monocytes, we suggest that isoflurane may inhibit 

the initial contact between monocytes and endothelial cells. However, the in vivo functional 

significance of this alteration on monocyte recruitment remains to be determined.

Following leucocyte rolling on endothelial cells, tight adhesion and transmigration is 

mediated by binding of the β2-integrins CD11a and CD11b to endothelial ICAM-1. Recently, 

Shang et al. (15) investigated the role of both β2-integrins on monocyte migration through 

human umbilical vein endothelial cells (HUVEC). Blocking CD11a or CD11b alone by using 

monoclonal antibodies did not inhibit monocyte transmigration, but blockade of both 

integrins partially inhibited monocyte migration across HUVECs. CD11a is not constitutively 

adhesive and external stimulation with FMLP, cytokines or chemokines is a prerequisite for 

receptor activation (4). To enable binding of CD11a to ICAM-1, CD11a is redistributed after 

activation over the monocyte cell surface to form high avidity clusters with ligand binding 
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activity. In the present study, stimulation with FMLP increased the mean fluorescence inten-

sity of CD11a on the monocyte surface, representing activation of the CD11a ligand binding 

activity. This activation process was significantly inhibited following exposure of monocytes 

to 1 MAC isoflurane, but isoflurane had no significant effect on monocyte CD11b expression. 

Accordingly, we suggest that the inhibition of the activation of CD11a by isoflurane alone 

might have no impact on monocyte transmigration through endo- thelial cells. In contrast, 

we have previously shown that isoflurane inhibits the activation of both β2-integrins on 

neutrophils (9), which could partially explain the inhibiting effect of isoflurane on neutrophil 

accumulation during ischaemia-reperfusion injury.

In conclusion, this study demonstrated that isoflurane in clinically used concentrations 

increases the removal of the selectin PSGL-1 from the monocyte surface. Since PSGL-1 is im-

portant during the initial step of monocyte adhesion to endothelial P-selectin, the decrease 

in monocyte surface PSGL-1 may have profound effects on monocyte–endothelial interac-

tions. Furthermore, the effects of isoflurane on monocyte adhesion molecule expression are 

different from those reported for neutrophils.
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ABSTRACT

Background: Previous studies showed that α- or β-adrenoceptor stimulation by catechol-

amines influenced neutrophil function, cytokine liberation, and platelet aggregability. We 

investigated whether adrenergic stimulation with epinephrine also alters platelet-neutrophil 

adhesion. This might be of specific interest in the critically ill, because the increased associa-

tion of platelets and neutrophils has been shown to be of key importance in inflammation 

and thrombosis.

Methods: For this purpose, whole blood was incubated with increasing concentrations of 

epinephrine (10 nM, 100 nM, and 1 µM). To distinguish receptor-specific effects, a subset of 

samples was incubated with propranolol (10 µM) or phentolamine (10 µM) before exposure to 

epinephrine. After incubation, another subset of samples was also stimulated with 100 nM of 

N-formyl-methionyl-leucyl-phenylalanine. All samples were stained, and platelet-neutrophil 

adhesion and CD45, L-selectin, CD11b, P-selectin glycoprotein ligand-1, glycoprotein IIb/IIIa, 

and P-selectin expression were measured by two-color flow cytometry.

Results: Epinephrine significantly enhanced platelet-neutrophil adhesion and P-selectin and 

glycoprotein IIb/IIIa expression on platelets. CD11b and L-selectin expression on unstimu-

lated neutrophils remained unchanged, whereas N-formyl-methionyl-leucyl-phenylalanine-

induced upregulation of CD11b and downregulation of L-selectin were suppressed by 

epinephrine. β-Adrenergic blockade before incubation with epinephrine increased platelet-

neutrophil aggregates and adhesion molecule expression (CD11b, P-selectin, and glycopro-

tein IIb/IIIa) even further.

Conclusion: These results demonstrate that epinephrine enhances platelet-neutrophil 

adhesion. The α-adrenergic receptor-mediated increase in P-selectin and glycoprotein IIb/

IIIa expression on platelets may contribute substantially to this effect. Our study shows that 

inotropic support enhances the platelet-neutrophil interaction, which might be crucial for 

critically ill patients
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INTRoDuCTIoN

An increased association of activated platelets with leukocytes contributes to the patho-

physiology of unstable angina, myocardial infarction, cardiopulmonary bypass, thrombosis, 

and sepsis (1–3). There is evidence that cells involved in such heterotypic conjugates perform 

intercellular communication and facilitate thrombin generation and leukocyte rolling and 

migration, thus contributing to the course of the pathologic process (4–7). Catecholamine 

concentrations are increased as an early stress response after cardiac arrest, myocardial in-

farction, and trauma. Therapeutically, they are used in critically ill patients to treat low cardiac 

output and severe hypotension. Previous studies have shown that epinephrine modulates the 

unspecific immune response. It decreases neutrophil adherence, chemotaxis, and phagocytic 

capacity (8–10). Epinephrine also inhibits tumor necrosis factor (TNF)-α and interleukin (IL)-1β 

production but enhances IL-8 and IL-10 production and L-selectin expression in monocytes 

(11–14). Epinephrine also enhances P-selectin expression in platelets and the opening of gly-

coprotein (GP)IIb/IIIa binding sites for fibrinogen, and it favors platelet aggregation (15–17).

Little is known about the effects of epinephrine on platelet-neutrophil adhesion at concen-

trations observed during therapeutic inotropic support or major injury. Knowledge of such 

effects may have implications not only for understanding endogenous stress hormone influ-

ences during injury, but also for the therapeutic use of catecholamines in patients with septic 

shock or cardiac failure. Considering the above-described changes in leukocyte and platelet 

function, we hypothesized that epinephrine could enhance platelet-neutrophil conjugate 

formation because of changes in adhesion molecule expression. Hence, we first studied the 

effects of epinephrine on platelet-neutrophil adhesion and adhesion molecule expression by 

using an established whole-blood model and two-color flow cytometry. Because epineph-

rine exhibits both α- and β- effects and platelets and neutrophils possess adrenoceptors, in a 

second step we used α- and β-adrenergic receptor-blocking drugs to identify the adrenergic 

receptors possibly involved in epinephrine-induced immunomodulation.

METHoDS

The following were purchased from BD Pharmingen (San Jose, CA): anti-CD41a-phycoery-

thrin (PE; clone HIP8) monoclonal antibody (mAb) recognizing platelet GPIIb/IIIa complex; 

anti-CD62P-fluorescein isothiocyanate (FITC; clone AK-4) mAb directed against P-selectin 

expressed on platelet surface; anti-CD45-FITC (clone HI30) mAb for leukocyte common an-

tigen; anti-CD62L-PE (clone Dreg 56) L-selectin-binding mAb; anti-CD11b-PE (clone ICRF44) 

CD11b-binding mAb; anti-CD162 (clone KPL-1) mAb recognizing P-selectin GP ligand-1 

(PSGL-1); anti-negative immunoglobulin G1-FITC and immunoglobulin G1-PE antibodies 

(clone MOPC-21); antibodies for nonspecific binding; and FACSlysing solution. Dulbecco’s 
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phosphate-buffered saline (PBS) without Ca2+ and Mg2+, bovine serum albumin (BSA), epi-

nephrine, paraformaldehyde, and N-formyl-methionyl-leucyl-phenylalanine (FMLP) were 

obtained from Sigma Chemicals (St. Louis, MO). FMLP is a physiological agonist of the FMLP 

receptor on the neutrophil cell surface. Activation of the FMLP receptor results in downregu-

lation of PSGL-1 and L-selectin, whereas CD11b expression is increased.

After we obtained informed written consent from subjects and approval from the local 

ethics committee, blood samples were taken from 10 healthy volunteers who had not 

received any medication for at least 2 wk. Venous blood was carefully collected without a 

tourniquet from a cubital vein by using a 20-gauge butterfly needle. The first 3 mL of blood 

was used to perform a hemogram and was then discarded; the next samples were drawn 

into polypropylene tubes containing sodium citrate. Nine parts of blood were anticoagulated 

with one part of 3.8% trisodium citrate. All blood samples were immediately diluted 1:1 with 

37°C prewarmed PBS, placed in sterile polypropylene tissue culture dishes (Sarstedt, Nuerm-

brecht, Germany), and incubated with 10 nM/L, 100 nM/L, or 1 µM/L (final concentrations) 

epinephrine. These concentrations approximately represent, respectively, a small therapeutic 

and a large therapeutic dose and a rather supramaximal concentration, although such a 

concentration might be achieved in case of cardiopulmonary resuscitation. For the experi-

ments with antiadrenergic drugs, the samples were incubated with propranolol (10 µM) or 

phentolamine (10 µM) before exposure to epinephrine. The tubes were gently mixed and 

placed in an incubator for 15 min.

Stimulation, immunofluorescence staining, and flow cytometric analysis were performed 

as previously described with minor modifications (1). After incubation, a subset of blood 

samples were stimulated with FMLP (final concentration, 100 nM). After 10 min, 100 µL 

of stimulated or unstimulated whole blood was added to saturating concentrations of 

fluorochrome-conjugated antibodies and stained for 15 min in the dark. The staining pro-

cedure was stopped by adding 1.5 mL of lysing solution for 10 min. The samples were then 

centrifuged (350g at 4°C for 5 min), washed with PBS containing 1% BSA, and centrifuged 

again. The remaining pellet was resuspended in 500 µL of PBS containing 1% BSA and 1% 

paraformaldehyde. Flow cytometric “two color” analyses were performed on a FACSCalibur 

flow cytometer and analyzed with CellQuest 3.1 software (Becton Dickinson, San Jose, CA). 

Before each measurement, the flow cytometer was calibrated with fluorescence microbeads 

(Calibrite Beads; Becton Dickinson).

To determine platelet-leukocyte aggregates, the leukocyte subpopulations were differenti-

ated by cell size (forward scatter), granularity (side scatter), and binding of anti-CD45-FITC 

by using linear scaling. For each sample, 40,000 leukocytes were collected. The leukocyte 

subgroups were separately gated, and platelet-leukocyte aggregates were defined as cells 

positive for CD41a and CD45 in these subgroups. The percentage of CD41a-positive conju-

gates represents the percentage of leukocytes with at least one bound platelet (18).
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After incubation, a subset of blood samples was stimulated with FMLP (final concentra-

tion, 100 nM), washed, and stained as described above. To determine adhesion molecule 

expression, the leukocyte subpopulations were differentiated by cell size (forward scatter), 

granularity (side scatter), and binding of anti-CD45-FITC by using linear scaling. For each 

sample, 40,000 leukocytes were collected. The leukocyte subgroups were separately gated, 

and the expression of adhesion molecules was measured as mean fluorescence intensity of 

the specific antibody on neutrophils.

