The following full text is a publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/72595

Please be advised that this information was generated on 2019-08-29 and may be subject to change.
Search for scalar leptoquarks and T-odd quarks in the acoplanar jet topology using 2.5 fb$^{-1}$ of $p\bar{p}$ collision data at $\sqrt{s}=1.96$ TeV

DØ Collaboration

3 of 3

0370-2693/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2008.09.014

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Physics Letters B

© 2008 Elsevier B.V. All rights reserved.
At hadron colliders, new colored particles predicted by various extensions of the Standard Model (SM) would be abundantly produced if they are light enough. The final state with jets and missing transverse energy is a promising channel to discover physics beyond the SM. In this Letter, a search for new particles in the topology consisting of exactly two jets and \(\ell \bar{\nu} \) resulting from the decay of those particles is presented using 2.5 fb\(^{-1}\) of data collected at a center-of-mass energy of 1.96 TeV with the DØ detector at the Fermilab Tevatron Collider. The numbers of events with exactly two acoplanar jets and missing transverse energy are in good agreement with Standard Model expectations. The result of this search has been used to set a lower mass limit of 205 GeV at the 95% C.L. on the mass of a scalar leptoquark when this particle decays exclusively into a quark and a neutrino. In the framework of the Little Higgs model with T-parity, limits have also been obtained on the T-odd quark mass as a function of the T-odd photon mass.

A search for new physics in the acoplanar jet topology has been performed in 2.5 fb\(^{-1}\) of data from \(pp \) collisions at \(\sqrt{s} = 1.96 \) TeV, recorded by the DØ detector at the Fermilab Tevatron Collider. The numbers of events with exactly two acoplanar jets and missing transverse energy are in good agreement with Standard Model expectations. The result of this search has been used to set a lower mass limit of 205 GeV at the 95% C.L. on the mass of a scalar leptoquark when this particle decays exclusively into a quark and a neutrino. In the framework of the Little Higgs model with T-parity, limits have also been obtained on the T-odd quark mass as a function of the T-odd photon mass.

© 2008 Elsevier B.V. All rights reserved.
of 136 GeV [2] for \(\beta = 0 \) was obtained by the DØ Collaboration with 310 pb\(^{-1} \) of Run II data. The CDF Collaboration also set a lower mass limit of 117 GeV [3] with 191 pb\(^{-1} \) of Run II data. Those limits, as well as the results presented in this Letter, apply for first- and second-generation scalar leptoquarks. For the third-generation, tighter limits were obtained by increasing the signal sensitivity using heavy-flavor quark tagging [4].

The second category is the Little Higgs (LH) model [5], which provides an interesting scenario for physics at the TeV scale, predicting the existence of additional gauge bosons, fermions, and scalar particles with masses in the 100 GeV–5 TeV range. Electroweak precision constraints are satisfied by introducing a discrete symmetry called T-parity [6]. This symmetry is constructed such that all the SM states are even, while most new states of the LH model with T-parity (LHT) are odd. In the LHT model, six new Dirac T-odd quarks (T-quarks or \(\tilde{q} \)) are the partners of the left-handed T-even quarks of the SM. In most of the parameter space, the lightest T-odd particle (LTP) is the so-called “heavy photon” (\(\tilde{A}_H \)) which is stable and weakly interacting. From SM precision measurements, it is possible to set a lower mass limit of \(\sim 80 \) GeV on the mass of \(\tilde{A}_H \) [7]. The new particle spectrum of the LHT model has similar properties to spectra of supersymmetric models. The LTP, just as the Lightest Supersymmetric Particle in SUSY models with R-parity conservation, is a dark matter candidate which escapes undetected. There are, however, important differences: the new T-odd particles have the same spin as their SM partner; and in the LHT model, some SM states, for example right-handed SM fermions or gluons, have no partners. In the following, the mass of the T-quarks from the first two generations is assumed to be degenerate, and pair production of those four T-quarks is considered. As the T-odd gauge bosons other than the \(\tilde{A}_H \) are relatively heavy, T-quarks decay into a quark and \(\tilde{A}_H \) in most of the parameter space accessible at the Tevatron. It will be assumed in the following that this branching ratio is 100%. Pair production of T-quarks therefore leads to a final state with two quarks and two LTP, giving the missing transverse energy signature. The only direct constraint from collider data on the T-quark mass is the \(\sim 100 \) GeV lower limit on the mass of the supersymmetric partner of the first two generations quarks from LEP [8] which can also be applied to T-quarks. Prospective studies [9] have shown that the Tevatron can be sensitive to T-quark masses up to \(\sim 400 \) GeV. This sensitivity is severely reduced when the mass difference between the T-quarks and the LTP becomes small.

