ZEEGRASMITIGATIES
OOSTERSCHELDE

Radboud Universiteit Nijmegen

Proeven met verplaatsen van klein zeegras zostera noltii in de Oosterschelde: mitigatiemaatregel bij toekomstige dijkwerkzaamheden ZLD - 6606

voor:

Projectbureau Zeeveringen Rijkswaterstaat & Provincie Zeeland

25 Augustus 2008

Tussenrapportage voor

Fase 4: begeleiding zeegrasmitigaties mei-juni 2008
Zeegrasmitigaties Oosterschelde

Proeven met verplaatsen van klein zeegras *Zostera noltii* in de Oosterschelde: mitigatiemaatregel bij toekomstige dijk werkzaamheden
ZLD - 6606

Tussenrapportage voor Fase 4: Begeleiding zeegrasmitigaties mei-juni 2008

HERZIENE VERSIE, 25 augustus 2008

Radboud Universiteit Nijmegen

voor:

Projectbureau Zeeweringen
Rijkswaterstaat &
Provincie Zeeland
Inhoudsopgave

Lijst van afkortingen... iii

1 Inleiding .. 1
 1.1 Achtergrond .. 1
 1.2 Formulering van proef & uitvoering 2007 .. 2
 1.3 Verlenging van proef 2008 ... 3
 1.4 Vergunningen .. 3

2 Methode aanplant 2008 ... 5
 2.1 Methodiek volgens opdrachtsomschrijving 2008 .. 5
 2.2 Verschil in aanpak: 2007 en 2008 .. 8

3 Uitvoering op donorlocaties .. 11
 3.1 Praktische uitvoering door BTL ... 11
 3.2 Kwesties op donorlocatie & tijdens vervoer ... 13

4 Uitvoering op mitigatielocaties ... 16
 4.1 Praktische uitvoering door BTL ... 16
 4.2 Kwesties op mitigatielocaties .. 19

5 Nulmeting en monitoring .. 22

6 Conclusies .. 23
 6.1 Donorlocaties .. 23
 6.2 Mitigatielocaties ... 24

7 Aanbevelingen .. 25

8 Vooruitblik ... 26

9 Referenties ... 27

Lijst van figuren

Figuur 1 Kaart van Oosterschelde, met donor- en mitigatielocaties 2007-2008 4
Figuur 2 Indeling van de 16 plots per mitigatielocatie .. 6
Figuur 3 Aanplant: A. veilige plot en B. kansrijke plot ... 6
Figuur 4 Zeegrasgroei in Krabbenkreek Zuid 1978-79 .. 13
Figuur 5 Indeling van plots op Krabbenkreek Noord, met losse planten (L) 16
Figuur 6 Hoogteverspreiding klein zeegras in de Oosterschelde ... 19
Figuur 7 RTK-GPS metingen van zeegebras patches Krabbenkreek Noord 22
Lijst van foto’s

Foto 1 Nieuwe kunststof kisten voor vervoer van plaggen
Foto 2 Vervoer van plaggen – in kunststoffen kisten afgedekt met natte doeken
Foto 3 Herstel van slikken Viane Oost na het rooien
Foto 4 Erosie uit bak met zeegras na één tij op de slikken
Foto 5 Luchtfoto van Viane West donorlocatie
Foto 6 Aanleg van veilige plot op Krabbenkreek Noord, 29 mei 2008
Foto 7 Plot 17 met losse planten op Krabbenkreek Noord
Foto 8 Piketpaal met duurzame nummering, Rattekaai Plot 16
Foto 9 Luchtfoto van werkzaamheden op de Dortsman Noord
Foto 10 Diepe sporen in de zachte slikken van de Rattekaai, 3 juni 2008
Lijst van afkortingen

bft Beaufort
BTL Bureau voor Tuin- en Landschapsverzorging
D10, D50, D90 korrelgrootte percentiel; 10%, 50% of 90% van de deeltjes van het sediment heeft een korrelgrootte, dat kleiner is dan een bepaalde grootte (bijv. 150 µm)
DGPS Differentiaal GPS
GPS* Global Positioning System
µm 1 miljoenste meter
NAP Normaal Amsterdam’s Peil
NIOO Nederlands Instituut voor Oecologisch Onderzoek
RIKZ Rijksinstituut voor Kust en Zee
RTK-GPS Real Time Kinematic – GPS (zie ook GPS*)
RU Radboud Universiteit
RWS Rijkswaterstaat
1 Inleiding

1.1 Achtergrond

Tijdens voorbereidende werkzaamheden is gebleken dat op een aantal plaatsen waar de werkzaamheden plaats zullen vinden, klein zeegras *Zostera noltii* in populaties langs de dijk voorkomt. Ervan uitgaande dat in een zone van 8-15 meter breed vanaf de teen van de dijk zal worden gewerkt, zal in totaal ongeveer 4000-8000 m² aan klein zeegras moeten wijken.

Klein zeegras is een in Europees verband beschermde soort die het goed doet in de Waddenzee het laatste decennium (Reise & Kohlus, 2008), maar in Zeeland sterk is afgenomen. Voor constructie en sluiting van de Stormvloedkering in 1986 kwam ongeveer 1200 ha klein zeegras voor in de Zeeuwse wateren, maar tegenwoordig resteert daarvan nog maar 75 ha (zie www.zeegras.nl). Voornaamste reden van de achteruitgang is waarschijnlijk een toegenomen zoutgehalte (de Jong *et al.* 2005), maar ook andere invloeden zoals een paar strenge winters in de tachtiger en negentiger jaren, of gewijzigde factoren onder invloed van de stormvloedkering, kunnen een rol hebben gespeeld. Buiten de Zeeuwse kustwateren komt de soort alleen nog voor op enkele plekken in de Waddenzee (voor meer informatie, zie de site www.zeegras.nl van Rijkswaterstaat).

Bij de dijkwerkzaamheden wordt mitigatie¹ beoogd omdat ingrepen volgens EU-regelgeving geen significant effect mogen hebben op zeegrasvelden. In voorbereidende plannen voor de dijkwerkzaamheden is ervan uitgegaan dat <1% vernietiging geen significant effect is. De opdrachtgever wil mitigatiemaatregelen nemen om aan de veilige kant te blijven, en te zorgen dat de gevolgen in elk geval gering blijven.