To determine P-selectin and CD41a expression, the platelet population was adjusted to 

20 x 109/L before the staining procedure and was defined in flow cytometry by using size 

and in CD41a-PE immunofluorescence by using logarithmic scaling. For each sample, 10,000 

platelets were measured. The percentage of platelets positive for P-selectin and the mean 

fluorescence intensity of P-selectin and CD41a were measured (19).

The Kolmogorov-Smirnov test showed that the data were mainly normally distributed. 

Thus, data are presented as means and sd. Differences between the control samples and the 

samples exposed to increasing concentrations of epinephrine were evaluated with Student’s 

t-test (NCSS 6.0.7; NCSS, Kaysville, UT). P < 0.05 was considered significant.

RESuLTS

Almost all concentrations of epinephrine significantly enhanced the binding of platelets to 

neutrophils in unstimulated and FMLP-stimulated whole blood (Fig. 1). The enhancing ef-

fect of epinephrine on neutrophil-platelet conjugate formation was markedly increased by 

β-adrenergic blockade. Interestingly, α-adrenergic blockade also led to a small increase in 

epinephrine-induced platelet-neutrophil adhesion (Fig. 2).

Epinephrine did not modify CD11b or L-selectin expression on unstimulated neutrophils. 

Nevertheless, after β-adrenergic blockade, the incubation with epinephrine caused a sig-

nificant increase in CD11b expression on unstimulated neutrophils. α-Adrenergic blockade 

also caused a small increase in CD11b expression (Fig. 2). In FMLP-stimulated neutrophils, 

epinephrine inhibited the FMLP-induced increase in CD11b expression. This inhibition was 

completely reversed by β-adrenergic blockade but not by α-adrenergic blockade (Table 1).

L-selectin expression in unstimulated blood was not modified by epinephrine. FMLP-stim-

ulated neutrophils showed an increased expression or reduced shedding of L-selectin after 

incubation with epinephrine. Preincubation with propranolol abolished this effect almost 

completely, whereas phentolamine caused only a partial decline in L-selectin expression 

(Table 1). PSGL-1 did not show any significant changes in surface expression (Table 1).
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Epinephrine enhanced the expression of P-selectin and GPIIb/IIIa on unstimulated platelets. 

α-Adrenergic blockade with phentolamine before incubation with epinephrine abolished 

this increase almost completely, whereas β-adrenergic blockade caused a marked increase in 

both P-selectin and GPIIb/IIIa expression (Table 1, Fig. 3).

 

Fig. 1: Percentage of platelet-neutrophil conjugates in unstimulated and N-formyl-methionyl-leucyl-phenylalanine (FMLP)-stimulated 
(100 nM) whole blood after incubation with increasing concentrations of epinephrine (10 nM, 100 nM and 1 µM). Mean and sd are given. 
*Signifi cantly diff erent (P < 0.05) from control.

 

 Fig. 2: Eff ect of epinephrine on platelet-neutrophil conjugate formation (A) and CD11b expression (B) after α - or ß-adrenergic blockade with 
phentolamine or propranolol. Data are shown as mean and sd. *Signifi cantly diff erent (P < 0.05) from control
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Table 1: Adhesion Molecule Expression on Platelets and Neutrophils

Variable Control EPI 10 nM EPI 100 nM EPI 1 μM

Platelets

P-selectin [% positive platelets] 2.6 ±1 4± 1.1* 4 ± 1* 6.5 ± 1.5*

CD41a (GPIIb/IIIa) [MFI] 271 ± 27 312 ± 29* 336 ± 31* 404 ± 45*

Neutrophils

CD11b [MFI] 412 ± 54 437 ± 33 435 ± 31 426 ± 58

CD11b (100 nM FMLP) [MFI] 4317 ± 357 4023 ± 330 3722 ± 187* 3569 ± 252*

L-selectin [MFI] 1711 ± 299 1720 ± 330 1721 ± 255 1702 ± 277

L-selectin (100 nM FMLP) [MFI] 310 ± 49 367 ± 58* 377 ± 53* 447 ± 59*

PSGL-1 [MFI] 559 ± 32 554 ± 27 578 ± 28 589 ± 39

PSGL-1 (100 nM FMLP) [MFI] 539 ± 43 505 ± 31 529 ± 41 504 ± 34

Data are expressed as mean and sd, * Signifi cantly diff erent (P < 0.05) from control.
MFI = mean fl uorescence intensity; FMLP = N-formyl-methionyl-leucyl-phenylalanine; EPI = epinephrine; PA = phentolamine; PP = 
propranolol; PSGL-1 = P-selectin glycoprotein ligand-1; GP = glycoprotein.

Table 1a: Adhesion Molecule Expression on Neutrophils

Variable Control EPI 1 μM
EPI 1 μM and

PA 10 μM
EPI 1 μM and

PP 10 μM

Neutrophils

CD11b (100 nM FMLP) [MFI] 3206 ± 457 2132 ± 380* 2725 ± 220* 3326 ± 457

L-selectin (100 nM FMLP) [MFI] 321 ± 74 526 ± 103* 443 ± 88* 347 ± 101

Data are expressed as mean and sd, * Signifi cantly diff erent (P < 0.05) from control.
MFI = mean fl uorescence intensity; FMLP = N-formyl-methionyl-leucyl-phenylalanine; EPI = epinephrine; PA = phentolamine; PP = 
propranolol; PSGL-1 = P-selectin glycoprotein ligand-1; GP = glycoprotein.

 

Fig. 3: Eff ect of epinephrine on P-selectin (A) and glycoprotein (GP)IIb/IIIa expression (B) on platelets after α- or ß-adrenergic blockade with 
phentolamine or propranolol. Data are expressed as mean and sd. *Signifi cantly diff erent (P < 0.05) from control.
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Because α-adrenergic blockade with phentolamine preceding incubation with epinephrine 

also led to a small increase in platelet-neutrophil adhesion and CD11b expression, we 

added some measurements with phentolamine only. Interestingly, phentolamine alone also 

enhanced CD11b expression and, concomitantly, platelet-neutrophil aggregate formation, 

whereas all other platelet and neutrophil adhesion molecules remained unchanged (Table 

2). The other measurements with epinephrine alone and epinephrine plus phentolamine 

corresponded to the results described above.

DISCuSSIoN

This study demonstrates that platelet-neutrophil conjugate formation is enhanced by 

epinephrine. This increased adhesion was accompanied by an altered adhesion molecule 

pattern and was modified by α- and β-adrenergic blockade.

Several in vitro and in vivo studies suggest that adrenergic receptor stimulation on im-

mune cells can substantially alter a variety of cellular activities, as well as the release of 

inflammatory mediators. Epinephrine increases neutrophil recruitment into peripheral blood 

by an α-adrenergic stimulus. There is also evidence that epinephrine decreases neutrophil 

adherence, chemotaxis, and phagocytic capacity (8–10). β-Adrenergic agonists inhibit the 

production of proinflammatory mediators such as TNF- α, IL-1, and IL-12, but they augment 

L-selectin expression and the release of the antiinflammatory substances IL-10 and IL-6. 

Stimulation of α2-adrenoceptors increases the release of TNF-α and IL-1β, whereas inhibition 

of α2-adrenoceptors enhances the release of the antiinflammatory molecules IL-6 and IL-10 

and suppresses the production of TNF-α and IL-12 (20–22). In platelets, it has also been shown 

that epinephrine can potentiate platelet activation and aggregation by activating platelet 

α2-adrenoceptors (17).

On the basis of these findings, we hypothesized that epinephrine also influences the 

regulation of the cell-to-cell interaction between platelets and neutrophils. We first evaluated 

Table 2: Platelet-Neutrophil Conjugate Formation and Adhesion Molecule Expression After Incubation with Epinephrine Phentolamine, or Both

Variable Control EPI 1 μM
EPI 1 μM and

PA 10 μM
PA 10 μM

Conjugates [%] 3 ± 0.1 7.8 ± 2.7 * 9 ± 2.6 * 4.8 ± 1 *

Platelets

P-selectin (% positive platelets) 3.9 ± 1.1 6.6 ± 1.6 * 5.0 ± 0.5 4.2 ± 0.5

CD41a (GPIIb/IIIa) [MFI] 298 ± 10 345 ± 54 * 292 ± 41 288 ± 19

Neutrophils

CD11b [MFI] 364 ± 52 368 ± 65 659 ± 76 * 435 ± 31*

L-selectin [MFI] 1817 ± 267 1868 ± 277 1829 ± 290 1847 ± 301

Data are expressed as mean and sd, * Significantly different (P < 0.05) from control. MFI = mean fluorescence intensity; EPI = epinephrine; PA 
= phentolamine
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the effect of epinephrine on the formation of platelet-neutrophil aggregates and found that 

increasing concentrations of epinephrine enhanced the binding of platelets to neutrophils. 

This increase in platelet-neutrophil aggregation was accompanied by a significant increase in 

P-selectin and GPIIb/IIIa expression on platelets. P-selectin is a GP located in the membranes 

of α-granules and becomes externalized on the platelet surface after platelet activation and 

granule secretion. Platelets and leukocytes may form aggregates via platelet-expressed 

P-selectin and its counterreceptors PSGL-1 and Sialyl Lewis X, as well as via fibrinogen bridg-

ing between GPIIb/IIIa and CD11b (23,24). The initial interactions between neutrophils and 

platelets are probably mediated by P-selectin, whereas both 1) development of firm adhesion 

after initial tethering and rolling on P-selectin and 2) transplatelet emigration to chemoat-

tractants seem to be entirely dependent on CD11b (6). Activation of platelets typically en-

hances P-selectin and GPIIb/IIIa expression, so epinephrine-induced platelet activation could 

account for the increased formation of conjugates. This could explain our finding that after 

stimulation with FMLP, epinephrine inhibited the CD11b upregulation but not the formation 

of neutrophil-platelet aggregates. Because previous studies have shown that platelets are 

activated via α2-adrenergic stimulation, we suppose that epinephrine caused the increased 

adhesion molecule expression via α-adrenergic stimulation as well. This is consistent with our 

finding that α-adrenergic blockade with phentolamine before incubation with epinephrine 

almost completely reversed the observed upregulation of P-selectin and GPIIb/IIIa in plate-

lets.

