Prospects for direct cosmic ray mass measurements through the Gerasimova–Zatsepin effect

S. Lafèbre1, H. Falcke1,2, J. Hörandel1, and J. Kuijpers1

1 Department of Astrophysics, IMAPP, Radboud University, P.O. Box 9010, 6500GL Nijmegen, The Netherlands
2 Radio Observatory, Astron, Dwingeloo, P.O. Box 2, 7990AA Dwingeloo, The Netherlands

Received (date) / Accepted (date)

ABSTRACT

Context. The Solar radiation field may break apart ultra high energy cosmic nuclei, after which both remnants will be deflected in the interplanetary magnetic field in different ways. This process is known as the Gerasimova–Zatsepin effect after its discoverers.

Aims. We investigate the possibility of using the detection of the separated air showers produced by a pair of remnant particles as a way to identify the species of the original cosmic ray primary directly. Event rates for current and proposed detectors are estimated, and requirements are defined for ideal detectors of this phenomenon.

Methods. Detailed computational models of the disintegration and deflection processes for a wide range of cosmic ray primaries in the energy range of 10^{16} to 10^{20} eV are combined with sophisticated detector models to calculate realistic detection rates.

Results. The fraction of Gerasimova–Zatsepin events is found to be of the order of 10^{-5} of the cosmic ray flux, implying an intrinsic event rate of around 0.07 km$^{-2}$ sr$^{-1}$ yr$^{-1}$ in the energy range defined. Event rates in any real experiment, however, existing or under construction, will probably not exceed 10^{-2} yr$^{-1}$.

Key words. cosmic rays

1. Introduction

The mass composition of very high energy cosmic rays provides important information on their acceleration mechanisms and the compositions of their sources. Usually, however, it is only possible to make statistical, model-dependent estimates of the primary particle types from an ensemble of showers. Primary compositions are then derived from the abundances of species components in the air showers considered (Antoni et al. 2002).

An alternative mass determination makes use of the Gerasimova–Zatsepin effect (Zatsepin 1951; Gerasimova & Zatsepin 1960). In this scenario, one relies on the fact that atomic nuclei have a chance of undergoing photodisintegration in the Lorentz boosted Solar radiation field before arriving at Earth, splitting the nucleus into two parts. Due to the different rigidities of these two fragments, the deflection in the interplanetary magnetic field will be different, resulting in two separate air showers at some spatial separation, but arriving essentially at the same time and from the same direction (Medina-Tanco & Watson 1999; Epele et al. 1999). To our knowledge, no experimental detection of a Gerasimova–Zatsepin event has ever been reported.

2. The Gerasimova–Zatsepin process

The photodisintegration probability η_Z for a nucleus approaching the Solar system to undergo photodisintegration has been investigated thoroughly by Zatsepin (1951), Gerasimova & Zatsepin (1960), Medina-Tanco & Watson (1999) and Epele et al. (1999). It can be calculated by integrating its path length against photodisintegration over its trajectory. The photon energy as seen from the cosmic ray’s comoving frame is Lorentz boosted by a factor $2\gamma \cos^2(\alpha/2)$, where γ is the cosmic ray’s Lorentz factor and α is the angle between the propagation directions of photon and particle in the heliocentric frame (Gerasimova & Zatsepin 1960). Different photodisintegration reactions are possible, but by far the most likely reaction to occur, is those in which one proton or neutron is knocked out of the nucleus (Karakula & Tkaczyk 1993).

After disintegration, the charged remnants will be deflected in the interplanetary magnetic field. Since the mass/charge ratio will generally be different for the two fragments of the disintegrated nucleus, so will the amount of deflection be. The shape and strength of the magnetic field surrounding the Sun is quite complicated. Akasofu et al. (1980) have constructed a three-dimensional model which consists of four components: (i) the Solar dipole magnetic field; (ii) a large number of smaller magnetic dipoles located along an equatorial circle just inside the Sun; (iii) the field of the poloidal current system generated by the Solar unipolar induction; and (iv) the field of an extensive current disc around the Sun, lying in the ecliptic plane. The influence on the deflection of cosmic particles is dominated by the latter two components, as their contributions is larger at greater distances.

Given the discreteness of the masses of the remnants and the linear proportionality between a remnant’s mass and its energy (assuming single-nucleon emission), the mass number A of the original disintegrated particle can simply be determined by estimating the energies of the primaries of the two showers (Epele et al. 1999):

$$A = \frac{E_1 + E_2}{E_1},$$

where E_1 is the energy of the less energetic shower.
3. Detection of Gerasimova–Zatsepin events

Identifying a Gerasimova–Zatsepin pair as such requires both showers to be seen by a cosmic ray detector. Cyclotron radii for cosmic rays at energies above 10^{16} eV and magnetic field strengths $\leq 10^{-3}$ T are very large compared to the size of the Solar system, allowing us to take both remnants’ arrival directions to be equal to each other and to the original arrival direction. In order to calculate the Gerasimova–Zatsepin detection aperture for a given cosmic ray detector, let us define the separation resulting from different amounts of deflection of the two showers as the vector $\delta = (\delta_\theta, \delta_\omega)$ between the two tracks upon impact, transverse to the arrival direction (θ_0, ω_0) in the Solar reference frame. Let δ_θ be the component in the ecliptic plane and $(\phi_0, \theta_0) = (0, 0)$ in the direction of the Sun.

