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Stability Conditions for L1/Lp Regularization

Tom Heskes and Marcel van Gerven

1 Introduction

L1/Lp regularization is a regularization approach that has the same sparsifying properties as L1

regularization and allows regularization over feature groups instead of features [1]. This approach
is of use when features can be partitioned into groups that are seen as belonging together as well
as in the case of transfer learning, where the same features are grouped together over multiple
tasks. In this note, we derive stability conditions that determine for which value of a regularization
parameter λ a group of feature will be included into the model.

2 L1/Lp regularization

In L1/Lp regularization, we consider cost functions of the form

E(Θ) = L(Θ) + λ‖Θ‖1,p ,

with Θ a matrix with components θij , L(Θ) a loss term, such as the negative loglikelihood of data
given a particular probability model parameterized by Θ, λ a regularization constant, and the
L1/Lp norm

||Θ||1,p ≡

I
∑

i=1

p

√

√

√

√

J
∑

j=1

|θij |p .

We write θi for the vector with components θij . The L1/Lp norm uses an L1 norm to regularize
over vectors θi and an Lp norm to regularize within vectors θi. If we choose p = 1 then we obtain

||Θ||1,p =

I
∑

i=1

J
∑

j=1

|θij |

which amounts to standard L1 regularization over components θij . It is well-known that by pe-
nalizing differences from zero, L1 regularization effectively performs feature selection with respect
to components θij . However, if p > 1 then the components θij within a vector θi become tied,
leading to feature selection with respect to vectors θi. In the limit, as p goes to infinity, the reg-
ularization of a vector θi is fully determined by the component θij having the largest magnitude.
L1/Lp regularization has the advantage over plain L1 regularization that we may group together
components that are seen as belonging together. For example, if L(Θ) is interpreted as minus the
loglikelihood of data given a particular probability model parameterized by Θ, i runs over features,
and j over tasks, then we may enforce that the same features are used for solving different tasks
(this is known as transfer learning or multi-task learning).

When we regard the vectors θi as features then it becomes useful to determine for which values
of λ the solution θi = 0 remains stable. Consider fixing all vectors θl for l 6= i to some θ∗

l (which
may or may not be equal to the null vector) and possibly changing θi away from 0. We define

Θ∗
i (θ) ≡ [θ∗

1 , . . . , θ∗
i−1, θ, θ∗

i+1, . . . , θ
∗
I ] .
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It can then be shown that the solution Θ∗
i (0) is stable if and only if

λ ≥

∥

∥

∥

∥

∥

∂L(Θ)

∂θi

∣

∣

∣

∣

Θ=Θ∗

i
(0)

∥

∥

∥

∥

∥

p/(p−1)

. (1)

Loosely speaking, to move the parameters away from zero the push due to the gradient of the loss
term should be stronger than the pull of the regularization term.

Proof. Since the vectors θl are fixed for l 6= i, we can restrict ourselves to study the dependency
of E(Θ) on θi:

E(θi) ≡ E(Θ∗
i (θi)) = L(Θ∗

i (θi)) + λ‖θi‖p + constant .

The solution θi = 0 is stable if it holds that

E(θi) ≥ E(0) for any choice of infinitesimal θi. (2)

A first order Taylor expansion for θi close to 0 yields:

E(θi) = E(0) +

J
∑

j=1

θij
∂L(Θ)

∂θij

∣

∣

∣

∣

Θ=Θ∗

i
(0)

+ λ‖θi‖p ≡ E(0) + gT θi + λ‖θi‖p ,

where here and in the following we ignore higher order terms and we defined, for ease of notation,

g ≡ ∂L(Θ)
∂θi

∣

∣

∣

Θ=Θ∗

i
(0)

. The condition (2) thus boils down to

λ ≥ −
gT θ

‖θ‖p
∀θ ,

and thus to

λ ≥ max
θ

[

−
gT θ

‖θ‖p

]

= max
θ

gT θ

‖θ‖p
= max

θ;‖θ‖p=1
gT θ . (3)

The last step follows from the observation that the function to be minimized is insensitive to
scaling of θ (as it should) and we can therefore constrain the norm of θ to any arbitrary value
(here chosen to be 1). The first follows from a symmetry argument. Introducing a Lagrange
multiplier γ for this constraint, we get the Lagrangian

L(θ, γ) = gT θ + γ(‖θ‖p − 1) ,

with derivative
∂L(θ, γ)

∂θj
= gj + γ‖θ‖1/p−1

p |θj |
p−1 sgn(θj) .

Setting this derivative to zero, we see that the optimal solution θ∗ obeys (for p > 1)

θ∗j ∝ |gj|
1/(p−1) sgn(gj) .

Furthermore, we see that we obtain a maximum when the proportionality constant is positive,
and a minimum when it is negative. Plugging this into (3), we finally obtain, after some rewriting

λ ≥ ‖g‖p/(p−1) .

Note that if we choose p = 1 in (1) then we obtain

λ ≥

∥

∥

∥

∥

∥

∂L(Θ)

∂θi

∣

∣

∣

∣

Θ=Θ∗

i
(0)

∥

∥

∥

∥

∥

∞

= max
i

∣

∣

∣

∣

∣

∂L(Θ)

∂θi

∣

∣

∣

∣

Θ=Θ∗

i
(0)

∣

∣

∣

∣

∣

,

which is the stability condition for L1 regularization [2].
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