Om de effecten van de werkzaamheden voor de zeegraspopulatie zo gering mogelijk te houden werd besloten om het zeegras te transplanteren vanuit de dijktrajecten waar de werkzaamheden zullen plaatsvinden, naar geschikt geachte locaties elders in de Oosterschelde. In Nederland bestaat ruime ervaring met het transplanteren van zeegras. Klein zeegras is succesvol geherintroduceerd in de westelijke Waddenzee, en heeft zich in de loop van 14 jaar langzaam maar gestaag uitgebreid. Groot zeegrasaanplanten bleken daar goed aan te slaan, maar hebben moeite met overwintering. De aanplanten waren altijd kleinschalig; de enige wat grootschaliger aanplant van groot zeegras heeft acht jaar standgehouden. Dit, en diverse terugkoppellingsmechanismen die inmiddels bekend zijn

¹ Onder mitigatie wordt verstaan het voorkomen of reduceren van de negatieve gevolgen van een ingreep.
van zeegras, doen vermoeden dat een grotere aanplantschaal meer succesvol zou kunnen zijn voor groot zeegras (van Keulen et al. 2003, van der Heide et al. 2007, van Katwijk et al. subm.).

In de meeste gevallen wordt bij zeegrastransplantaties uitgegaan van losse scheuten, ‘plugs’ of sedimentvrije zoden (Fonseca et al., 1998; Paling et al. in press), maar uit proeven blijkt dat transplantatie van zeegrasplaggen de beste resultaten kan geven, zeker waar de waterdynamiek geprononceerd is of waar erosie parten kan spelen (Fonseca et al., 1998).

1.2 Formulering van proef & uitvoering 2007

In opdracht van Projectbureau Zeeweringen werd begin 2007 een onderzoeksplan opgesteld door medewerkers van de Radboud Universiteit in Nijmegen (RU), samen met onderzoekers van het Nederlands Instituut voor Oecologisch Onderzoek (NIOO), Rijkswaterstaat (RWS) en het Rijksinstituut voor Kust en Zee (RIKZ). In dit onderzoeksplan werd een verkennend onderzoek beschreven hoe deze mitigatie van klein zeegras in de Oosterschelde kan worden uitgevoerd. Het onderzoeksplan behelst twee proeven: i) een schelpenproef vooraf, en ii) een transplantatieproef met klein zeegras.

De schelpenproef vooraf werd uitgevoerd om te testen of een behandeling met schelpengrijs succesvol zou zijn in het omlaag brengen van de wadpier Arenicola marina populatie, en hoe dit schelpengrijs het beste kon worden aangebracht. Wadpieren concurreren met klein zeegras (Philippart, 1994), en een behandeling vooraf op de mitigatielocaties werd daarom noodzakelijk geacht. Deze proef vooraf is in april 2007 uitgevoerd door het hoveniersbedrijf BTL uit Bruinisse, onder begeleiding van medewerkers van de RU. Uit de resultaten bleek dat een laag schelpengrijs waarschijnlijk succesvol zou zijn in het omlaag brengen van de wadpierpopulatie tot acceptabele dichtheden (dwz <10-15 per vierkante meter). Ook was duidelijk dat een eenvoudige aanbrenging van een schelpengrijslaag van 7 cm dikte onder een 10 cm laag slik voldoende zou zijn om wadpieren te weren. Omdat de effectiviteit op de lange termijn niet bekend is, werden ook netten geplaatst als antiwadpiermaatregel. Behandelingen met netten zijn al vaker met succes toegepast, o.a. in Nederland, Duitsland en Denemarken; zie o.a. Hüttel, 1990; Volkenborn, 2005; Volkenborn et al., 2007; van Wesenbeeck et al., 2007.

De transplantatieproef met klein zeegras is bedoeld om inzicht te krijgen in hoe zeegrasplaggen het best kunnen worden getransplanteerd. Bij de eerste uitvoering van de proef in juni 2007 door BTL uit Bruinisse, werden zeegrasplaggen gerooid bij een van tevoren geselecteerde donorlocatie op Schouwen-Duiveland (westelijke gedeelte van de Slikken van Viane), en vervolgens gelegd op twee mitigatielocaties op het eiland Tholen (Krabbenkreek Zuid en Slikken van de Dortsman Noord; Figuur 1).

De eerste mitigatielocatie (Krabbenkreek) voor de proef van 2007 is beschut, en daar werden wadpierpopulaties op twee manieren bestreden: met een schelpengrijsbehandeling en met netten. De tweede mitigatielocatie (Dortsman Noord) is blootgesteld aan weer, golven en stromingen; daar werd alléén een schelpenbehandeling toegepast omdat netten mogelijk zouden losraken bij overmatige erosie. Op beide plekken
werd ook een aantal onbehandelde plots beplant om te zien of de transplantaties misschien toch konden uitlopen zonder antiwadpierbehandeling.

1.3 Verlenging van proef 2008

1.4 Vergunningen

De Oosterschelde heeft een beschermde status (o.a. EU Natura 2000), en als zodanig mogen activiteiten zoals de huidige proef alleen na vergunningverlening door de provincie worden uitgevoerd.

Figuur 1 Kaart van Oosterschelde, met donor- en mitigatielocaties 2007-2008
2 Methode aanplant 2008

2.1 Methodiek volgens opdrachtomschrijving 2008

Donorlocaties
Voor het verplaatsen van zeebras wordt gebruik gemaakt van zeebras op de werkstroken van de trajecten Viane Oost en Goesse Sas. Op aanwijzen van de begeleider dient het zeebras te worden opgenomen, een en ander afhankelijk van de bedekkinggraad. Deze donorlocaties zijn vanaf de dijk goed bereikbaar voor materieel.

Op de donorlocaties dient in totaal 756 m² aan zoden zeebras te worden opgenomen. De zoden dienen te worden opgenomen in delen van 0,75 bij 1,50 meter (halve zode, één zode is 1,50 bij 1,50 meter), dik 10 cm en te worden geladen in een daartoe geschikte aanhangwagen. De zoden dienen te worden afgedekt met doeken die vochtig dienen te worden gehouden met water. De zoden mogen niet op elkaar worden geplaatst, er dient – middels kratten of een andere methode – tussenruimte te worden gelaten zodat de zoden eenvoudig kunnen worden gelost.