For an accurate description of a detector’s aperture, it is necessary to incorporate the angle at which the detector is hit by the cosmic ray particles. The angles due to daily and yearly phase of Earth, ξ_ω and ξ_ϕ, respectively, together with the latitude b and longitude l of the detector, fix the orientation of the detector with respect to the sky. The distance between the two showers δ' depends on these four angles, and affects detection rates in a non-trivial way. As the ratio δ'/δ may easily exceed a factor of 2, it is clear that projection effects cannot be neglected in our analysis.

Whether both air showers are actually detected, depends on the detector geometry as laid out on Earth. Let us define a detector-specific function $\xi(\delta)$ which describes the probability of detecting the second shower event for a given separation vector δ, under the assumption that the first shower is detected. The effective aperture A can now be calculated by integrating over ξ over the course of a year. We are also taking into account the detector’s angular sensitivity ω as a function of the zenith angle θ as observed by the detector:

$$A(\theta, E, \phi_0, \theta_0) = \frac{S_0}{\pi} \int_0^{2\pi} \int_0^{\pi} \xi(\delta') \omega(\theta, E) d\xi_\phi d\xi_\omega,$$ \hspace{1cm} (2)

where S_0 is the total area covered by the detector, and $0 \leq \omega \leq 1$. The factor $1/\pi$ serves to normalise to all sky visibility.

The absolute particle fluxes for various primary nuclei are estimated from the model presented by Hörandel (2003), which assumes

$$J_{Z}(E) = J_{0,Z} \left(\frac{E}{E_0}\right)^{\gamma_0} \left[1 + \left(\frac{E}{E_p Z}\right)^{\gamma_1} \right]^{-\gamma_2}.$$ \hspace{1cm} (3)

$J_{Z}(E)$ are the contributions of a species Z to the cosmic ray spectrum, $J_{0,Z}$ and γ_2 are constant factors for each species, $E_0 = 10^{12}$ eV, $E_p = 4.5 \cdot 10^{15}$ eV, $\gamma_1 = 1.9$ and $\gamma_2 = 1.1$. For $E \geq 10^{19}$ eV, this model underestimates the number of cosmic ray particles of very low mass in the spectrum. However, photodisintegration cross sections at the these energies are too low to be of consequence for very light nuclei. The total hadronic cosmic ray flux is

$$J(E) = \sum Z J_{Z}(E),$$ \hspace{1cm} (4)

where the summation runs over all cosmic ray particle species. In our case $2 \leq Z \leq 92$, as protons will not contribute to the Gerasimova–Zatsepin flux at all.

If $\eta_Z(E, \phi_0, \theta_0)$ is the probability for a nucleus of species Z and energy E to undergo photodisintegration along its trajectory, then the final Gerasimova–Zatsepin event rate for a given detector for particles with energies greater than E is given by

$$\Phi_{GZ}(E) = \int_0^\infty \sum Z J_{Z}(E') \left(\int \eta_Z(E', \phi_0, \theta_0) dA \right) dE',$$ \hspace{1cm} (5)

where $f_d(\phi_0, \theta_0)$ is the duty cycle of the detector, which is a constant factor in case of surface scintillators, but may depend on ϕ_0 and θ_0 for example for air fluorescence detectors, as they cannot observe during the day.

4. Results

To calculate realistic values for η_Z, a numerical model was constructed. Calculations were carried out for primary cosmic ray species from 4He to 238U, with energies ranging from 10^{16} to 10^{20} eV, the region where the photodisintegration cross section is highest. The obtained average values of η_Z for Fe, O and He are in line with earlier findings (Epel et al. 1999; Medina-Tanco & Watson 1999). The partial contribution of the heavier nuclei to the Gerasimova–Zatsepin spectrum is larger than one might expect, due to their high overall value of η_Z.

By multiplying each species’ disintegration probability by its partial flux according to Eq. 3, the total intrinsic Gerasimova–Zatsepin flux $J_{GZ}(E) = \sum Z J_{Z}(E) \int \eta_Z \cos \theta \sin \phi d\theta d\phi$ is obtained. Fig. 1 shows this flux as a function of energy. The solid line represents the absolute total flux by counting all disintegration events. For reference, the flux relative to the integral cosmic ray spectrum $J_{GZ}(E)$ is also drawn in the bottom panel, showing a maximum disintegration probability of $\eta_{GZ} \approx 10^{-4}$ near $E = 1.5 \cdot 10^{19}$ eV. The dashed line was obtained by disregarding any event with a separation larger than one Earth diameter. This line sets a hard upper flux limit for any Earth-based detector, as they cannot observe during the day.
separation of a disintegrated cosmic ray pair is expected to be proportional to the inverse of its energy.