In neutrophils, the effects of epinephrine after α- or β-adrenergic blockade were more com-

plex. β-Adrenergic blockade with propranolol before incubation with epinephrine noticeably 

increased platelet-neutrophil adhesion and CD11b expression. The markedly increased 

platelet-neutrophil aggregates after β-adrenergic blockade are probably caused not by the 

enhanced platelet adhesion molecule expression alone, but also by the CD11b expression 

on neutrophils. Because β-adrenergic stimulation—in contrast to α-adrenergic stimulation—

suppresses leukocyte function, this enhancement may be a consequence of abolition of 

β-receptor-mediated suppression of leukocyte function and increased α-receptor-mediated 

stimulation. Interestingly, α-adrenergic blockade with phentolamine preceding incubation 

with epinephrine also led to a small increase in platelet-neutrophil adhesion and CD11b 

expression. Because this was in contrast to our other results and to the reported suppress-

ing effects of α-blockade on leukocyte function, we added some measurements incubating 

whole blood with phentolamine only. We found the same increase in platelet-neutrophil 

conjugates and CD11b, whereas all other variables (L-selectin, P-selectin, and GPIIb/IIIa) 

remained unchanged. Therefore, it seems possible that phentolamine activated neutrophil 

CD11b expression by a mechanism independent of its ability to antagonize α-adrenergic 

receptors. The increased CD11b expression accompanying neutrophil activation could ac-

count for the increased platelet-neutrophil adhesion after phentolamine. However, further 



Chapter 7

106

research is needed on phentolamine’s effects and the involvement of α-adrenergic receptors 

in neutrophil integrin expression.

The different immunomodulatory effects of α- or β-adrenergic stimulation are probably 

due to activation of different intracellular pathways. On the molecular level, α-adrenergic 

stimulation most likely results in an activation of nuclear factor-κB through activation of 

protein kinase C and increased intracellular Ca2+, whereas β-adrenergic stimulation leads to 

an increase of cyclic adenosine monophosphate, which activates protein kinase A. Activated 

protein kinase A is translocated to the nucleus and blocks nuclear factor-κB while activating 

the cyclic adenosine monophosphate-responsive element-binding protein. Therefore, α- or 

β-adrenergic stimulation can have markedly different downstream effects (25–28).

Our study showed that epinephrine enhanced platelet-neutrophil adhesion, probably 

through α-adrenergic stimulation of both cell types. Considering the proinflammatory poten-

tial of platelet-neutrophil aggregates, our study supports previous studies, which could show 

that ligation to the α-adrenergic receptor is associated with predominantly immunostimulat-

ing effects, whereas stimulation of the β-adrenergic receptor mostly has immunosuppressive 

effects (29,30). Whereas in the case of cytokine liberation, the β-adrenoceptor-mediated 

effects usually override those induced by α-adrenoceptor stimulation, it seems that in 

platelet-neutrophil conjugation, the enhancing α-adrenergic effects—predominantly on 

platelets—outweighed the β-adrenergic effects. The adhesion between platelets and neu-

trophils is a key event in thrombosis and inflammation (31). Binding of activated platelets to 

neutrophils induces respiratory burst and mediates initial neutrophil attachment and rolling, 

which may lead to neutrophil accumulation at sites of injury (32,33). Therefore, enhanced ad-

hesion after the administration of epinephrine could be crucial for patients with myocardial 

infarction, trauma, or sepsis. Gawaz et al. (3) also showed that in septic patients, platelet-

neutrophil adhesion was an independent predictor for poor clinical outcome. We studied 

epinephrine concentrations ranging from small therapeutic to supramaximal concentrations, 

and although the largest amount of conjugates was observed after stimulation with the 

rather supramaximal epinephrine concentration, it should be noticed that even smaller thera-

peutic concentrations significantly enhanced platelet-neutrophil adhesion. Nevertheless, the 

clinical aspects and therapeutic consequences of the enhancing effects of epinephrine on 

platelet-neutrophil adhesion and adhesion molecule expression in our study remain specula-

tive. First, the therapeutic use of epinephrine is normally required by the hemodynamic state 

of the patients, which often does not leave much choice for therapeutic alternatives. Second, 

considering the complex immunomodulatory effects of α-or β-adrenergic stimulation, there 

are still no data available indicating potential beneficial or detrimental consequences at dif-

ferent stages of disease.

Finally, there are limitations to our study. In contrast to previous studies, we used whole 

blood instead of isolated neutrophils or platelet-rich plasma, which has the advantages that 

possibly important influences and interactions of other blood cells and plasma components 
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are not neglected and that artificial cell activation caused by the isolation process is avoided. 

However, the value of this system is limited by its static condition and the lack of endothelial 

cells. Therefore, additional in vivo studies or studies with a dynamic model are necessary to 

further define the role of epinephrine in modulating platelet-neutrophil interaction and ad-

hesion molecule expression and the clinical relevance of our findings. Nonetheless, our study 

adds another aspect to the understanding of the immunological side effects of endogenous 

or therapeutically increased catecholamine levels.

The authors thank Nicole Heussen, Department of Biometry and Statistics, Rheinisch-

Westfälische Technische Hochschule Aachen, for her statistical advice.
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ABSTRACT

Background: The purpose of this study was to investigate the effect of the phosphodiester-

ase (PDE) type 3 inhibitor milrinone on the adhesion of platelets to monocytes in vitro.

Methods: Whole blood was incubated with 1, 10, or 100 μmol/L of milrinone. After stimula-

tion with N-formyl-methionyl-leucyl-phenylalanine (FMLP) or adenosine-5-diphosphate 

(ADP), platelet-monocyte adhesion and CD11b, PSGL-1, GPIIb/IIIa, and P-selectin expression 

were measured by flow cytometry.

Results: The formation of platelet-monocyte conjugates after PDE3 inhibition depended on 

the type of stimulation. In unstimulated and FMLP-stimulated blood platelet monocytes, ag-

gregation was enhanced by increasing concentrations of milrinone. This augmentation was 

accompanied by a rise in P-selectin expression in platelets. In ADP-stimulated blood the num-

ber of platelet-monocyte aggregates decreased with increasing concentrations of milrinone. 

Concurrent with the reported antiinflammatory properties of PDE-inhibition, an inhibition 

of CD11b expression was found in monocytes after stimulation with FMLP. In contrast, in 

unstimulated samples lower concentrations of milrinone caused an increase in CD11b.

Conclusions: These findings suggest that the effects of PDE3 inhibition on platelets and 

monocytes are modified by the type of stimulation and only partially suppress the inflam-

matory response of platelets and monocytes. The increase in platelet-monocyte conjugates 

in unstimulated and FMLP-stimulated blood suggested that PDE3 inhibition may also trigger 

proinflammatory reactions.
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INTRoDuCTIoN

Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) 

are intracellular second messengers that regulate the physiologic responses generated 

by extracellular stimuli. The intracellular levels of cyclic nucleotides are regulated through 

synthesis by adenylate and guanylate cyclases and also degradation by cyclic nucleotide 

phosphodiesterases, which can be blocked by phophodiesterase (PDE) inhibitors, causing an 

accumulation of the cyclic nucleotides. Most cells and tissues express 1 or more PDE isozymes, 

each regulating intracellular cyclic AMP and/or cyclic GMP concentrations in different cellular 

compartments and in different ways. As cAMP and cGMP transduce the effects of a variety of 

extracellular signals, they also influence immunomodulatory processes in all human inflam-

matory cells, ie, proinflammatory mediator production and cell differentiation. Although it 

is well known that elevation of intracellular cAMP inhibits platelet aggregation, results in 

decreased degranulation and cytokine production in leucocytes, and reduces CD11b expres-

sion in neutrophils, little is known about the effects of PDE inhibitors on platelet-monocyte 

interaction (1-3).

The mechanisms and consequences of platelet-leukocyte interactions and their implica-

tions in many diseases have been the subject of several studies (4-6). Increased association 

of platelets with leukocytes has been reported in unstable angina (7), myocardial infarction 

(8,9), coronary interventions (10), cardiopulmonary bypass (11), thrombosis (12), and sep-

sis (13). Complex signaling events that lead to cellular phenotypic changes and synthesis 

of inflammatory and thrombotic mediators occur when human platelets and monocytes 

interact (14,15). The upregulation of cellular adhesion receptors and the formation of 

platelet-monocyte aggregates have important implications in the development of an early 

proinflammatory response and later prothrombotic state. Enhanced P-selectin expression 

on the platelet surface supports the adhesion of platelets to the P-selectin-ligand-1 (PSGL-

1) on neutrophils, monocytes, and lymphocytes. Furthermore, P-selectin on the surface of 

activated platelets induces the expression of tissue factor in monocytes, and the binding of 

P-selectin to monocytes promotes fibrin deposition within a growing thrombus in the area 

of vascular injury, which may be an initiator of thrombosis (4,5,9,16). Platelet-leukocyte adhe-

sion can also be mediated by interaction of CD11b on leukocytes and GPIIb/IIIa on platelets. 

The binding of platelets to leukocytes seems to induce attachment, rolling, and the oxidative 

burst in neutrophils, as well as cytokine secretion in monocytes (17,18).

Patients undergoing cardiac surgery often receive PDE3 inhibitors for the treatment 

of cardiac failure. Because thrombotic and inflammatory events might be crucial in these 

patients, it is important to know if therapeutic concentrations of PDE inhibitors also affect 

platelet-leukocyte interactions. Therefore, it was hypothesized that PDE inhibition might 

reduce the formation of platelet-monocyte aggregates, preventing the prothrombotic and 

proinflammatory cascade initiated by platelet-monocyte interactions. Using an established 



Chapter 8

114

whole-blood model and 2-color flow cytometry, the effect of the PDE3 inhibitor milrinone 

was studied on platelet-monocyte adhesion. Because modifications in cell-to-cell interaction 

can be caused by changes in the cellular adhesion molecule pattern, the expression of CD11b 

and PSGL-1 on monocytes as well as P-selectin and GPIIb/IIIa expression on platelets were 

also studied. Furthermore, the platelet-stimulating agent adenosine-5-diphosphate (ADP) 

and the leukocyte-stimulating agent N-formyl-methionyl-leucyl-phenylalanine (FMLP) were 

used to compare the effect of different stimulation on both aggregate formation and adhe-

sion molecule expression.