Vanaf de donorlocatie dient transport zo snel mogelijk plaats te vinden naar de mitigatielocaties (er mogen ten hoogste twee hoogwaters tussen opnemen en plaatsen zitten). Een deel van het zeebras dient te worden overgeladen op een boot (plattbodem) welke geschikt dient te zijn om te varen naar de mitigatielocatie, Krabbenkreek Zuid, daar wachten op laagwater alvorens kan worden begonnen met de plaatsing (de plattbodem laten drooggallen). Het resterende deel zeebras kan per as worden vervoerd naar mitigatielocatie Dortsman Noord.

Op de donorlocaties dient na het opnemen van de zoden het slik richting dijk gefatsoeneerd te worden middels uitvlikken.

Mitigatielocaties
Op de Krabbenkreek Zuid dienen de zoden zeebras, de schelpen en het materieel per boot te worden aangevoerd. Het personeel mag zich – het liefst in één groep – verplaatsen via de schapendam.

Bij de Dortsman Noord dienen de zoden zeebras per as te worden aangevoerd. De locatie op het slik is bereikbaar via de glooiing waarvoor weinig kreukelberm aanwezig is.

Op de plek waar de zoden geplaatst worden (inclusief behandelmethode) dient eerst de bovenste laag te worden verwijderd, zodanig dat de zoden na plaatsing de eerste twee maanden niet verzinken ten opzichte van het omringende sediment, maar ook niet boven het sediment uitsteken (een verhoging van 1 tot 5 mm direct na plaatsing is acceptabel). Het aanbrengen gebeurt op circa NAP +0.30 m.
Begonnen dient te worden op het verste punt vanaf de transportroute, om niet door eerdere gerealiseerde delen heen te rijden. Bestaande zeegrasvelden dienen te worden ontzien.

Methode van plaatsing
In totaal 112 zoden (252 m²) dienen te worden geplaatst in totaal 16 plots (figuur 2). Deze plots dienen te worden uitgezet op de locatie (met circa 5 meter vrije ruimte tussen de plots aan alle zijden; zie figuur 2). In verband met de droogvalduur van 50 tot 70%, welke van belang is voor zeegras, zullen de plots waarschijnlijk in een strook komen te liggen. Op aanwijzen van de begeleider dienen een tweetal behandelmethoden (schelpen of geen behandeling) door elkaar te worden aangebracht. Elke plot kent één behandelmethode.

Er dienen 36 zoden in 4 plots van 9 zoden (81 m²) “veilig” (volgens figuur 3) op een schelpenlaag te worden geplaatst. De schelpenlaag moet worden aangebracht over een oppervlakte van 15,50 bij 15,50 meter, de zoden dienen in het centrum van deze behandeling te worden gesitueerd. De schelpenlaag moet op 20 cm diepte worden ingegraven en dient een laag dikte te hebben van minimaal 7 cm. Het terug te brengen slik mag een maximale laag dikte hebben van 10 cm.

Er dienen 20 zoden in 4 plots van 5 zoden (45 m²) “kansrijk” (volgens figuur 3) op een schelpenlaag te worden geplaatst. De schelpenlaag dient te worden aangebracht over een oppervlakte van 10 bij 10 meter, de zoden dienen in het centrum van deze behandeling te worden gesitueerd.
worden gesitueerd. De schelpenlaag dient op 20 cm diepte te worden ingegraven en dient
een laagdikte te hebben van minimaal 7 cm. Het terug te brengen slik mag een maximale
laagdikte hebben van 10 cm.

Er dienen 36 zoden in 4 plots van 9 zoden (81 m²) “veilig” (volgens figuur 3) te worden
geplaatst. Hierbij dient géén voorbehandeling plaats te vinden. De zoden dienen in het
centrum van de plot van 15,50 bij 15,50 meter te worden geplaatst. Buiten de zoden hoef
niet te worden ontgraven.

Er dienen 20 zoden in 4 plots van 5 zoden (45 m²) “kansrijk” (volgens figuur 3) te worden
geplaatst. Hierbij dient géén voorbehandeling plaats te vinden. De zoden dienen in het
centrum van de plot van 10 bij 10 meter te worden geplaatst. Buiten de zoden hoeft niet te
worden ontgraven.

Op de hoekpunten van de behandeling dienen per plot FSC-houten piketpaaltjes te worden
geplaatst van minimaal 1,00 meter lengte om de plot te kunnen terugvinden. Eén paaltje
per plot dient in overleg met de begeleider te worden voorzien van een bordje met daarop
een nummer.

Losse planten

Bij het opnemen van de zoden zeegras gaat plantmateriaal verloren. Dit dient te worden
verzameld, losjes uitgespoeld in zout water om sediment kwijt te raken en met alleen
aanhangend water in plastic zakken in kratten te worden vervoerd naar de mitigatielocatie
Krabbenkreek Noord (figuur 4). Direct nadat de planten in de zakken zijn gedaan dienen
deze niet in contact te komen met direct zonlicht, dit geldt zowel gedurende opslag en
transport, dit om het oplopen van de temperatuur en de daarmee samenhangende
uitdroging te voorkomen. De planten mogen maximaal 24 uur in een zakje bewaard worden
alvorens te worden geplaat en de bewaartemperatuur dient beneden de 25 °C te blijven.

Op de mitigatielocatie dienen 225 plantjes te worden geplant met een tussenruimte van 10
cm (dichtheid 100 plantjes per m²) te worden gepoot per plot van 5 bij 5 meter, op
aanwijzen van de begeleider middels het handmatig planten van de restanten. In totaal
worden 4 plots van 5 bij 5 meter aangelegd die vooraf een schelpenbehandeling hebben
gehad. Daarnaast worden 4 onbehandelde plots aangelegd zonder schelpenbehandeling,
waarin eveneens 225 losse plantjes zijn gepoot per plot. Er dient een afstand van 5 meter
ten te worden gehouden onderling tussen de plots.