The DØ detector has been described in detail in Ref. [10]. Tracks are reconstructed in a silicon microstrip tracker and a central fiber tracker (CFT), both located within a 2 T superconducting solenoidal magnet. The liquid argon and uranium calorimeter consists of three tracker (CFT), both located within a 2 T superconducting solenoidal magnet. The liquid argon and uranium calorimeter consists of three cryostats. The central one covers pseudorapidities \(\eta \) from \(8.5 < \eta < 2.5 \) in the \((\eta, \phi) \) plane, where \(\phi \) is the azimuthal angle in radians. The outer muon system, covering \(|\eta| < 2 \), consists of tracking detectors and scintillation trigger counters in front of 1.8 T iron toroids, followed by two similar layers after the toroids.

Jets were reconstructed with the iterative midpoint cone algorithm [11] with cone radius \(R = \sqrt{(\Delta \phi)^2 + (\Delta y)^2} = 0.5 \) in azimuthal angle \(\phi \) and rapidity \(y = \frac{1}{2} \ln((E + p_T)/(E - p_T)) \). The jet energy scale (JES) corrections were derived from the transverse momentum balance in photon-plus-jet events. The \(E_T \) was calculated from all calorimeter cells, and corrected for the jet energy scale and for the transverse momenta of reconstructed muons.

In events from SM processes, the presence of neutrinos from \(W \) or \(Z \) decay in the final state generates large \(E_T \). The main irreducible SM background in this search for new particles is therefore the \(Z(\rightarrow \nu\bar{\nu}) + \) jets process. The \(W(\rightarrow l\nu) + \) jets also exhibit the \(E_T \) signature, but their contribution can be significantly reduced by rejecting events with an isolated electron or muon. However, the charged lepton can escape detection in uninstrumented regions of the detector, fail identification criteria, or be a tau lepton decaying hadronically. To further suppress that background, events containing an isolated high \(p_T \) track are rejected. The other SM backgrounds for this search are the pair production of vector bosons (\(WW, \ WZ, \ ZZ \)) and the production of top quarks, either in pairs (\(t\bar{t} \)) or via the electroweak interaction. Finally, multijet production when one or more jets are mismeasured also leads to a final state with jets and \(E_T \) (“QCD background”).

Events from SM processes and signal events were simulated using Monte Carlo (MC) generators and passed through a full GEANT3-based [12] simulation of the detector geometry and response. They were subsequently processed with the same reconstruction chain as the data. The parton distribution functions (PDFs) used in the MC generators are the CTEQ6L1 [13] PDFs. A data event from a randomly selected beam crossing was overlaid on each event to simulate the additional minimum bias interactions and detector noise. The ALPGEN generator [14] was used to simulate \(W/Z + \) jets and \(t\bar{t} \) production. It was interfaced with PYTHIA [15] for the simulation of initial and final state radiation (ISR/FSR) and of jet hadronization. Pairs of vector bosons and electroweak top quark production were simulated with PYTHIA and COMPPHE [16], respectively. The next-to-leading order (NLO) cross sections were computed with mcfm5.1 [17]. The QCD background was not simulated, since it can be conservatively neglected in the final stage of this analysis.

Leptoquark pair production and decays were simulated with PYTHIA and the CTEQ6L1 PDFs. The LQ mass in the MC simulation ranged from 60 to 240 GeV. The NLO cross sections of this process were computed from a program based on [18] with a renormalization and factorization scale (\(\mu_{s,t} \)) equal to the LQ mass, and using the CTEQ6M1 PDF sets.