MATERIAL AND METHoDS

The following were purchased from BD Pharmingen (San Jose, CA): anti-CD41a-PE (clone 

HIP8) mAb-recognizing platelet GPIIb/IIIa complex, anti-CD62P-fluorecein-isothiocyanate 

(FITC) (clone AK-4) mAb directed against P-selectin expressed on platelet surface, anti-CD45-

FITC (clone HI30) mAb for leukocyte common antigen, anti-CD11b-PE (clone ICRF44) CD11b 

binding mAb, anti-CD162 (clone KPL-1) mAb-recognizing PSGL-1, antinegative IgG-FITC and 

IgG1-PE antibodies (clone MOPC-21), antibodies for nonspecific binding, and fluorescence-

activated cell sorting (FACS) lysing solution. Dulbecco’s phosphate-buffered saline without 

Ca2+ and Mg+ (PBS), milrinone, bovine serum albumin (BSA), FMLP, ADP, and paraformalde-

hyde were obtained from Sigma Chemicals (St Louis, MO).

After obtaining approval from the local ethics committee and informed written consent, 

blood samples were taken from 10 healthy volunteers who had not received any medication 

for at least 2 weeks and not ingested caffeine for at least 2 days. Venous blood was carefully 

collected without tourniquet from a cubital vein using a 21-G butterfly. The first 3 mL of 

blood were used to perform a hemogram and then discarded; the next samples were drawn 

into polypropylene tubes containing sodium citrate (Sarstedt, Nuermbrecht, Germany). Nine 

parts of blood were anticoagulated with 1 part of 3.8% trisodium citrate. All blood samples 

were immediately diluted 1:1 with 37°C prewarmed PBS, placed in sterile polypropylene tis-

sue culture dishes (Sarstedt), and incubated with 100 μmol/L, 10 μmol/L, or 1 μmol/L (final 

concentrations) of milrinone. The tubes were gently mixed and placed for 15 minutes in an 

incubator.

Stimulation, immunofluorescence staining, and flow cytometric analysis were performed 

as previously described with minor modifications (7). After incubation, a subset of blood 

samples were stimulated with FMLP (final concentration 100 nmol/L). After 10 minutes, 100 

μL of stimulated or unstimulated whole blood were added to saturating concentrations of 

fluorochrome-conjugated antibodies and stained for 15 minutes in the dark. The staining 

procedure was stopped by adding 1.5 mL of lysing solution for 10 minutes. The samples were 

centrifuged (350 g, 4°C, 5 minutes), washed with PBS containing 1% BSA, and centrifuged 
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again. The remaining pellet was resuspended in 500 μL of PBS containing 1% BSA and 1% 

paraformaldehyde. Flow cytometric “2-color” analyses were performed on an FACS Calibur 

flow cytometer and analyzed using CellQuest 3.1 software (Becton Dickinson, San Jose, CA). 

Before each measurement, the flow cytometer was calibrated with fluorescence microbeads 

(Calibrite Beads, Becton Dickinson).

To determine platelet-monocyte aggregates, the leukocyte subpopulations were differen-

tiated by cell size (forward scatter), granularity (side scatter), and binding of anti-CD45-FITC 

using the linear scaling. For each sample, 40,000 leukocytes were collected. The monocyte 

subgroup was separately gated, and platelet-monocyte aggregates were defined as cells 

positive for CD41a and CD45 in these subgroups. The percentage of CD41a-positive conju-

gates represents the percentage of leukocytes with at least 1 bound platelet (19).

After incubation, a subset of blood samples were stimulated with FMLP (final concentra-

tion 100 nmol/L) or ADP (final concentration 2 μmol/L) and washed and stained as described 

earlier. To determine adhesion molecule expression, the leukocyte subpopulations were 

differentiated by cell size (forward scatter), granularity (side scatter), and binding of anti-

CD45-FITC using the linear scaling. For each sample, 40,000 leukocytes were collected. The 

leukocyte subgroups were separately gated, and the expression of CD11b and PSGL-1 was 

measured as mean fluorescence intensity (MFI) of the specific antibody on monocytes.

To determine P-selectin and CD41a expression, the platelet population was adjusted to 20 

× 109/L before the staining procedure and defined in flow cytometry by size and CD41a-PE 

immunofluorescence using the logarithmic scaling. For each sample, 10,000 platelets were 

measured. The percentage of platelets positive for P-selectin as well as the MFI of P-selectin 

and CD41a were measured (20).

The Kolmogorov-Smirnov test showed that the data were normally distributed. Thus, data 

are presented as mean and standard deviations. Differences between the control samples 

and the samples exposed to increasing concentrations of PDE inhibitors were analyzed by 

analysis of variance (NCSS 6.0.7.; NCSS, Kaysville, UT). A level of p < 0.05 was considered 

significant.

RESuLTS

In contrast to the first hypothesis, a reduced formation of platelet-monocyte conjugates was 

not observed after incubation with PDE inhibitors. The formation of platelet-monocyte ag-

gregates after preincubation with milrinone was enhanced significantly in unstimulated (1 

μmol/L, 10 μmol/L, 100 μmol/L) and FMLP-stimulated blood (10 μmol/L, 100 μmol/L). Only 

in ADP-stimulated blood, the formation of platelet-monocyte aggregates was reduced by 

milrinone (100 μmol/L) (Fig 1A).
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To investigate the possibility that the increases in platelet-leukocyte conjugate formation 

were favored by a modified adhesion molecule pattern through PDE inhibition, the mono-

cyte and platelet adhesion molecule expression was determined in a second step.

 
 

  
Fig. 1: Percentage of (A) platelet-monocyte conjugates, (B) P-selectin expression on platelets, and (C) CD11b expression on monocytes in 
unstimulated, FMLP-stimulated (100 nmol/L) and ADP-stimulated (2 μmol/L) whole blood after incubation with milrinone. Mean and SD are 
given. *Significantly different (p < 0.05) from control sample.
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In the unstimulated samples, milrinone (10 μmol/L) significantly increased the expression 

of CD11b on monocytes. Interestingly, in the high concentration (100 μmol/L), a reduction 

of CD11b expression below the control level was observed. In the FMLP-stimulated samples, 

milrinone decreased CD11b expression significantly on monocytes in a dose-dependent 

fashion (Fig 1C).

In the unstimulated and FMLP-stimulated samples, the lower concentrations of milrinone (1 

μmol/L, 10 μmol/L) significantly decreased the expression of PSGL-1 on monocytes (Table 1).

Milrinone (10 μmol/L, 100 μmol/L) significantly increased the percentage of platelets express-

ing P-selectin as well as the P-selectin MFI in the unstimulated and FMLP-stimulated samples. 

Interestingly, when stimulated with ADP, decreases in platelets expressing P-selectin and in 

the P-selectin MFI after incubation with milrinone (10 μmol/L, 100 μmol/L) were observed 

(Fig 1B, Table 1).

Surface expression of GPIIb/IIIa declined in stimulated and unstimulated platelets after 

treatment with milrinone (10 μmol/L [only ADP], 100 μmol/L) (Table 1).

DISCuSSIoN

Phosphodiesterases are a class of isoenzymes responsible for the hydrolysis of the intracel-

lular second messengers, like cAMP and cGMP, resulting in the formation of the correspond-

ing, inactive 5ʹ-monophosphate. The expression and activity of these PDE isoenzymes vary 

among different tissues and cells. The PDE3 family, which hydrolyzes both cAMP and cGMP, 

can be found in cardiac muscle, vascular smooth muscle, platelets, and leukocytes.

Because several investigations revealed that inhibition of PDE reduces the inflammatory 

response of leukocytes by decreasing cytokine generation, degranulation, and phagocytosis, 

Table 1 Adhesion Molecule Expression After Incubation With Milrinone

Variable Control 1 μmol/L 10 μmol/L 100 μmol/L

Platelets

P-selectin unstimulated 5.2 ± 0.5 6.2 ± 1 8.6 ± 1.3* 12 ± 1.9*

P-selectin (100 nmol/L FMLP) 5.8 ± 0.7 7.1 ± 1 10.3 ± 1.3* 11.4 ± 3.5*

P-selectin (2 μmol/L ADP) 28.7 ± 6.6 20.7± 3.7 11.9 ± 2.5* 11 ± 2.2*

CD41a unstimulated 385 ± 73 338 ±39 317 ± 74 221 ± 22*

CD41a (2 μmol/L ADP) 674 ± 150 625 ± 90 421 ± 51* 243 ± 30*

CD41a (100 nmol/L FMLP) 415 ± 45 347 ± 76 354 ± 52 226 ± 31*

Monocytes

PSGL-1 unstimulated 1,181 ± 165 849 ± 113* 913 ± 87* 952 ± 163

PSGL-1 (100 nM/L FMLP) 1,118 ± 144 897 ± 95* 922 ± 93* 1012 ± 152

Values are expressed as mean fluorescence intensity. Data are from 6 experiments and are expressed as mean ± SD. *Significantly different (p < 
0.05) from control sample.
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it was hypothesized that PDE inhibition might also attenuate platelet-monocyte interaction 

(21,22). However, in contrast to this hypothesis, the present study shows that PDE3 inhibi-

tion alters platelet-monocyte interactions depending on the type of stimulation. Although 

increasing concentrations of milrinone enhanced the formation of platelet-monocyte conju-

gates in unstimulated and FMLP-stimulated blood, in ADP-stimulated blood the number of 

conjugates decreased with increasing concentrations of milrinone. To assess the intracellular 

mechanisms involved, the authors investigated, in a second step, platelet and monocyte 

adhesion molecule expression. In contrast to the ADP-stimulated samples, in unstimulated 

and FMLP-stimulated blood, an increased percentage of platelets expressing P-selectin was 

found. Similar to previous studies on neutrophils by other groups, inhibition of CD11b expres-

sion on monocytes was found after stimulation with FMLP, but, in contrast to the reported 

antiinflammatory properties, PDE3 inhibition also caused increases in CD11b expression in 

the unstimulated samples.