Op de hoekpunten van de behandeling dienen per plot FSC-houten piketpaaltjes te worden
geplaatst van minimaal 1,00 meter lengte om de plot te kunnen terugvinden. Eén paaltje
per plot dient in overleg met de begeleider te worden voorzien van een bordje met daarop
een nummer.
2.2 Verschil in aanpak: 2007 en 2008

Algemeen

Donorlocaties. Op 8-9 mei 2008 werden locaties Goesse Sas, Viane Oost en Viane West door RU bezocht om geschiktheid als donorlocatie voor 2008 te toetsen. Alle drie locaties werden geschikt gevonden, maar uiteindelijk werd uit praktische overweging besloten alleen Viane Oost en Viane West te gebruiken (Figuur 1). De Slikken van Viane liggen gunstig ten opzichte van 3 van de 4 locaties (Krabbenkreek Noord en –Zuid, en Dortsman Noord), bovendien was Viane West al ten dele gerood in 2007. Een bijkomend voordeel is dat na het rooien van Viane Oost en -West de toekomstige werkstroken van het dijktraject Oosterlandpolder (uitvoering in het kader van Zeeweringen in 2010) geheel leeg zijn.

Losse planten. Omdat er bij het rooien redelijk veel losse planten verloren leken te gaan (deze vallen bijv. van de schep of van de rand van een volle kist) werd besloten om een aantal kleine plots te beplanten met losse planten. In het verleden en elders is met losse planten gewerkt in plaats van met zoden (zie inleiding), en dat heeft vaker tot goede resultaten geleid. Besloten werd activiteiten met losse planten te beperken tot één locatie (Krabbenkreek Noord), omdat het vooral gaat om planten die anders verloren zouden gaan te gebruiken, en zo enige ervaring op te doen met losse planten in de Oosterschelde.

Aanpak BTL

Kisten voor plaggenvervoer. In 2007 werden houten kisten gebruikt om plaggen in te vervoeren vanaf de donorlocatie. Deze waren van multiplex en voorzien van een laag landbouwplastic aan de binnenzijde. Echter, deze constructie had zijn beperkingen, want het hout nam vocht op, waardoor de kisten kromtrokken en snel uit elkaar vielen. Daarnaast bleef het plastic niet zitten en was het vaak moeilijk om de plaggen uit een stroeve houten kist te verwijderen. Uiteindelijk ging veel tijd zitten in het dagelijks opnieuw in elkaar zetten van de kisten, en werden veel plaggen onnodig beschadigd. BTL heeft daarom besloten dit jaar zelf te investeren in het laten fabriceren van kisten van extra sterk industrieel kunststof (foto 1). Deze blijken het uitstekend te doen: ze zijn sterk genoeg om het rooien, laden en lossen zonder beschadiging te doorstaan, en is het rooien een stuk gemakkelijker dan met houten kisten.
Piketpalen en nummering. In 2007 werden de hoeken van de plots gemarkeerd met betonijzers en bamboepalen. Echter, de palen waren snel verdwenen en de ijzers waren slecht te lokaliseren, waardoor de omtrekken van de plots na oktober slecht te zien waren. Er is daarom in overleg met Projectbureau Zeewering besloten de hoeken van vorig jaar in december 2007 te voorzien van piketpalen, en de nieuwe aanplant van 2008 bij aanvang al te voorzien van piketpalen. De nummering van 2007 (geplastificeerde papierennummers op A5 grootte) was ook snel verdwenen, en werd besloten één paal per plot te voorzien van een duurzaam nummer.

Behandeling van plots. Vorig jaar werden alle plots over de volledige oppervlakte uitgegraven (10 bij 10 m voor kansrijke plots, 15 bij 15 m voor veilige plots) voor het leggen van pluggen, en daarna weer aangevuld met sediment. Dit jaar is besloten dat dit alleen hoeft te gebeuren bij de schelpenplots, en dat in de onbehandelde plots alleen worden uitgegraven op de plaats waar de pluggen worden gelegd.
Aanpak RU
Junior onderzoeker full-time voor monitoring. Vorig jaar werd door RU een AIO aangesteld op part-time basis voor de monitoring, met ondersteuning van een assistent tijdens veldbezoeken. Echter, omdat er in 2008 twee extra locaties plus in totaal 64 extra plots worden aangelegd werd besloten een full-time AIO aan te stellen, en daarnaast een full-time assistent in dienst te nemen gedurende de drukste periode (dwz van eind mei tot eind september 2008).

RTK-GPS voor oppervlakte en uitbreiding. Vorig jaar werden oppervlaktes en uitbreidingen van zeebras in en om de patches door de onderzoekers gemonitord op basis van schattingen. Dit ging in 2007 wel goed, maar als er in 2008 sprake was geweest van veel uitbreiding ten opzichte van 2007, dan was dit moeilijk te volgen geweest. Daarom werd besloten om alle patches tijdens de nulmeting nauwkeurig in te meten met behulp van een RTK-GPS, met een nauwkeurigheid van 1-2 cm. Daarvoor werd een training gevolgd in het gebruik van de meetapparatuur en in het omgaan met de interface software. Vanwege de kosten van het RTK-GPS meetapparatuur wordt dit per dag gehuurd van een gespecialiseerd bedrijf.
3 Uitvoering op donorlocaties

3.1 Praktische uitvoering door BTL

Rooiwerkzaamheden door BTL zijn op dinsdag 27 mei 2008 begonnen op Viane Oost, waar op dat moment het zeegras een gemiddelde dichtheid had van tussen de 5-10%. Dit is laag, maar natuurlijke populaties elders bleken door een koud voorjaar een trage start te hebben en overal was de dichtheid lager dan normaal.

De rooiwerkzaamheden op Viane Oost werden geëindigd op 16 juni, waarna men op 17 juni doorging met rooien op Viane West tot 24 juni. In totaal is ongeveer 1030 m² geoogst, waarvan 97% vervolgens is gelegd op de mitigatielocaties. Een paar plaggen bleek niet te voldoen (door te lage bedekking), of gingen onderweg verloren.

Zoals gespecificeerd werden zoden van 0,75 bij 1,5 meter en ongeveer 10 cm dikte gerooid met behulp van een grote kraan met hulpstuk, dat vorig jaar werd ontwikkeld en goed bleek te functioneren². Plaggen werden geoogst en vervoerd in plastic kisten met een open voorzijde. Tijdens vervoer werden ze afgedekt met dikke stoffen doeken en natgehouden met water. Vervoer gebeurde met behulp van een tractor en aanhangwagen (foto 2), of in het geval van de Krabbenkreek Zuid, met een platbodem boot vanuit de haven van St. Philipsland. Kisten werden opgestapeld, maar werden ondersteund met balken zodat de zoden niet werden geplet.