For the LHT model, it has been shown in [9] that T-quark pair production and decay to \(q\tilde{A}_H \) is very similar to squark pair production and decay to \(q\tilde{\chi}^0 \), where \(\tilde{\chi}^0 \) is the lightest neutralino. Signal efficiencies were therefore determined using MC events generated with PYTHIA corresponding to the production and decay of these supersymmetric particles. It has been checked that the spin differences between the T-odd particles of the LHT model and the supersymmetric particles do not modify the signal efficiencies. Therefore, MC simulations of such events were performed to cover the \(Q-A_H \) mass plane accessible at the Tevatron. Concerning the signal normalization, the cross section of first and second generation T-quark pair production is equal to four times the cross section of heavy quark pair production, if no other new particles predicted by the LHT model are involved in the T-quark production. The NLO cross sections of this signal were therefore calculated using mcfm5.1, with \(\mu_{s,t} \) equal to the T-quark mass, and the CTEQ6L1M PDF sets.

The analysis strategy follows closely the “dijet” analysis from Ref. [19]. Events were recorded using triggers requiring two acoplanar jets and large \(E_T \) or \(H_T \), where \(H_T \) is the vector sum of the jet transverse momenta (\(H_T = \sum_j p_T \)). The trigger requirements evolved during the Run II data taking period in order to take into account the increasing peak instantaneous luminosity of the Tevatron. At the last stage of the trigger selection, the requirements were typically the following: (1) \(E_T \) or \(H_T \) greater than \(30 \) GeV and their separation from all jets greater than \(25^\circ \); (2) an azimuthal angle between the two highest \(p_T \) jets less than \(170^\circ \). Offline, events where \(E_T \) was higher than \(40 \) GeV were then selected.

8 The pseudorapidity \(\eta \) is defined as \(-\ln(\tan(\theta/2)) \), with \(\theta \) being the polar angle with respect to the proton beam direction.
The best primary vertex (PV0) was defined as the vertex with the smallest probability to be due to a minimum bias interaction [20]. The longitudinal position of PV0 was required to be less than 60 cm from the detector center to ensure efficient vertex reconstruction. Good jets were defined as jets with a fraction of energy in the electromagnetic layers of the calorimeter lower than 0.95. The acoplanarity, i.e. the azimuthal angle between the two leading jets, jet1 and jet2, ordered by decreasing transverse momentum, was required to be less than 165 degrees. Then, the two leading jets were required to be in the central region of the detector, with $|\eta_{\text{det}}| < 0.8$, where η_{det} is the jet pseudorapidity calculated under the assumption that the jet originates from the detector center. After this preselection, the transverse momenta of the two leading jets had to be higher than 35 GeV. Finally, jets were required to originate from the best primary vertex, based on their associated tracks [19]. This was accomplished by requiring CP0 > 0.75, where CP0 is the fraction of track p_T associated with the jet which comes from PV0, CP0 = $\sum_{\text{track}} p_T (\text{PV0}) / \sum_{\text{track}} p_T (\text{any PV})$.

At this stage, the QCD multijet background is still largely dominant. To further reject those events, the selection criteria on E_T was increased to 75 GeV. The requirement that the acoplanarity angle between the E_T- and the first jet, $\Delta \phi (E_T, \text{jet1})$, exceeds 90 degrees, was used to remove events where a jet was mismeasured and generating E_T aligned to that jet. Also, the minimal azimuthal angle $\Delta \phi_{\min} (E_T, \text{any jet})$ and the maximal azimuthal angle $\Delta \phi_{\max} (E_T, \text{any jet})$ between jets and E_T directions had to be greater than 50 degrees and lower than 170 degrees, respectively.

To suppress $W (\rightarrow l\nu) + \text{jets}$ events, a veto on events containing an isolated electron or muon with $p_T > 10$ GeV was applied. Events with an isolated track were then rejected to further reduce that background. Isolated tracks were required to have $p_T > 5$ GeV, to originate from PV0 with DCA(z) < 5 cm and DCA(r) < 2 cm, where DCA(z) and DCA(r) are the positions of the projection of the distance of closest approach between the track and PV0 on the beam direction and in the plane transverse to the beamline, respectively. The number of hits in the CFT used to reconstruct the track was required to be at least 8. Finally, good quality tracks were selected by requiring the χ^2/dof of the track-fit reconstruction to be lower than 4. A hollow cone with inner and outer radii of 0.06 and 0.5 was constructed around each track that passed those criteria. If no other track with $p_T > 0.5$ GeV and the same quality as above was found in this hollow cone, the track was considered isolated. The use of a hollow, rather than full cone also allowed rejection of tau leptons decaying into three charged particles.