The disintegration probability strongly depends on the arrival direction. The disintegration process favours arrival directions close to the Sun, as higher integrated photon densities boost the number of disintegrations over trajectories from this direction.

Given the complexity of the magnetic field in the Solar system, a numerical equivalent of the field was implemented and disintegrated particles were propagated accordingly. Particle trajectory deviations are largest for directions near the Sun; too large, in fact, to be detected. Therefore, counterintuitively, high parameterize the expectation value for the separation as produced in the shower (Lofar). Auger is a dense array, covering Lofar’s geometry is sparser, consisting of interconnected smaller stations with no detectors in between. Though Lofar’s aperture is much smaller at \(A = 2.2 \cdot 10^2 \text{ km}^2 \text{ sr} \), it is able to reconstruct showers with a much lower energy. Both detectors were modelled numerically to obtain accurate values for the effective aperture and Gerasimova–Zatsepin event rate. For each detector, simulations were carried out to make predictions for the final event rates \(\Phi \text{GZ}(E) \) according to four scenarios:

1. As a simple first step, we can set a hard upper limit by taking the observatory’s total aperture as effective cross section, implying \(\Phi \text{GZ}(E) = 0.45 \text{ km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1} \) for energies between \(10^{16} \) and \(10^{20} \text{ eV} \). This approach means that every event has nonzero probability of being detected, regardless of its remnants’ separation.

2. A more realistic estimate is obtained by applying the aperture function \(A \) according to Eq. 2. In this way, we include projection effects as a result of the detector’s orientation. We also apply a lower limit \(\delta_{\text{min}} \) to the separation distance; this is the minimum separation at which the detector can disentangle two showers.

3. In this scenario, a further restriction is applied by imposing a lower limit \(E_{\text{min}} \) on the more energetic shower. For the less energetic shower, an energy down to a tenth of this limit is allowed. This approach is justified by the possible implementation of a triggering system in which data for the entire detector array is stored for each trigger, allowing one to check for coincidences at a later time.

4. By applying a strict energy cut, demanding that both showers exceed the threshold energy, a less sophisticated trigger suffices. This scenario is a pessimistic assumption for detectors which are not optimised for Gerasimova–Zatsepin pair detection.

Both detectors’ \(\xi(\delta) \) functions were generated numerically from their geometries. The values for \(E_{\text{min}} = 10^{18} \text{ eV} \) for Auger and \(10^{17} \text{ eV} \) for Lofar were interpreted as Gaussian error func-

Figure 2. Probability distribution of separations for species of \(^{4}\text{He}, \, ^{16}\text{O}, \, ^{28}\text{Si}, \, ^{56}\text{Fe} \) and \(^{238}\text{U} \). Thick lines are for proton emission, thin lines denote neutron emission. Shown are expected separations for a primary of \(E = 10^{18} \text{ eV} \); for other energies, multiply \(\delta \) by \(10^{18} \text{ eV}/E \).

Figure 3. Expected integrated Gerasimova–Zatsepin detection rates for Pierre Auger (solid lines) and Lofar (dashed). Four lines are drawn for each detector, representing, from top to bottom, the theoretical upper limit for a detector of the given area; applying separation cut-offs regarding detector geometry; applying loose energy cuts; and applying strict energy cuts (see text for further explanation).
Fig. 4. Required aperture for detection of a single Gerasimova–Zatsepin event per year as a function of E_{min} for a circular detector at 45° latitude, $f_{\text{dc}} = 1$, $\theta_{\text{min}} = 60\degree$ and $\delta_{\text{min}} = 1$ km.

<table>
<thead>
<tr>
<th>Scenario 3</th>
<th>Scenario 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-6}</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>10^{0}</td>
<td>10^{1}</td>
</tr>
<tr>
<td>10^{2}</td>
<td>10^{3}</td>
</tr>
<tr>
<td>10^{4}</td>
<td>10^{5}</td>
</tr>
<tr>
<td>10^{6}</td>
<td>10^{7}</td>
</tr>
</tbody>
</table>

5. Conclusion

We have used a set of simulations to calculate in detail the rate of very high energy cosmic ray particles breaking up in the Solar magnetic field and the probability distributions of the separations of their remnants. Additionally, we have used accurate detector models to estimate realistic detection rates for this phenomenon. We have shown that current experimental setups, including the Pierre Auger Observatory, by far lack either the energy sensitivity or the area to produce any significant amount of detections of the kind, and would detect only a fraction of the Gerasimova–Zatsepin flux predicted by Epele et al. (1999) and Medina-Tanco & Watson (1999). Consequently, the prospects for any future experiment detecting the Gerasimova–Zatsepin effect are negligible.

Acknowledgements

This work is part of the research programme of the ‘Stichting voor Fundamenteel Onderzoek der Materie (swco)’, which is financially supported by the ‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek (swco)’.

References