Zoden werden doorgaans hetzelfde dag gelegd, maar waar dit niet mogelijk was werden de kisten (met zoden) op de slikken neergezet zodat ze werden natgehouden door het opkomende tij. Na het rooien van de zoden zijn de slikken richting dijk gefatsoeneerd middels uitvlakken, waarbij de zone >5m vanuit de teen van de dijk nog is voorzien van een schelpengruislaag als antiwadpierbehandeling (foto 3).

Men kan concluderen dat het rooien en vervoer goed is verlopen, enerzijds dankzij veel ervaring opgedaan in 2007 (er werd met dezelfde team gewerkt), anderzijds omdat de nieuwe kunststoffen kisten beter functioneerden waardoor er minder mechanische beschadiging en uitdroging optrad.

Foto 2 Vervoer van plaggen – in kunststoffen kisten afgedekt met natte doeken
Links de kraan met het rooiarm, rechts de kraan voor het verplaatsen van de kisten. Viane West, 16 juni 2008.

Foto 3 Herstel van slikken Viane Oost na het rooien
3.2 Kwesties op donorlocatie & tijdens vervoer

Zoals eerder vermeld was de dichtheid van het zeegras minder dan in 2007 - Viane Oost had een bedekking van 5-10% en Viane West 25-30% (gemiddeld). Dit is zeker ten dele te wijten aan het groeiseizoen, dat door de lang aanhoudende kou pas laat op gang is gekomen waardoor alle zeegraspopulaties in de Oosterschelde het minder leken te doen dan in 2007. De verwachting is echter dat dit wel bij zal trekken in de loop van 2008. Gegevens van Jacobs (1983) van de Krabbenkreek Zuid uit 1978 laten een soortgelijke late start zien, met een bedekking van minder dan 10% tot ver in juli, maar met een herstel en een maximale groei in september (figuur 4).

![Figuur 4 Zeegrasgroei in Krabbenkreek Zuid 1978-79](gebaseerd op gegevens van Jacobs, 1983)

De nieuwe kunststof kisten voldoen uitstekend: ze zijn steviger waardoor er minder mechanische schade aan de pluggen optreedt, en omdat ze geen water doorlaten (behalve uit de open voorzijde) drogen de pluggen minder snel uit dan met de houten kisten van vorig jaar. Ze gaan langer mee, en hoeven niet te worden gerepareerd tussen de bedrijven door zoals vorig jaar het geval was. Een nadeel is echter wel dat de lege kunststof kisten een stuk zwaarder zijn dan de houten kisten waardoor er twee man nodig zijn om ze in de rooiarm te plaatsen.
Door een misverstand is in Viane Oost tijdens de eerste 1-2 dagen iets verder uit de dijk geoogst dan is toegestaan: 12 in plaats van 10 meter. Dit is tijdens de tweede rooidag gecorrigeerd en is verder niet meer opgetreden.

Op 10 juni is enige lichte schade aan de dijkbekleding bij Viane Oost ontstaan door toedoen van rooiwerkzaamheden met de grote kraan. Over een aantal vierkante meters zijn toen de betonnen bekledingselementen enkele decimeters weggezakt. Dit is echter dezelfde dag nog door BTL hersteld, en de volgende dag kon men nauwelijks een spoor hiervan ontdekken.

De grasbedekking op de route over de dijk bij Viane Oost is door het vele verkeer flink beschadigd. Achteraf is dit – waar nodig – afgevlakt voor BTL, en de hele route is opnieuw ingezaaaid met graszaad.

Als het niet lukte om alle aangevoerde plaggen tijdig te leggen in de plots, dan werden deze met de kunststoffen bakken op de slikken gezet om zo tijdens hoogwater te worden overspoeld. Dit was enerzijds gunstig omdat de plaggen zo niet zouden uitdrogen. Anderzijds was het soms nadelig, want als de bakken niet met de open kant tegen elkaar werden geplaatst dan werd vaak een deel van de plag uit de bak gespoeld. Soms was door erosie zelfs bijna de helft van een plag verdwenen nadat het gedurende één tij op de slikken had gestaan. Na vermelding hiervan werd er beter op gelet dat de bakken tegen elkaar aan stonden, wat de meeste erosie voorkwam.

Foto 4 Erosie uit bak met zeegras na één tij op de slikken
Foto 5 Luchtfoto van Viane West donorlocatie

Luchtfoto van donorlocatie Viane West (17 juni 2008), genomen door Dhr. Ed Stikvoort (Provincie Zeeland) tijdens de jaarlijkse zeehondentellingen.
4 Uitvoering op mitigatielocaties

4.1 Praktische uitvoering door BTL

Uitvoering op de mitigatielocaties begon op dinsdag 27 mei met het uitzetten en uitgraven van plots op Krabbenkreek Noord, en eindigde op woensdag 25 juni met de laatste werkzaamheden op de Dortsman Noord. In totaal zijn conform de opdrachtsomschrijving 16 plots aangelegd per locatie: Krabbenkreek Noord, Krabbenkreek Zuid, Rattekaai en Dortsman Noord. Op iedere locatie waren 8 plots aangelegd met een schelpenbehandeling en 8 onbehandelde plots; de helft van iedere behandeling (4 plots) werd uitgevoerd in een zogenaamde ‘veilige’ opstelling met 9 patches (foto 6), en de andere helft in een zogenaamde ‘kansrijke’ opstelling met 5 patches (zie figuren 2 en 3).

Op de locatie Krabbenkreek Noord werd eveneens 8 kleine plots (5 bij 5 m) aangelegd met een aanplant van losse planten: 225 in een centrale patch van 1,5 bij 1,5 meter (foto 7). De helft van de losse plant plots kreeg een schelpenbehandeling, de andere helft was onbehandeld. Dit is aangelegd in de opstelling zoals aangegeven in figuur 5.