Events with exactly two jets with $p_T > 15$ GeV and $|\eta_{\text{det}}| < 2.5$ in the final state were then selected. This criterion rejects a large fraction of the remaining $t\bar{t}$ events, and increases the signal sensitivity at large T-quark and leptoquark masses once large E_T and H_T are required, with $H_T = \sum_{\text{jets}} p_T$, where the sum is over all jets with $p_T > 15$ GeV and $|\eta_{\text{det}}| < 2.5$. Table 1 summarizes the number of events observed and expected from MC simulations at each stage of the analysis. Fig. 1 shows comparisons between data and MC simulations: the distribution of the number of jets, and the E_T and H_T distributions after applying all the selection criteria described above.

Finally, the two final cuts on E_T and on H_T were optimized for different signals by minimizing the expected upper limit on the cross section in the absence of signal. To this end and also for

<table>
<thead>
<tr>
<th>Cut applied</th>
<th>Data</th>
<th>Background</th>
<th>Signal</th>
<th>Signal efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preselection</td>
<td>208.055</td>
<td>30.752 ± 5350</td>
<td>166 ± 21</td>
<td>0.302 ± 0.037</td>
</tr>
<tr>
<td>1st leading jet $p_T > 35$ GeV</td>
<td>122.456</td>
<td>25.352 ± 4410</td>
<td>152 ± 19</td>
<td>0.276 ± 0.034</td>
</tr>
<tr>
<td>2nd leading jet $p_T > 35$ GeV</td>
<td>79.985</td>
<td>14.538 ± 2530</td>
<td>144 ± 18</td>
<td>0.262 ± 0.032</td>
</tr>
<tr>
<td>$E_T > 75$ GeV</td>
<td>6509</td>
<td>5219 ± 509</td>
<td>125 ± 16</td>
<td>0.228 ± 0.028</td>
</tr>
<tr>
<td>$\Delta \phi (E_T, \text{jet}) > 90^\circ$</td>
<td>6386</td>
<td>5148 ± 897</td>
<td>124 ± 15</td>
<td>0.226 ± 0.028</td>
</tr>
<tr>
<td>$\Delta \phi_{\min} (E_T, \text{any jet}) > 50^\circ$</td>
<td>3857</td>
<td>1345 ± 602</td>
<td>93 ± 12</td>
<td>0.170 ± 0.021</td>
</tr>
<tr>
<td>$\Delta \phi_{\max} (E_T, \text{any jet}) < 170^\circ$</td>
<td>2855</td>
<td>2568 ± 448</td>
<td>81 ± 10</td>
<td>0.147 ± 0.018</td>
</tr>
<tr>
<td>Isolated electron veto</td>
<td>2347</td>
<td>2129 ± 371</td>
<td>79 ± 9.8</td>
<td>0.144 ± 0.018</td>
</tr>
<tr>
<td>Isolated muon veto</td>
<td>2007</td>
<td>1880 ± 328</td>
<td>79 ± 9.8</td>
<td>0.144 ± 0.018</td>
</tr>
<tr>
<td>Isolated track veto</td>
<td>1472</td>
<td>1398 ± 244</td>
<td>73 ± 9.1</td>
<td>0.133 ± 0.017</td>
</tr>
<tr>
<td>Exactly two jets</td>
<td>957</td>
<td>858 ± 150</td>
<td>40 ± 6.1</td>
<td>0.089 ± 0.011</td>
</tr>
<tr>
<td>Final E_T cut</td>
<td></td>
<td></td>
<td></td>
<td>optimized</td>
</tr>
<tr>
<td>Final H_T cut</td>
<td></td>
<td></td>
<td></td>
<td>optimized</td>
</tr>
</tbody>
</table>

* First and second jets are also required to be central ($|\eta_{\text{det}}| < 0.8$), with an electromagnetic fraction below 0.95, and to have CP0 > 0.75.
the final limit computation, the CLs modified frequentist method has been used [21]. For the leptoquark search, two benchmarks were defined corresponding to low ($M_{LQ} = 140$ GeV) and high ($M_{LQ} = 200$ GeV) leptoquark masses. As summarized in Table 2, the optimized values were determined to be $H_T > 150$ GeV and $E_T > 75$ GeV for the low mass selection, and $H_T > 300$ GeV and $E_T > 125$ GeV for the high mass selection. In the T-quark search, five $H_T - E_T$ cut combinations were used to optimally scan the (Q, A_H) mass plane as summarized in Table 2. In all cases, the contribution of the QCD multijet background was estimated to be small enough to be conservatively neglected. The number of events observed are in good agreement with the SM expectations.