The observed enhancement of platelet-monocyte aggregates in unstimulated and FMLP-

stimulated blood was associated with a rise in P-selectin on platelets. This upregulation of 

P-selectin could account mainly for the formation of conjugates. P-selectin is a glycoprotein 

located in the membranes of α-granules and becomes externalized on the platelet surface 

after platelet activation and granule secretion. Platelets and leukocytes may form aggregates 

via platelet-expressed P-selectin and its counterreceptors PSGL-1 and Sialyl Lewis X, as well 

as via fibrinogen bridging between GPIIb/IIIa and CD11b (23); although the latter seems to be 

less important in monocytes. Sarma et al. (9) showed that GPIIb/IIIa blockade with abciximab 

failed to inhibit platelet-monocyte interaction. Therefore, the increased platelet-monocyte 

association was mainly mediated via P-selectin expressed on platelets in unstimulated and 

FMLP-stimulated blood. This is also consistent with the observation that the reduction in 

GPIIb/IIIa expression and the stimulating and inhibiting effects of PDE3 inhibition on CD11b 

expressions were not accompanied by simultaneous effects in platelet-monocyte aggregate 

formation. In view of the fact that previous studies reported that PDE3 inhibitors caused a 

decrease in P-selectin expression on platelets after being stimulated with ADP, conjugate 

formation and P-selectin expression were measured after incubation with milrinone and 

stimulation with ADP. A reduction in P-selectin surface expression and P-selectin–positive 

platelets was found (24). This reduction was partially accompanied by a decrease in platelet-

monocyte conjugate formation.

These findings support studies that showed that cAMP elevation by PDE inhibitors on 

platelet function and platelet-monocyte crosstalk are complex and may be modulated by 

stimulation with different agonists (25). After stimulation with the platelet-agonist ADP, re-

duced P-selectin and GPIIb/IIIa expression were seen, whereas whole-blood stimulation with 

the leukocyte-agonist FMLP increased P-selectin expression, reduced GPIIb/IIIa expression, 

and did not lead to CD11b upregulation. Why PDE inhibition caused these divergent effects 

can only be speculated. Manns et al. (26) showed that the mechanism by which cAMP was 



119

Phosphodiesterase III Inhibition Affects Platelet-Monocyte Aggregate Formation Depending on the Axis of Stimulation

8

increased greatly influenced platelet responses to various agonists. There is also evidence 

that spatially and temporally distinct cAMP signals can coexist within simple cells and that 

segregated cAMP signals allow for differential regulation of cAMP effector proteins like 

protein kinase A. For that reason, elevations in cAMP caused by different agents can have 

markedly different downstream effects (27).

The mechanism through which cAMP exerts its action in platelets has not yet been fully 

elucidated. A number of hypotheses have been proposed, all agreeing that a process that 

involves several steps of the activation cascade, such as phosphoinositide metabolism, Ca2+ 

elevation, and protein kinase A–dependent phosphorylation are involved. There is evidence 

that cAMP-induced inhibition of platelet aggregation is closely dependent on the inhibition 

of GPIIb/IIIa-dependent functions (25,28,29). If the observed decrease in GPIIb/IIIa expression 

in this study enhanced platelet-monocyte conjugate formation by reducing platelet-platelet 

aggregation and thus providing more activated platelets for heterotypic conjugation re-

mained unclear.

Recent studies provide evidence that increased adhesion of platelets to monocytes is as-

sociated with ischemic events and that platelets bound to the monocyte membrane may 

directly and indirectly influence recruitment patterns within the circulation (30). Activated 

platelets induce the expression and secretion of monocyte chemoattractant protein-1 and 

interleukin-8 from monocytes in a P-selectin/PSGL-1–dependent manner (31). Furthermore, 

P-selectin–dependent interactions potentiate tissue factor expression (5), platelet-activating 

factor release, phagocytosis (32), and superoxide anion generation by monocytes (33). The 

β2-integrin CD11b is involved in numerous aspects of leukocyte function including tight at-

tachment of leukocytes to endothelial cells after initial tethering and rolling (34). Patients 

lacking these integrins are susceptible to severe infections, but excessive activation contrib-

utes to sustained inflammation, reperfusion injury, and tissue damage (35). The inhibition 

of leukocyte CD11b surface expression by elevated intracellular cAMP has been reported 

to attenuate FMLP-mediated leukocyte-endothelial adhesion, thus contributing to the anti-

inflammatory properties of PDE inhibition (36). In FMLP-stimulated leukocytes, an inhibition 

of CD11b upregulation was observed. Yet, in unstimulated leukocytes, the study found not 

only an elevation of platelet-leukocyte conjugates but also an increased expression of CD11b 

after incubation with PDE inhibitors in lower concentrations. Thus, the authors cannot discard 

the possibility that PDE3 inhibition can support monocyte recruitment and transendothelial 

migration via CD11b.

Therefore, increased adhesion of platelets on monocytes induced after treatment with 

PDE3 inhibitors could have a negative impact on the course of disease in patients suffering 

from myocardial infarction or thrombotic disorders. In 1992, Packer et al. (37) investigated 

the effects of oral milrinone on mortality in severe chronic heart failure. As compared with 

placebo, milrinone therapy was associated with a 34% increase in cardiovascular mortality. 

Whether the proinflammatory and prothrombotic mechanisms observed in this study may 
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contribute to the adverse effects in patients receiving long-term therapy with oral milrinone 

can only be speculated.

Although, in contrast to previous studies, this study used whole blood instead of isolated 

monocytes or platelet-rich plasma, there are limitations of this study; platelet-monocyte 

adhesion and adhesion molecule expression were studied in static conditions. Additional 

studies, with whole blood involving endothelial cells in a dynamic model, are necessary to 

further define the role of PDE3 inhibitors in modulating platelet-monocyte interactions, 

adhesion molecule expression, and the clinical relevance of the present findings.
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ABSTRACT

Background: Neutrophil adhesion to vascular endothelium and platelets is a multistep 

process involving several selectins and β2-integrins. Since volatile anesthetics are reported to 

reduce ischemia-reperfusion injury, we assessed whether sevoflurane and desflurane affect 

the activation of the selectins P-selectin glycoprotein ligand-1 (PSGL-1) and L-selectin and 

the β2-integrins CD11a and CD11b.

Methods: Whole blood was incubated for 60 min with 1 or 2 minimum alveolar anesthetic 

concentration (MAC) sevoflurane or desflurane. After incubation, neutrophils were activated 

with N-formylmethionyl-leucyl-phenylalanine (FMLP) or phorbol-12-myristate-13-acetate 

(PMA). Activation of adhesion molecules was evaluated via flow cytometry.

Results: Both anesthetics reduced the expression of PSGL-1 and had concentration depend 

opposed effects on the expression of L-selectin. 1 MAC sevoflurane and desflurane reduced 

PMA-induced L-selectin shedding, while 2 MAC of the respective anesthetics amplified L-

selectin shedding in unstimulated and PMA stimulated whole blood, whereas FMLP induced 

shedding was not altered. Interestingly sevoflurane enhanced the expression of CD11b in 

both concentrations.

Conclusions: These results demonstrate that sevoflurane and desflurane modify the activa-

tion of adhesion molecules and might therefore affect the multistep process of neutrophil 

recruitment.

The effects of sevoflurane and desflurane on neutrophil adhesion molecules seem to be 

concentration dependent. Especially desflurane in the 1 MAC concentration appears to have 

pronounced antiadhesive effects, whereas sevoflurane showed to have both adhesive as well 

as antiadhesive effects.
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INTRoDuCTIoN

The upregulation of neutrophil adhesion molecules plays a major role in the recruitment 

of neutrophils through vascular endothelium and in the formation of platelet-neutrophil 

aggregates. Although both processes are important steps for host defense against invad-

ing pathogens, they paradoxically contribute to organ dysfunction in conditions such as 

ischemia-reperfusion injury (1,2), myocardial infarction (3), thrombosis (4), and sepsis (5). 

Neutrophil accumulation during ischemia-reperfusion injury begins with neutrophil tether-

ing and rolling, which is mediated by the interaction of the selectins P-selectin glycoprotein 

ligand-1 (PSGL-1) and L-selectin with their endothelial counterligands. The neutrophil β2-

integrin CD11b is then involved in the tight attachment to endothelium. Finally, neutrophils 

transmigrate into the interstitial compartment via the binding of CD11a to endothelial in-

tercellular adhesion molecule (ICAM)-1 (2). The release of oxygen free radicals and cytotoxic 

enzymes and cytokines from activated neutrophils contributes then to the tissue injury (1,6). 

Furthermore, microvascular occlusion by platelet-leukocyte aggregates (7) and increased en-

dothelium permeability have also been demonstrated to aggravate the ischemia-reperfusion 

injury (8). Platelet-leukocyte adhesion can be mediated by interaction of PSGL-1 on leuko-

cytes and P-selectin on platelets or respectively via CD11b and GPIIb/IIIa.

The effects of anaesthetics on ischemia-reperfusion injury and neutrophil adhesion have 

been object of several studies in the past years. On the one hand side , isoflurane, and , 

sevoflurane protected against myocardial ischemia-reperfusion injury (9-11) on the other 

hand side Morisaki and co-workers reported an increased leukocyte rolling and adhesion in 

rats undergoing sevoflurane anaesthesia, probably caused by an upregulation of P-selectin 

expression on endothelial cells (12).

We could show in previous studies that isoflurane inhibits the activation of L-selectin and 

attenuates the activation of CD11a and CD11b—which mediate firm adhesion and transen-

dothelial migration (13). Furthermore we found that sevoflurane enhanced the binding of 

platelets to neutrophils and increased the expression of P-selectin on platelets, while des-

flurane decreased the percentage of platelet-neutrophil conjugates (14). To investigate the 

latter further we studied now the effect of sevoflurane and desflurane at 1 and 2 minimum 

alveolar anesthetic concentration (MAC) on the activation of selectins and β2-integrins, by 

using an established whole blood model. Furthermore, adhesion molecule activation was 

determined during basal conditions and after stimulation with N-formyl-methionyl-leucyl-

phenylalanine (FMLP) and phorbol-12-myristate-13-acetate (PMA).
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MATERIAL AND METHoDS

Antibodies and reagents:

The following were purchased from BD Pharmingen (San Jose, CA, USA): anti-CD45-FITC 

(clone HI30) monoclonal antibodies (Mab) for leukocyte common antigen; anti-CD62L-PE 

(clone Dreg 56) L-selectin binding Mab, anti-CD11a-PE (clone Hi111) Mab for lymphocyte 

function associated antigen-1, anti-CD11b-PE (clone ICRF44) CD11b binding Mab, anti-

CD162 (clone KPL-1) Mab recognizing PSGL-1, anti-negative IgG1-FITC and IgG1-PE antibodies 

(clone MOPC-21), antibodies for non-specific binding, and FACSlysing solution. Dulbecco´s 

phosphate buffered saline without Ca2+ and Mg2+ (PBS), bovine serum albumin (BSA), FMLP, 

PMA and paraformaldehyde were obtained from Sigma Chemicals (St. Louis, USA). Before the 

beginning of this study all antibodies were titrated by flow cytometry to determine saturat-

ing conditions.