De aanleg werd uitgevoerd op de mitigatielocatie met behulp van drie kranen (één grote kraan, twee kleinere) en twee rupsdumpers (één groot, één klein). De grote kraan werd gebruikt voor het leggen van de plagen, terwijl het kleinere werden gebruikt voor het uitgraven en weer aanvullen van de plots. De rupsdumpers werden gebruikt voor aan- en afvoer van de zeegraskisten, en voor de aanvoer van schelpen. Naast één persoon per voertuig waren continu twee mannen werkzaam bij het lossen van de plagen uit de kisten. Als er niet werd gelost waren zij bezig met het uitzetten van de plots, en het verwijderen van slijkgras dat werd meegevoerd in de zeegrasplagen. Er werden piketpalen op alle hoekpunten van de plots geplaatst, waarvan één werd voorzien van een duurzaam plastic nummer (foto 8). Om de exacte plaats van neerleggen aan te geven werd tijdens de aanleg tijdelijk piketpalen gezet op de hoekpunten van de centrale plaats waar de patches werden gelegd.

Figuur 5 Indeling van plots op Krabbenkreek Noord, met losse planten (L)
V = veilig; K = kansrijk; blanco = onbehandeld; schelp = schelpenbehandeling
Foto 6 Aanleg van veili ge plot op Krabbenkreek Noord, 29 mei 2008

Foto 7 Plot 17 met losse planten op Krabbenkreek Noord
Foto 8 Piketpaal met duurzame nummering, Rattekaai Plot 16

Foto 9 Luchtfoto van werkzaamheden op de Dortsman Noord
Luchtfoto van mitigatilocatie Dortsman Noord (17 juni 2008), genomen door Dhr. Ed Stikvoort (Provincie Zeeland) tijdens de jaarlijkse zeehondentellingen.
4.2 Kwesties op mitigatielocaties

In de week voor aanvang van de werkzaamheden op de mitigatielocaties werden de werkvelden op de vier locaties uitgezet door Dhr. Bert Boer van de meetdienst van RWS. Echter, door een misverstand werd een veld tussen +0,50m en +0,80m boven NAP uitgezet, wat voor klein zeegras te hoog is. Uit gegevens uit de Oosterschelde (de Jong & de Jonge, 1989; figuur 6) blijkt dat klein zeegras van nature vooral voorkomt tussen -0,5m en +0,8m NAP, met een optimum rond de +0,2 - +0,3m NAP. Op 26 en 27 mei werden de werkvlakken daarom opnieuw uitgezet, en wel tussen de +0,3 en +0,5m NAP.

Figuur 6 Hoogteverspreiding klein zeegras in de Oosterschelde

Werkzaamheden op de mitigatielocaties verliepen de eerste dagen vrij traag vanwege het ontbreken van een voorman bij het team van BTL. Deze werd pas op 29 mei aan het team op de Krabbenkreek Noord toegevoegd, maar daarna verliep het aanleggen van de plots volgens schema, waarbij vijf dagen nodig waren per locatie. Gemiddeld waren er 4 dagen per locatie nodig voor de aanleg, plus een vijfde dag voor afrondingswerkzaamheden zoals het aanvullen van de laatste plots, opruimen van restanten schelpen en afvlakken van rijsporen.

De kwaliteit van de gelegde plaggen is in het algemeen goed, maar het bedekkingspercentage was relatief laag (gemiddeld 10%, variërend van 1-40%) vergeleken met vorig jaar (gemiddeld 32%). Zoals eerder aangegeven ligt dit aan de lagere bedekking in Viane Oost vergeleken met Viane West, en aan de lagere temperaturen in het voorjaar van 2008 waardoor de groei langzaam op gang kwam.

Schelpen die nodig waren voor de schelpenbehandelingen waren moeilijker aan te schaffen dan in 2007. Omdat dit afgelopen jaar veel werden gebruikt in de wegenbouw in Zeeland was er een relatieve schaarste op de markt ontstaan. BTL kon daarom niet de gewenste kleinere fractie (3-15 mm zoals in 2007) aanschaffen, maar was gedwongen een grovere fractie te nemen (0-40 mm). Echter, door een paar keer over de schelpenlaag te rijden werd de fractie gefragmenteerd en de verwachting is dat dit even effectief zal zijn. Contractueel gezien waren er overigens geen eisen gesteld wat betreft de schelpenfractie.
De losse planten lijken het in eerste instantie niet goed te doen: na een week waren meer dan de helft van alle planten alweer verdwenen, waarschijn losgeslagen door de stroming en golfslag. Gemiddeld waren er toen nog maar <100 plantjes per plot, in plaats van 225.

Praktische problemen bij uitvoering

Zacht sediment. Nadat vorig jaar problemen waren ontstaan in de Krabbenkreek Zuid met het wegzakken van een kraan op dag één was besloten dit jaar de sedimenten van tevoren te testen, en wel in de Rattekaai, waar bekend is dat er zachte lagen zijn. BTL had vooraf de slikken getest en vond dat deze stevig genoeg waren voor de werkzaamheden. Echter, tijdens de uitvoering bleken de lagen daar toch aan de zachte kant te zijn, waarbij vooral bij de kranen problemen ontstonden, maar ook de rupsdumpers lieten diepe sporen achter en kwamen zelfs af en toe vast te zitten als ze waren volgeladen met schelpen. Problemen met het wegzakken bleken ook afhankelijk te zijn van de weersomstandigheden: als het veel regende waren de slikken verzadigd met water waardoor er eerder een slurrie ontstond bij werkzaamheden en het materieel eerder wegzakte. Op de zachte slikken moest met ook meer schelpen plaatsen voor de schelpenbehandeling, omdat de schelpen dieper wegzakte – zo werd in de Rattekaai ongeveer 25% meer schelpen gebruikt dan oorspronkelijk was geraamd.