The uncertainty coming from the JES corrections on the SM backgrounds and signal predictions ranges from 5% for low H_T and E_T cuts to 10% for high H_T and E_T cuts. The uncertainties due to the jet energy resolution, to the jet track confirmation, and to jet reconstruction and identification efficiencies range between 2% and 4%. The systematic uncertainty due to the isolated track veto was measured to be 3%. All these uncertainties account for differences between data and MC simulation, both for signal efficiencies and background contributions. The trigger was found to be fully efficient for the event samples surviving all analysis requirements within an uncertainty of 2%. The uncertainty on the luminosity measurement is 6.1% [22]. All of these uncertainties are fully correlated between signal and SM backgrounds. A 15% systematic uncertainty was set on the $W/Z +$ jets and $t\bar{t}$ NLO cross sections. The uncertainty on the signal acceptance due to the PDF choice was determined to be 6%, using the forty-eigenvector basis of the CTEQ6.1M PDF set [13]. Finally, the effects of ISR/FSR on the signal efficiencies were studied by varying the PDF parameters controlling the QCD scales and the maximal allowed virtualities used in the simulation of the space-like and time-like parton showers. The uncertainty on the signal efficiencies was determined to be 6%.

The nominal NLO signal cross sections, σ_{nom}, were computed with the CTEQ6.1M PDF and for the renormalization and factorization scale $\mu_{r,f} = Q$, where Q was taken to be equal to the leptoquark or T-quark mass. The uncertainty due to the choice of PDF was determined using the full set of CTEQ6.1M eigenvectors, with the individual uncertainties added in quadrature. The effect of the renormalization and factorization scale was studied by calculating the signal cross sections for $\mu_{r,f} = Q$, $\mu_{r,f} = Q/2$ and $\mu_{r,f} = 2 \times Q$. The PDF and $\mu_{r,f}$ effects were added in quadrature to compute minimum, σ_{min}, and maximum, σ_{max}, signal cross sections.

For the leptoquark search, Fig. 2 shows the 95% C.L. observed and expected upper limits on scalar leptoquark production cross sections. The intersection with the minimal NLO cross section gives a lower mass limit of 205 GeV for $\beta = 0$. The corresponding ex-
pected limit is 207 GeV. Those limits are 214 GeV and 222 GeV, respectively, for the nominal signal cross section.

For the T-quark search, Fig. 3 shows the 95% C.L. excluded regions in $\tilde{Q} - \tilde{A}_H$ mass plane assuming that the branching fraction of the decay $Q \to q\tilde{A}_H$ is 100%. The largest excluded T-quark mass, 404 GeV, is obtained for large mass difference between the T-quarks and the LTP.

In summary, a search for scalar leptoquarks and for T-quarks produced in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV has been performed with a 2.5 fb$^{-1}$ data sample. This search was conducted in events containing exclusively two jets and large missing transverse energy. The results are in good agreement with the SM background expectations, and 95% C.L. limits have been set on the leptoquark and T-quark masses. For a single-generation scalar leptoquark, a lower mass limit of 205 GeV has been obtained for $\beta = 0$, improving the previous limit by 69 GeV. In the LHT model, limits on T-quark mass were obtained as a function of the \tilde{A}_H mass assuming 100% branching ratio for the decay $\tilde{Q} \to q\tilde{A}_H$. T-quark masses up to 404 GeV are excluded when the mass difference between T-quarks and the LTP is large. Those are the most stringent direct limits to date on the T-quarks mass.

Acknowledgements

We thank M. Carena, J. Hubisz, and M. Perelstein for their valuable help with the LHT model, the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany).

References

[14] M.L. Mangano, et al., JHEP 0307 (2003) 001, versions 2.05 and 2.11 were used.