Blood collection and incubation

After obtaining approval from the local ethics committee and informed written consent, 

blood samples were taken from 10 healthy volunteers who had not received any medication 

for at least two weeks. Venous blood was carefully collected without tourniquet from a cubital 

vein using a 21-gauge butterfly needle. The first 3ml of blood were used to perform a hemo-

gram and then discarded, the next samples were drawn into polypropylen tubes containing 

sodium citrate (Sarstedt, Nuermbrecht, Germany). Nine parts of blood were anticoagulated 

with one part of 3.8% trisodium citrate.

Methods

The MAC values used in this study were 2 vol.% for sevoflurane and 6 vol.% for desflurane. 

Incubation of blood samples was performed as previously described (13). In brief, blood 

samples were incubated in a small chamber with 21% oxygen and 5% carbon dioxide at 

37°C. The volatile anesthetics were delivered with a standard anesthetic machine (Sulla 909; 

Dräger, Lübeck, Germany), and concentrations of all gases were continuously monitored with 

a multigas analyzer (Datex Compact, Datex, Helsinki, Finland). Blood samples were exposed 

to either 1 or 2 MAC of the volatile anesthetics for 60 min. Untreated control blood samples 

were placed in a standard incubator (BB 16; Heraeus, Hanau, Germany) providing identical 

atmospheric conditions. After the end of the incubation time, all samples were immediately 

processed for stimulation and staining procedures. The effects of sevoflurane or desflurane 

on the expression of neutrophil selectins and β2-integrins were investigated with unstimu-

lated blood samples and after activation of neutrophils by using two different stimuli. FMLP 
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is a physiological agonist of the FMLP receptor on the neutrophil cell surface. Activation of 

the FMLP receptor results in downregulation of PSGL-1 and L-selectin, whereas expression 

of CD11a and CD11b is increased. In contrast, PMA directly activates protein kinase C (PKC), 

which also leads to downregulation of the two selectins and upregulation of both β2-integrins. 

Stimulation of blood samples with FMLP (final concentration, 100 nM) and PMA (100 nM) was 

performed in sealed polypropylene tubes to avoid evaporation of the volatile anesthetics. 

Blood samples were incubated with the stimulating agent for 10min at 37°C. Thereafter, 100 µL 

of blood was added to polystyrene tubes (Falcon, Becton-Dickinson, San Jose, CA) containing 

fluorochrome-conjugated Mabs. Before the beginning of this study, all Mabs were titrated by 

flow cytometry to determine saturating conditions. Blood cells were stained for 30 min at 4°C 

in the dark. Staining was stopped by adding 2 mL of lysing for 10 min. After centrifugation (5 

min, 350g, 4°C), the samples were washed with 2 mL of phosphatebuffered saline containing 

1% bovine serum albumin and centrifuged, and the cell pellet was resuspended in 400 µL of 

phosphate-buffered saline containing 1% bovine serum albumin and 2% paraformaldehyde. 

Blood cells were analyzed on a FACSCalibur flow cytometer (Becton-Dickinson), which was 

calibrated before each measurement with CaliBRITE beads (Becton-Dickinson). Neutrophils 

were identified by their scatter characteristics and CD45 staining in the FL1 channel. The data 

of 20,000 neutrophils were stored in list mode. The activation of PSGL-1, L-selectin, CD11a, 

and CD11b on the neutrophil cell surface was analyzed by measuring the mean fluorescence 

intensity (MFI) of the specific Mab in the FL2 channel.

Stasistics

The Kolmogorov-Smirnov-test showed that the data was normally distributed. Thus, data is 

presented as mean and standard deviations. Differences between anaesthetic gas-exposed 

and untreated control samples assessed in parallel were evaluated with Student’s t-tests. A 

value of p<0.05 was considered significant.

RESuLTS

Effects of sevoflurane on neutrophil adhesion molecule expression

One MAC sevoflurane enhanced the expression of CD11b in unstimulated blood. The shed-

ding of L-selectin in PMA stimulated blood and the expression of PSGL-1 in unstimulated and 

PMA-stimulated blood was reduced.

In the presence of 2 MAC sevoflurane the expression of CD11b was increased in all samples, 

whereas the PSGL-1 expression was decreased in all samples. In contrast to 1 MAC Sevoflurane, 

2 MAC Sevoflurane did increase the shedding of L-selectin in the PMA-stimulated samples.
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The results of the effects of sevoflurane on neutrophil adhesion molecule expression are 

shown in table 1.

Effects of desflurane on neutrophil adhesion molecule expression

As shown in table 2, 1 MAC desflurane also inhibited the shedding of L-selectin from the 

neutrophil surface after stimulation with PMA. PSGL-1 expression was significantly reduced 

in unstimulated and PMA stimulated blood. In the 2 MAC desflurane group, we observed in 

unstimulated and PMA-stimulated blood an increased shedding of L-selectin. PSGL-1 expres-

sion was significantly reduced in all samples after incubation with 2 MAC desflurane.

CD11b expression was not changed by either concentration of desflurane.

Table 1: Effect of 1 and 2 MAC sevoflurane on the adhesion molecule expression in unstimulated and PMA and FMLP stimulated whole blood

Adhesion molecule
MFI

Control
Sevoflurane

1 MAC
Control

Sevoflurane
2 MAC

CD 11b unstimulated 332 ± 62 409 ± 69 * 455 ± 125 631 ± 141 *

CD 11b PMA (100nM) 2019 ± 357 2091 ± 366 2621 ± 644 3545 ± 665 *

CD 11b FMLP (100nM) 2103 ± 240 2119 ± 191 2284 ± 231 2677 ± 378 *

CD 11a unstimulated (100nM) 802 ± 38 792 ± 33 751 ± 34 765 ± 38

CD 11a PMA (100nM) 996 ± 54 941 ± 46 929 ± 46 980 ± 50

CD 11a FMLP (100nM) 1016 ± 59 986 ± 63 920 ± 64 891 ± 62

L-selectin unstimulated (100nM) 1683 ± 103 1689 ± 84 1482 ± 72 1422 ± 58

L-selectin PMA (100nM) 895 ± 117 1159 ± 123 * 912 ± 128 726 ± 104 *

L-selectin FMLP (100nM) 397 ± 96 408 ± 79 264 ± 38 205 ± 30

PSGL-1 unstimulated (100nM) 693 ± 64 571 ± 52 * 523 ± 34 435 ± 26 *

PSGL-1 PMA (100nM) 665 ± 57 589 ± 50 * 533 ± 32 494 ± 26

PSGL-1 FMLP (100nM) 640 ± 60 623 ± 103 519 ± 45 479 ± 29

Values are expressed as mean fluorescence intensity. Data are expressed as mean ± SD. *Significantly different (p < 0.05) from control sample.

Table 2: Effect of 1 and 2 MAC desflurane on the adhesion molecule expression in unstimulated and PMA and FMLP stimulated whole blood

Adhesion molecule
MFI

Control
Desflurane

1 MAC
Control

Desflurane
2 MAC

CD 11b unstimulated 270 ± 22 289 ± 41 269 ± 37 294 ± 46

CD 11b PMA (100nM) 2232 ± 546 2110 ± 709 1645 ± 218 1730 ± 353

CD 11b FMLP (100nM) 2207 ± 139 2133 ± 203 2776 ± 355 2623 ± 462

CD 11a unstimulated (100nM) 694 ± 72 689 ± 67 647 ± 50 644 ± 60

CD 11a PMA (100nM) 897 ± 116 844 ± 80 776 ± 55 752 ± 55

CD 11a FMLP (100nM) 842 ± 88 819 ± 76 785 ± 54 763 ± 52

L-selectin unstimulated (100nM) 1451 ± 227 1360 ± 192 1316 ± 171 1040 ± 167 *

L-selectin PMA (100nM) 784 ± 134 903 ± 146 * 929 ± 104 737 ± 131 *

L-selectin FMLP (100nM) 265 ± 39 232 ± 58 261 ± 42 236 ± 26

PSGL-1 unstimulated (100nM) 600 ± 134 416 ± 101 * 486 ± 46 377 ± 21 *

PSGL-1 PMA (100nM) 600 ± 131 455 ± 103 * 485 ± 43 376 ± 32 *

PSGL-1 FMLP (100nM) 462 ± 106 431 ± 102 444 ± 42 376 ± 22 *

Values are expressed as mean fluorescence intensity. Data are expressed as mean ± SD. *Significantly different (p < 0.05) from control sample.
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DISCuSSIoN

Our results demonstrate that sevoflurane and desflurane affect neutrophil adhesion molecule 

expression. Interestingly they exerted similar but also different effects on the adhesion mol-

ecule expression. Both anaesthetics affected L-selectin shedding and reduced the expression 

of PSGL-1, but only sevoflurane enhanced the surface expression of CD11b.

The multicellular interactions among platelets, leukocytes, and the vascular wall concen-

trate a group of effector molecules that can modulate both hemostasis and inflammation 

(15,16). Binding of PSGL-1 to P-selectin promotes tethering and rolling of leukocytes on 

activated endothelial cells and platelets. Binding of PSGL-1 to L-selectin mediates tethering 

of leukocytes to other leukocytes, which may amplify recruitment of leukocytes to the vas-

cular wall. Activated platelets, through P-selectin–PSGL-1 or GPIIb/IIIa-CD11b interactions, 

may connect additional leukocytes to sites of inflammation or tissue injury. Therefore surface 

adhesion molecules play a major role in neutrophil tethering and migration through vascular 

endothelium or in the formation of platelet-neutrophil aggregates. While both processes are 

critical for host defense against invading pathogens, inappropriate adhesion molecule ex-

pression contributes to tissue damage in a variety of inflammatory and thrombotic disorders. 

