Measurement of the forward-backward charge asymmetry and extraction of $\sin^2 \theta_W$ in $p\bar{p} \rightarrow Z^0 / \gamma^* + X \rightarrow e^+e^- + X$ events produced at $\sqrt{s} = 1.96$ TeV

V.M. Abazov35, B. Abbott75, M. Abolins65, B.S. Acharya29, M. Adams51, T. Adams19, E. Aguilo6, S.H. Ahn31, M. Ahsan59, G.D. Alexeev36, G. Alkhazov40, A. Altun44, G. Alverson69, G.A. Alves2, M. Anastasia35, L.S. Ancu35, T. Andeen53, S. Anderson45, B. Andrieu17, M.S. Anzelc53, M. Aoki50, Y. Arnoud14, M. Arthaud18, A. Askey49, B. Asman41, G.D. Alexeev36, G. Alkhazov40, A. Alton64, G. Alverson69, G.A. Alves2, M. Anastasia35, L.S. Ancu35, T. Andeen53, S. Anderson45, B. Andrieu17, M.S. Anzelc53, M. Aoki50, Y. Arnoud14, M. Arthaud18, A. Askey49, B. Asman41.
The D0 Collaboration

1 Universidad de Buenos Aires, Buenos Aires, Argentina
2 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4 Universidade Federal do ABC, Santo André, Brazil
5 Instituto de Física Teórica, Universidade Estadual Paulista, Sao Paulo, Brazil
6 University of Alberta, Edmonton, Alberta, Canada
7 The University of British Columbia, Canada
8 York University, Toronto, Ontario, Canada
9 University of Toronto, Toronto, Ontario, Canada
10 McGill University, Montreal, Quebec, Canada
11 University of Science and Technology of China, Hefei, People’s Republic of China
12 Universidad de los Andes, Bogotá, Colombia
13 Center for Particle Physics, Charles University, Prague, Czech Republic
14 Czech Technical University, Prague, Czech Republic
15 Institute of Physics, Academia of Sciences of the Czech Republic, Prague, Czech Republic
16 Universidad San Francisco de Quito, Quito, Ecuador
17 LPC, Univ Blaise Pascal, CNRS/IN2P3, Clermont, France
18 LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, France
19 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
20 IPNHE, IN2P3/CNRS, Universités Paris VI and VII, Paris, France
21 IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
22 Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
23 University of San Francisco, Quito, Ecuador
24 Universidade Federal do ABC, Santo André, Brazil
25 Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
26 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
27 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
28 Fachbereich Physik, Universität Wuppertal, Wuppertal, Germany
29 IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
30 III. Physikalisches Institut, RWTH Aachen, Aachen, Germany
31 Physikalisches Institut, Universität Bonn, Bonn, Germany
32 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
33 Institut für Physik, Universität Mainz, Mainz, Germany
34 Ludwig-Maximilians-Universität München, München, Germany
35 Fachbereich Physik, Universität Wuppertal, Wuppertal, Germany
36 Punjab University, Chandigarh, India
37 Indian Institute of Technology, Kanpur, India
38 Delhi University, Delhi, India
39 Tata Institute of Fundamental Research, Mumbai, India
40 The D0 Collaboration
We present a measurement of the forward-backward charge asymmetry (A_{FB}) in $p\bar{p} \rightarrow Z/\gamma^* + X \rightarrow e^+e^- + X$ events at a center-of-mass energy of 1.96 TeV using 1.1 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron collider. A_{FB} is measured as a function of the invariant mass of the electron-positron pair, and found to be consistent with the standard model prediction. We use the A_{FB} measurement to extract the effective weak mixing angle $\sin^2\theta_W = 0.2326 \pm 0.0018$ (stat.) ± 0.0006 (syst.).

PACS numbers: 13.85.-t, 13.38.Dg, 12.15.Mm, 12.38.Qk
In the standard model (SM), the neutral-current couplings of the Z bosons to fermions \(f \) at tree level are defined as

\[
\frac{d\sigma}{d\cos\theta} = A(1 + \cos^2\theta) + B \cos\theta,
\]

where \(A \) and \(B \) are functions dependent on \(I_f^I, Q_f, \) and \(\sin^2\theta_W \). Events with \(\cos\theta > 0 \) are called forward events, and those with \(\cos\theta < 0 \) are called backward events.

The forward-backward charge asymmetry, \(A_{FB} \), is defined as

\[
A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B},
\]

where \(\sigma_F/B \) is the integral cross section in the forward/backward configuration. We measure \(A_{FB} \) as a function of the invariant mass of the lepton pair. To minimize the effect of the unknown transverse momentum when they are boosted into the rest frame of the lepton pair, the angular differential cross section can be written as

\[
d\sigma = \frac{d\sigma}{d\cos\theta} = \sigma_F(1 + \cos^2\theta) + \sigma_B \cos\theta,
\]

where \(\theta_W \) is the weak mixing angle, and \(\sin^2\theta_W \) is defined as the bisector of the proton beam momentum and the negative of the anti-proton beam momentum. The presence of both vector and axial-vector couplings, \(g^V_\mu = I_\mu^V - 2Q_f \sin^2\theta_W \) and \(g^A_\mu = I_\mu^A \). Here \(I_\mu^V \) is the weak isospin component of the fermion and \(Q_f \) its charge.

The asymmetry is measured in 14 \(M_{ee} \) bins within the 50 < \(M_{ee} < 500 \) GeV range. The bin widths are determined by the mass resolution, of order \((3 - 4)\% \), and event statistics.