Foto 10 Diepe sporen in de zachte slikken van de Rattekaai, 3 juni 2008

Schade door rijden van materieel. Doorgaans waren er geen problemen met het rijden van materieel, en is de schade op de meeste plaatsen tot een minimum beperkt. Echter, bij Krabbenkreek Noord is er met een kraan dwars door grasland op de dijk gereden, en op de Dortsman Noord is een rupsdumper per ongeluk dwars door de natuurlijke zeegrasvelden gereden (zichtbaar links op foto 9). In beide gevallen waren de meeste aanwezigen op de hoogte van waar men wel of niet mocht rijden, maar was dit niet doorgegeven aan de chauffeur in kwestie. Er is voorgesteld deze problemen in de toekomst te beperken door bij ieder nieuwe locatie vooraf een kleine werkbespreking te organiseren met het veldteam.
Olielekkage. Op de slikken van de Dortsman Noord was op vrijdag 20 juni sprake van een olielekkage uit een gesprongen leiding van één van de kranen – hierbij kwam ongeveer 10-15 liter olie op de slikken terecht. Conform de bepalingen in de vergunning is het verontreinigde slib afgevoerd en verwerkt door BTL, en waren er achteraf geen zichtbare sporen aanwezig op de slikken.

Erosie aan plot. Plot nummer 1 in de Krabbenkreek Noord is aangelegd middenin een ondiepe geul, waarin een redelijke stroming ontstaat bij eb en vloed. Na een paar weken was er al sprake van een flinke erosie in de plot, en was zeker de helft van de patches hierdoor aangetast. De verwachting is dat deze plot het minder goed zal doen vanwege deze extra erosie, dat vermeden had kunnen worden door de plot iets te verschuiven naar een hoger gelegen locatie.

Te lang doorwerken. Een paar keer heeft de BTL veldteam te lang doorgewerkt waardoor er problemen zijn ontstaan in verband met het opkomende water. Eén keer in de Krabbenkreek Noord heeft men daardoor op een andere locatie van de slikken moeten rijden (de dijk op) dan normaal het geval was, waardoor een kleine schor licht is beschadigd. Een tweede keer (op de Rattekaai) heeft men een aantal rijplaten en zeegrasbakken (tijdelijk) verloren toen deze vanaf de rupsdumper in het snel opgekomen water vielen. In het laatst geval was men gedwongen 's avonds bij laag water op zoek te gaan naar de verloren platen en bakken. In beide gevallen was het een kwestie van het opkomende water niet op tijd in de gaten hebben.

Kwaliteit van gelegde plaggen. De plaggen die dit jaar werden gelegd kwamen vaak gehavender uit de kisten dan vorig jaar, ondanks het feit dat de kunststof kisten meer bescherming bieden dan de houten kisten van 2007. Dit komt waarschijnlijk omdat het substraat van Viane Oost zanderiger is dan dat van Viane West, waardoor de plaggen eerder de neiging hadden uit elkaar te vallen.

Afwijken van opdrachtomschrijving

Volgorde van werkzaamheden op de mitigatielocaties. In de opdrachtomschrijving was de volgorde van de mitigatielocatie aangegeven als: Krabbenkreek Zuid, Krabbenkreek Noord, Rattekaai en Dortsman Noord. Echter, gedurende week één (26-30 mei) waaide een sterke wind (windkracht 6-7) waardoor het onverantwoord werd geacht met de platbodem uit te varen – dit zou onnodig veel risico's met zich meebrengen voor personeel en materieel. Omdat men het zeegras niet langer wilde laten overrijden is in overleg met Provincie Zeeland besloten met Krabbenkreek Noord te beginnen, en is de uitvoering aangepast als volgt: Krabbenkreek Noord, Rattekaai, Krabbenkreek Zuid en Dortsman Noord.

Piketpalen. In de eerste ontwerp van de opdrachtomschrijving werd bepaald dat de piketpalen voor de hoekpunten van de plots een minimale lengte van 0,75m moesten hebben, maar in de eindversie werd dit vastgesteld op 1,00 m. BTL heeft echter hardhouten piketpalen van 0,67 m gebruikt. Vastgesteld in een werkoverleg is dat Projectbureau Zeeweringen hiermee akkoord gaat, maar dat de eventuele risico's die daaruit voortvloeien (eerder verdwijnen en moeten vervangen van palen) door BTL worden gedragen.
5 Nulmeting en monitoring

Tijdens de transplantatieperiode (26 mei – 25 juni 2008) is gelijk de nulmeting uitgevoerd op alle locaties en is de basis gelegd voor de monitoring. Er werden dezelfde formulieren gebruikt als vorig jaar, en dezelfde parameters zijn gemeten (zie eindrapportage van maart 2008). In de eerste week werden monitoringen uitgevoerd samen met het RU staflid dat dit vorig jaar heeft uitgevoerd, om te zorgen dat dit jaar de uitvoering op identieke wijze gebeurt.

Naast de gebruikelijke parameters werden ook foto’s gemaakt van alle individuele patches, en werden het zeegras ingemeten met behulp van een Trimble RTK-GPS (figuur 7). Dit gebeurde met een nauwkeurigheid van 1-2 cm in de x-y richtingen. Afdrukken van deze kaarten werden later gebruikt om hierin de zeegras bedekkingspercentages aan te geven.

Verder werden poriënvochtmonsters genomen om redoxpotentiaal te meten, en werden scheutmonsters genomen van zeegrassen om suiker/zetmeelgehaltes te toetsen. Daarnaast werden sedimentmonsters genomen voor metingen van nutriënten (N, P) and korrelgroottes.

Figuur 7 RTK-GPS metingen van zeegras patches Krabbenkreek Noord
Vlnr: van patch naar plot, naar hele locatie; piketpalen zijn aangegeven met rondjes.
6 Conclusies

6.1 Donorlocaties

1. Er is gedurende 4,5 weken ruime duizend vierkante meter (1030 m²) zeegras gerood op de slikken van Viane Oost (27 mei-13 juni) en Viane West (16-23 juni). Hiervan is 97% vervolgens succesvol getransplanteerd op de vier mitigatielocaties. Dit is conform wat er van tevoren was beraamd in de opdrachtverlening.

3. De nieuwe kunststoffen bakken voor het rooien en vervoer van zeegrasplaggen lijken uitstekend te voldoen. Ze zijn duurzaam en vergen geen onderhoud, en tegelijk houden ze meer vocht vast waardoor de plaggen minder uitdrogen, ondanks dat ze een open voorkant hebben. Vorig jaar ging veel tijd verloren aan onderhoud van houten bakken, en dat is dit jaar niet het geval geweest.