Especially the adhesion molecules CD11b and PSGL-1 mediate both: the interaction of neu-

trophils with endothelium as well as the interaction of neutrophils with platelets. Therefore a 

modified expression of these adhesion molecules should have an impact on both (17).

Since volatile anesthetics have been reported (9-11,13,18) to have antiadhesive activity 

and protect against ischemia reperfusion injury we used an in vitro blood model and two 

color flow cytometry to clarify if sevoflurane and desflurane alter the expression of neutrophil 

adhesion receptors.

In a previous study Möbert and co-workers showed that halothane, isoflurane, and sevo-

flurane inhibited neutrophil adhesion to human endothelial cells. They concluded that this 

effect was caused by attenuating the upward regulation of neutrophil CD11b leading to a 

reduced neutrophil adhesion (19). In relation to sevoflurane our study does not confirm this. 

In contrast, we observed an increased expression of CD11b on neutrophils after incubation 

with sevoflurane which could lead to an increased adhesion to endothelium as well as to 

platelets. These findings confirm a recent investigation where we could show that sevoflu-

rane but not desflurane enhanced the formation of platelet-neutrophil aggregates (14). Since 

platelets and neutrophils may form aggregates also via fibrinogen bridging between GPIIb/

IIIa and CD11b (20) the enhancement of CD11b on neutrophils probably contributed to the 

augmentation of platelet-neutrophil conjugates by sevoflurane observed in the latter study. 

Whether the upregulation of CD11b under sevoflurane affects also the neutrophil-endothel 

interaction cannot be answered by this study.

However, CD11b is not the sole adhesion molecule involved in the process of neutrophil 

recruitment and adhesion. The initial neutrophil tethering and rolling is mediated by selec-



Chapter 9

130

tins, such as PSGL-1 and L-selectin. These selectins interact with their respective endothelial 

counterligands in a series of rapid adhesion and deadhesion events mediated by the forma-

tion of numerous weak, reversible bonds. This cycle of adhesion and de-adhesion results in 

the process of leukocyte rolling along the endothelial cell surface (21).

The results of our study showed that both sevoflurane and desflurane significantly reduced 

the surface expression of PSGL-1. Such downregulation has been reported to have profound 

effects on the ability of neutrophils to interact with endothelial P-selectin. Davenpeck et al. 

demonstrated that decreased surface expression of PSGL-1 on neutrophils correlates with a 

decrease in neutrophil adhesion to P-selectin under both static and dynamic conditions (22).

Studies on leukocytes confirm that L-selectin is responsible for leukocyte adhesion and 

rolling behavior and that L-selectin shedding is required for efficient transendothelial mi-

gration (23). Interestingly both anesthetics had concentration dependent opposed effects 

on the expression of L-selectin. 1 MAC sevoflurane and desflurane reduced PMA-induced 

L-selectin shedding, while 2 MAC of the respective anesthetics amplified L-selectin shedding 

in unstimulated and PMA stimulated whole blood, whereas FMLP induced shedding was not 

altered.

FMLP is a physiological agonist of the FMLP receptor on the neutrophil cell surface. Activa-

tion of the G protein-linked FMLP receptor leads to the activation of phospholipase C and D, 

generation of inositol triphosphate and activation of PKC, while PMA directly activates protein 

kinase C (PKC), which also leads to a downregulation of the two selectins and upregulation 

of the β2- integrin (24-25). Since FMLP-induced shedding which also involves PKC was not 

altered by the two volatile anaesthetics it seems to be likely, that sevoflurane and desflurane 

modified L-selectin expression by a PKC-independent pathway or mechanism. For example 

by direct inhibition of sheddases required for L-selectin shedding after stimulation with PMA 

such as the metalloprotease Tumour Necrosis Factor-alpha Converting Enzyme (TACE) (23).

In conclusion, the effects of sevoflurane and desflurane on neutrophil adhesion molecules 

seem to be concentration dependent. Especially desflurane in the 1 MAC concentration 

appears to have pronounced antiadhesive effects, whereas sevoflurane showed to have 

both adhesive as well as antiadhesive effects. Therefore it seems to be likely that the cardio-

protective effects of sevoflurane are for the most part mediated by other mechanisms than 

by antiadhesive properties. As a possible mechanism has been suggested an activation of 

intracellular messaging pathways by reactive oxygen species with an consecutive priming 

or indirect opening of the KATPchannel resulting in a reduced cytosolic and mitochondrial 

calcium loading and improved myocardial oxygen efficiency during ischemia and reperfu-

sion (26-27).
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GENERAL DISCuSSIoN AND CoNCLuSIoNS

The aim of this thesis was to study the influence of volatile anaesthetics and inotropic agents 

on platelet and leukocyte function. We focused on three aspects of this influence: Adhesion 

molecule expression on platelets, adhesion molecule expression on leukocytes and platelet 

- leukocyte interactions.

Chapter 1 -as a general introduction- introduces the reader theoretically to the basic 

concepts of adhesion molecules, volatile anaesthetics, inotropic agents and their possible 

interaction and impact on perioperative immunity.

In the first part of this thesis we concentrated on the effects of volatile anaesthetics on 

adhesion.

Chapter 2 of this thesis -as a preliminary study- focuses on the effect of the volatile anaes-

thetic sevoflurane on platelets adhesion molecule expression in vitro. Our results showed 

that sevoflurane inhibits agonist-induced GPIIb/IIIa activation (as measured by PAC-1 bind-

ing) and surface expression on platelets in whole blood even in subanaesthetic concentra-

tions. At 0.5 MAC sevoflurane, PAC-1 binding and the percentage of positive cells for PAC-1 

were greater in comparison with 1 MAC, suggesting a possible dose-dependent inhibition of 

receptor activation. The agonist-induced redistribution of GPIb into the open canalicular sys-

tem was also impaired by sevoflurane, whereas no effect on P-selectin expression in activated 

platelets as an indicator of activation dependent α- degranulation could be found. These 

morphological changes on the platelet surface affected also platelet function. We found a 

reduced maximum amplitude in thromboelastography and significantly prolonged platelet 

function analyzer 100 closure times in blood incubated with sevoflurane.

Parallel to the above described study we compared the effects of two other volatile 

anaesthetics - halothane and isoflurane - on platelet-leukocyte adhesion and P-selectin 

expression on platelets. Interestingly the results of this investigation-as presented in chapter 

3- demonstrate that these two volatile anaesthetics affect the binding of activated platelets 

to leukocytes differently. Halothane inhibited, while isoflurane enhanced the adhesion of 

agonist-activated platelets to neutrophils. The different influence of both anaesthetics on 

the expression of CD62P on platelets seemed to cause these opposite effects. Platelet surface 

CD62P, which has a major role in the mechanism of platelet-leukocytes adhesion was sup-

pressed by halothane but enhanced by isoflurane. Thus, the ability of halothane to inhibit 

binding of activated platelets to monocytes and neutrophils, as well as the enhancement 

of platelet–neutrophil adhesion by isoflurane, might change the inflammatory response. 

Because halothane is nowadays rarely used in the clinical practice we did no further investi-

gations on this anaesthetic after this study.

Since the elevation of CD62P on platelets under isoflurane was only accompanied by an 

elevated binding of platelets to neutrophils but not to monocytes, we investigated in the 

following steps (Chapter 4 and 6) if there was a concomitant effect on the neutrophil or 
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monocyte side, which could furthermore explain our findings. Interestingly in comparison 

to monocytes neutrophils showed a totally different behaviour: Isoflurane attenuated the 

activation of L-selectin on neutrophils, which mediates neutrophil tethering and rolling, as 

well as the activation of CD11a and CD11B which mediate firm adhesion and transendothe-

lial migration. In monocytes only the removal of PSGL-1 from the surface was affected. It can 

be concluded from these last two studies that the effects of isoflurane on cellular adhesion 

molecules are highly dependent on the type of cell and lead therefore to different intercel-

lular interaction pattern.

Chapter 5 presents a study which was done in a similar manner as the previous studies, 

analyzing the influence of two modern volatile anaesthetics sevoflurane and desflurane 

on cellular adhesion molecules. Here again the two volatile anaesthetics showed differing 

effects on the formation of platelet-leukocyte conjugates. Sevoflurane enhanced the forma-

tion of conjugates and the expression of CD62P, while desflurane decreased the number of 

conjugates without altering the expression of CD62P on platelets.

To analyze these findings further and to complete the studies about the impact of volatile 

anaesthetics on adhesion molecules, we investigated in chapter 9 the effect of sevoflurane 

and desflurane at 1 and 2 minimum alveolar anesthetic concentration (MAC) on the activation 

of selectins and β2-integrins. The results of this study demonstrate that both sevoflurane and 

desflurane affect neutrophil adhesion molecule expression. Interestingly they exerted similar 

but also different effects on the adhesion molecule expression. Both anaesthetics affected 

L-selectin shedding and reduced the expression of PSGL-1, but only sevoflurane enhanced 

the surface expression of CD11b.

In the second part of this thesis we investigated the effects of inotropic agents on the cellular 

adhesion molecules.

Chapter 7 describes the effects of epinephrine on platelet-neutrophil adhesion. Here we 

could show that epinephrine enhances the formation of platelet-neutrophil conjugates in a 

dose dependent manner. This increase in platelet-neutrophil aggregates was accompanied 

by an increase in CD62P and GPIIb/IIIa on platelets. We assume that epinephrine caused this 

increased expression of CD62P and GPIIb/IIIa via α-adrenergic stimulation, since α-adrenergic 

blockade almost completely reversed this upregulation of platelet adhesion molecules. An-

other important finding was that epinephrine suppressed the agonist induced upregulation 

of CD11b and downregulation of L-selectin an effect which was abolished by β-adrenergic 

blockade.

Similarly complex were the reactions of platelets and monocytes after incubation with the 

PDE 3 inhibitor milrinone. The results of this study are shown in chapter 8. Here the axis of 
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agonist stimulation played a decisive role in the adhesion molecule expression pattern and 

the following platelet- monocyte aggregate formation.