5. Rooien van plaggen gaat snel, en is bij het team van BTL een ware routine. Het is daarom in 2008 nooit een beperkende factor in het transplantatieproces geweest. Het enige wat wel enige tijd vergt is het vervoer over de weg (met tractor en aanhangwagen) en met een platbodem (dit jaar vanuit de haven van St. Philipsland naar Krabbenkreek Zuid).

6. Na het rooien van de zeegrasplaggen is een schelpenlaag aangebracht in de zone > 5m vanaf de teen van de dijk, en zijn de slikken geëgaliseerd. Dit biedt kansen voor herkolonisatie vanuit aangrenzende overgebleven zeegrasvelden (op afstand >10-15m vanaf de teen van de dijk), maar ook voor uitbreiding van aanwezige slijkgraspollen. Dit herstel van de slikken is goed uitgevoerd, en op een geringe afstand is na enkele weken nog maar weinig te zien van de rooierwerkzaamheden.
6.2 Mitigatielocaties

1. Transplantatie van zeegrasplaggen van de Slikken van Viane naar de mitigatielocaties lijkt goed te zijn gelukt. Er is in totaal ruim 1000 m² verpoot gedurende 4,5 weken, en de meeste plaggen lijken te zijn aangeslagen.

2. De vier mitigatielocaties zijn aangelegd in de volgorde: Krabbenkreek Noord, Rattekaai, Krabbenkreek Zuid en Dortsman Noord. Aanleg is conform de bepalingen in de opdrachtverlening, met per locatie 16 plots (64 plots bij elkaar, met ieder 252 m² aan plaggen), waarvan 8 met een schelpenbehandeling en 8 zonder schelpen. Van iedere reeks van 8 plots zijn 4 uitgevoerd volgens de veilige opstelling en 4 in de kansrijke opstelling.

3. Uitvoering op de mitigatielocatie blijft de beperkende factor, want het aanleggen en uitgraven van plots, leggen van plaggen, en weer aanvullen met sediment vergt bij elkaar veel meer tijd dan het rooiproces. Het proces liep aanzienlijk trager in het begin (26-28 mei), toen er geen voorman bij het veldteam was. Nadat deze ervaren kracht aan het team werd toegevoegd op dag vier verliep het pootproces op de mitigatielocatie ook veel sneller. Het blijkt noodzakelijk de ervaring van vorig jaar te benutten op de mitigatielocatie, omdat het pootproces anders te traag blijft lopen.

4. De kwaliteit van de gelegde plaggen was minder dan in 2007, niet alleen door de geringere bedekking met zeegras (zie punt 2 onder donorlocatie), maar ook hoe de plaggen werden gelegd. Dit kwam voornamelijk omdat het substraat van Viane Oost meer zand bevat dan van Viane West, waardoor ze eerder uit elkaar vielen en de neiging hadden in reepjes uit de bakken te vallen.

5. Naast de 64 plots met veilige/kansrijke patches bestaande uit zeegrasplaggen werden ook losse planten gepoot in de Krabbenkreek Noord. In totaal zijn 8 plots van ieder 5 bij 5 meter aangelegd met losse planten, waarbij in het midden van iedere plot 225 losse planten zijn gepoot op een onderlinge afstand van 10 cm, in een vierkant van 1,5 bij 1,5 meter. Vier van de plots met losse planten zijn vooraf behandeld met een schelpenbehandeling tegen wadpier en, terwijl de overige vier plots geen behandeling hebben gehad. Na een week waren nog maar iets meer dan 100 plantjes over per plot, en was de rest losgelagen/verdwenen, want kan betekenen dat i) of de plantjes dieper gepoot hadden moeten worden, of ii) er is teveel stroming op de slikken van Krabbenkreek Noord.

6. Rijsporen waren vooral een probleem in de Rattekaai, en ten dele ook op de Dortsman Noord, waar de slikken dicht bij de dijk een stuk achter zijn dan die 900m vanuit de dijk, waar vorig jaar werd gepoot. Na een week waren de meeste sporen echter al uitgewist, en de verwachting is dat ze na een maand nauwelijks meer zichtbaar zullen zijn.
7 Aanbevelingen

2. Bij aanvang van de werkzaamheden op een nieuwe mitigatielocatie zou een korte bijeenkomst (mini toolbox bijeenkomst) met het team een aantal van de voorgekomen problemen hebben voorkomen (bijv. het rijden door bestaande zeegrasvelden, of via grasland rijden). Dit zou een standaardaanpak moeten worden voor een eventueel vervolg in 2009 of 2010.

3. De slikken van de Rattekaai bleken voor de uitvoering een moeilijke locatie te zijn vanwege het zachte substraat, waar bovendien veel schade in de vorm van diepe rijsporen achterbleef. Bij toekomstige selectie van andere mitigatielocaties moet men het substraat beter testen van tevoren, om problemen te voorkomen, of direct aan aanvoerroutes over water denken.

8 Vooruitblik

1. Op dit moment zijn uitgevoerd:
 - Nulmeting, compleet met RTK-GPS metingen van alle plaggen
 - Uitwerking van gegevens van nulmeting <grotendeels verwerkt>

2. Monitoring:
 - 2e RTK-GPS meting wordt uitgevoerd eind augustus of begin september 2008.
 - Verdere monitoringsronden volgen dit jaar in juli, augustus, september, oktober en december.

3. Extra parameters die in 2008 worden gemeten:
 - Redox, sulfide, nutriënten (P, N) in bodemvochtmonsters van verschillende natuurlijke populaties.
 - Monstername en metingen aan sedimenten (N, P, korrelgrootte, enzovoorts) in verschillende natuurlijke populaties en op de mitigatielocaties.
 - Suiker- en zetmeelgehalte van zeegrasscheuten, waarvan monsters worden genomen in verschillende natuurlijke populaties.

5. Rapportage:
 - Tussenrapporten:
 - fase 3 november 2008
 - fase 4 eind juli 2008
 - Eindrapportage fase 5: in conceptvorm 31 augustus 2009
9 Referenties

Wim Giesen
WETLAND CONSULTANT
Mezenpad 164
7071 JT UItft
E-mail: wim.giesen@mottmac.nl

Marieke van Katwijk
ECOSCIENCE
Peter Scheerstraat 26
6525 DE Nijmegen
E-mail: M.vankatwijk@science.ru.nl