The results of the above presented studies show that the influences of volatile anaesthetics 

and inotropic agents on the expression of platelet and leukocyte adhesion molecules and 

subsequent interaction are manyfold. In these in vitro studies we could not detect a unique 

reaction of blood cells to volatile anaesthetics or inotropic agents. Therefore the results of our 

studies could not altogether confirm previous studies by other authors which concluded that 

the anti-adhesive properties of volatile anaesthetics are due to a reduced adhesion molecule 

expression. Subject to the agent, its applied concentration, the axis of stimulation and the cell 

type we found both reduced and enhanced expressions of adhesion molecules, which led to 

more or less conjugate formation. Thus the influence of volatile anaesthetics and inotropic 

agents on blood cell interactions are complex and modified by many factors, rendering it 

impossible to predict the exact effects on immunity. However, there is evidence that pre-

operative as well as intraoperative pharmaceuticals alter immunity, although it seems to be 

likely that the cardioprotective effects of volatile anaesthetics are for the most part mediated 

by other mechanisms than by antiadhesive properties. As a possible mechanism has been 

suggested an activation of intracellular messaging pathways by reactive oxygen species with 

a consecutive priming or indirect opening of the KATPchannel resulting in a reduced cytosolic 

and mitochondrial calcium loading and improved myocardial oxygen efficiency during isch-

aemia and reperfusion (127, 128).

Which mechanism eventually responsible is for the favourable effect on cardioprotection 

and the ischaemia-reperfusion-injury shall be seen in the future.
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SAMENVATTING EN CoNCLuSIES

Het doel van dit proefschrift is de bestudering van de effecten van volatiele anesthetica en 

inotrope medicatie op de functie van trombocyten en leukocyten. Drie aspecten werden in 

het bijzonder onderzocht: de expressie van zogenaamde adhesiemoleculen in trombocyten, 

de expressie van zogenaamde adhesiemoleculen in leukocyten en de interactie tussen trom-

bocyten en leukocyten.

Hoofdstuk 1 van het proefschrift bevat de introductie waarin de theoretische en basale 

concepten van de werking van adhesiemoleculen, volatiele anesthetica, inotrope medicatie 

en hun mogelijke interacties en effecten op het immuunsysteem in de perioperatieve fase 

beschreven word.

In het eerste deel van het proefschrift concentreerden wij ons op de effecten van volatiele 

anesthetica op de expressie van adhesiemoleculen. Hoofdstuk 2 beschrijft een studie naar de 

effecten van het volatiele anestheticum sevoflurane op de expressie van adhesiemoleculen 

van trombocyten in vitro. Deze studie laat zien dat sevoflurane de agonist geïnduceerde 

GPIIb/IIIa activatie (gemeten als PAC-1 binding) en de oppervlakte expressie in trombocyten 

in vol bloed, zelfs bij subanesthetische concentraties, tegen gaat. Tijdens de toediening van 

0.5 MAC sevoflurane was de PAC-1 binding en het percentage PAC-1 positieve cellen hoger 

dan bij een concentratie van 1 MAC, wat op een mogelijk dosisafhankelijk effect duidt. Ook 

de agonist geïnduceerde redistributie van GPIb in het open canaliculair systeem werd door 

sevoflurane verminderd, terwijl in geactiveerde trombocyten geen effect op de P-selectine 

expressie als indicator van activatie afhankelijke α- degranulatie werd gevonden. Deze 

morfologische veranderingen op het oppervlak van de trombocyten had ook effect op hun 

functie. Wij vonden een verminderde maximale amplitude tijdens tromboelastografie en een 

significant verlengde platelet function analyzer 100 sluitertijd in het bloed tijdens incubatie 

met sevoflurane.

Parallel aan de hierboven beschreven studie vergeleken wij de effecten van twee andere 

volatiele anesthetica - halothane en isoflurane – op de trombocyten-leukocyten adhesie en 

de P-selectine expressie bij trombocyten. De resultaten van deze studies zijn beschreven in 

Hoofdstuk 3 en laten opmerkelijk genoeg zien dat de effecten van deze twee anesthetica 

op de binding tussen trombocyten en leukocyten verschillend is. Halothane verminderd 

deze binding, terwijl isoflurane de agonist-geactiveerde adhesie tussen trombocyten en 

neutrofielen versterkt. Het verschillend effect van deze twee anesthetica op de expressie 

van CD62P op de trombocyt kan deze verschillen mogelijk verklaren. De expressie van het 

trombocyten-oppervlakte CD62P, wat een belangrijke rol speelt bij het mechanisme van de 

trombocyt-leukocyt adhesie werd verminderd door halothane, maar versterkt door isoflu-

rane. De eigenschap van halothane om de binding tussen geactiveerde trombocyten met 
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monocyten en neurofielen te verminderen, en het toegenomen effect van isoflurane op de 

binding tussen deze cellen kan een rol spelen bij de perioperatieve inflammatoire respons. 

Omdat halothane tegenwoordig vrijwel niet meer gebruikt wordt in de klinische praktijk 

hebben we de effecten van halothane in dit proefschrift verder niet onderzocht.

Omdat de verhoging va CD62P bij trombocyten tijdens de toediening van isoflurane al-

leen gepaard ging met een toegenomen binding van trombocyten met neutrofielen, maar 

niet met monocyten, werd in de Hoofdstukken 4 en 6 specifiek gekeken naar de effecten 

van isoflurane op de neutrofielen en monocyten. Het bleek dat neutrofielen en monocyten 

verschillende effecten lieten zien. Isoflurane verzwakt de activatie van L-selectine van de 

neutrofiel, wat de binding en het rollen van neutrofielen beïnvloed, maar verminderd ook 

de activatie van CD11a en CD11b, wat een rol speelt bij de stevige binding en de transendo-

theliale migratie. In de monocyt werd alleen invloed op de verwijdering van PSGL-1 van het 

celoppervlak geconstateerd.

Op basis van de resultaten gevonden in deze laatste twee studies word geconcludeerd 

dat de effecten van isoflurane op cellulaire adhesiemoleculen zeer afhankelijk zijn van het 

type cel wat bestudeerd wordt en dat dit leidt tot verschillende effecten op de intercellulaire 

interactie.

Hoofdstuk 5 beschrijft een studie waarbij de effecten van twee moderne volatiele anesthetica, 

sevoflurane en desflurane, op de cellulaire adhesiemoleculen onderzocht werd. Ook deze 

twee anesthetica lieten verschillende effecten zien op de vorming van trombocyt-leukocyt 

conjugaties. Sevoflurane versterkte de formatie van deze conjugaties en de expressie van 

CD62P, terwijl desflurane het aantal conjugaties verminderde zonder effecten op de expressie 

van CD62P in de trombocyt. Teneinde deze effecten verder te onderzoeken word in Hoofd-

stuk 9 het effect van sevoflurane en desflurane bij 1 en 2 minimum alveolar concentration 

(MAC) op de activatie van selectines en β2-integrines bestudeerd. De resultaten van deze 

studies laten zien dat zowel sevoflurane als desflurane de expressie van neutrofiel adhesie 

beïnvloedden. Interessant is dat deze anesthetica gelijksoortige, maar ook tegengestelde 

effecten hebben op de expressie van adhesiemoleculen. Beide anesthetica beïnvloedden de 

afstoting en verminderde de expressie van PSGL-1, maar alleen sevoflurane verhoogde de 

oppervlakte-expressie van CD11b.

In het tweede deel van het proefschrift wordt het onderzoek naar de effecten van inotrope 

medicatie op cellulaire adhesiemoleculen beschreven.

Hoofdstuk 7 beschrijft de effecten van epinephrine op de trombocyt-neutrofiel adhesie. 

We tonen aan dat epinephrine de formatie van trombocyt-neutrofiel conjugaties verhoogd 

op een dosis afhankelijke wijze. Deze toename van trombocyt-neutrofiel aggregaten gaat 

gepaard met een toename van CD62P en GPIIb/IIIa op de trombocyt. We veronderstellen 



145

Samenvatting en Conclusies

11

dat deze toegenomen expressie van CD62P en GPIIb/IIIa verloop via α-adrenerge stimulatie, 

omdat blokkade van de α-adrenerge stimulatie deze upregulatie volledig tegen gaat. Een an-

der belangrijke bevinding was het feit dat epinephrine de agonist geïnduceerde upregulatie 

van CD11b en de downregulatie van L-selectine remt, een effect dat opgeheven wordt door 

β-adrenerge blokkade.

Evenzeer complex waren de reacties van trombocyten en monocyten na incubatie met de 

PDE3 inhibitor milrinone. De resultaten van deze onderzoeken staan beschreven in Hoofdstuk 

8. Hier bleek de as van de agonist stimulatie een belangrijke rol te spelen bij het patroon van 

de expressie van de adhesiemoleculen en de daarop volgende aggregatie van leukocyten en 

trombocyten.

De resultaten van de in dit proefschrift beschreven studies laten zien dat de invloed van 

volatiele anesthetica en inotrope medicatie op de expressie van trombocyten- en leukocyten 

adhesiemoleculen en hun daaruit volgende interactie meervoudig zijn. In de in vitro studies 

konden wij geen eenduidige reactie van bloedcellen op volatiele anesthetica of inotrope 

medicatie ontdekken. De resultaten van onze studies kunnen daarom de resultaten van 

ander onderzoekers die concluderen dat de anti-adhesieve eigenschappen van volatiele 

anesthetica veroorzaakt worden door een afgenomen expressie van adhesiemoleculen, niet 

bevestigen. De invloed van volatiele anesthetica en inotrope medicatie op bloedcel interac-

ties zijn complex en worden beïnvloed door vele factoren, wat het uitermate lastig maakt om 

de exacte effecten op het immuunsysteem te voorspellen. Er zijn echter wel aanwijzingen dat 

preoperatief en intraoperatief toegediende medicatie het immuunsysteem kan beïnvloeden. 

De zogenaamde cardioprotectieve effecten van volatiele anesthetica lijken toch vooral door 

andere mechanismen dan antiadhesive eigenschappen veroorzaakt te worden. Een moge-

lijke verklaring ligt in de ‘priming’en het indirect opengaan van KATPkanalen, wat leidt tot 

een verminderde calciumconcentratie in het cytosol en de mitochondria en een verbeterde 

myocardiale zuurstofbalans tijdens ischaemie en reperfusie (127, 128)

Welk mechanisme exact verantwoordelijk is voor de positieve cardioprotectieve effecten 

en de ischaemie-reperfusie schade zal in de toekomst verder onderzocht moeten worden.
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