Monte Carlo (MC) samples for the \(Z/\gamma^* \rightarrow e^+e^- \) process are generated using the PYTHIA event generator [15] using the CTEQ6L1 parton distribution functions (PDFs) [16], followed by a detailed GEANT-based simulation of the D0 detector [17]. To improve the agreement between data and simulation, selection efficiencies determined by the MC are corrected to corresponding values measured in the data. Furthermore, the simulation is tuned to reproduce the calorimeter energy scale and resolution, as well as the distributions of the instantaneous luminosity and \(z \) position of the event primary vertex observed in data. Next-to-leading order (NLO) quantum chromodynamics (QCD) corrections for \(Z/\gamma^* \) boson production [18, 19] are applied by reweighting the \(Z/\gamma^* \) boson transverse momentum, rapidity, and invariant mass...
distributions from PYTHIA.

The largest background arises from photon+jets and multijet final states in which photons or jets are misreconstructed as electrons. Smaller background contributions arise from electroweak processes that produce two real electrons in the final state. The multijet background is estimated using collider data by fitting the electron isolation distribution in data to the sum of the isolation distributions from a pure electron sample and an EM-like jet sample. The pure electron sample is obtained by enforcing tighter track matching requirements on the two electrons with $80 < M_{ee} < 100$ GeV. The EM-like jets sample is obtained from a sample where only one good EM cluster and one jet are back-to-back in azimuthal angle ϕ. The contamination in the EM-like jets sample from $W \rightarrow e\nu$ events is removed by requiring missing transverse energy $E_T < 10$ GeV. The average multijet background fraction over the entire mass region is found to be approximately 0.9%. Other SM backgrounds due to $W + \gamma$, W+jets, WW, WZ and $t\bar{t}$ are estimated separately for forward and backward events using PYTHIA events passed through the GEANT simulation. Higher order corrections to the PYTHIA leading order (LO) cross sections have been applied [19, 20, 21]. These SM backgrounds are found to be negligible for almost all mass bins. The $Z/\gamma^* \rightarrow \tau^+\tau^-$ contribution is similarly negligible.

In the SM, the A_{FB} distribution is fully determined by the value of $\sin^2 \theta_W^\text{eff}$ in a LO prediction for the process $qq \rightarrow Z/\gamma^* \rightarrow \ell^+\ell^-$. The value of $\sin^2 \theta_W^\text{eff}$ is extracted from the data by comparing the background-subtracted raw A_{FB} distribution with templates corresponding to different input values of $\sin^2 \theta_W^\text{eff}$ generated with PYTHIA and GEANT-based MC simulation. Although $\sin^2 \theta_W^\text{eff}$ varies over the full mass range $50 < M_{ee} < 500$ GeV, it is nearly constant over the range $70 < M_{ee} < 130$ GeV. Over this region, we measure $\sin^2 \theta_W^\text{eff} = 0.2321 \pm 0.0018$ (stat.) ± 0.0006 (syst.). The primary systematic uncertainties are due to the PDFs (0.0005) and the EM energy scale and resolution (0.0003). We include higher order QCD and electroweak corrections using the ZGRAD2 [22] program with the generator-level Z/γ^* boson p_T distribution tuned to match our measured distribution [23]. The effect of higher order corrections results in a central value of $\sin^2 \theta_W^\text{eff} = 0.2326$ [24].

Due to the detector resolution, events may be reconstructed in a different mass bin than the one in which they were generated. The CC and CE raw A_{FB} distributions are unfolded separately and then combined. The unfolding procedure is based on an iterative application of the method of matrix inversion [25]. A response matrix is computed as R_{ij}^{BF} for an event that is measured as forward in M_{ee} bin i to be found as forward and in bin j at the generator level. Likewise, we also calculate the response matrices for backward events being found as backward (R_{ij}^{FB}), forward as backward (R_{ij}^{BF}), and backward as forward (R_{ij}^{FB}). Four matrices are calculated from the GEANT MC simulation and used to unfold the raw A_{FB} distribution. The method was verified by comparing the true and unfolded spectrum generated using pseudo-experiments.

The data are further corrected for acceptance and selection efficiency using the GEANT simulation. The overall acceptance times efficiency rises from 3.5% for $50 < M_{ee} < 60$ GeV to 21% for $250 < M_{ee} < 500$ GeV.

The electron charge measurement in the central calorimeter determines whether an event is forward or backward. Any mismeasurement of the charge of the electron results in a dilution of A_{FB}. The charge misidentification rate, f_Q, is measured using GEANT-simulated $Z/\gamma^* \rightarrow e^+e^-$ events tuned to the average rate measured in data. The misidentification rate rises from 0.21% at $50 < M_{ee} < 60$ GeV to 0.92% at $250 < M_{ee} < 500$ GeV. The charge misidentification rate is included as a dilution factor D in A_{FB}, with $D = (1 - 2f_Q)/(1 - 2f_Q + f_Q^2)$ for CC events and $D = (1 - 2f_Q)$ for CE events.

The final unfolded A_{FB} distribution using both CC and CE events is shown in Fig. 1, compared to the PYTHIA prediction using the CTEQ6L1 PDFs [16] and the ZGRAD2 prediction using the CTEQ5L PDFs [26]. The x^2/d.o.f. with respect to the PYTHIA prediction is 16.1/14 for CC, 8.5/14 for CE, and 10.6/14 for CC and CE combined. The systematic uncertainties for the unfolded A_{FB} distribution arise from the electron energy scale and resolution, backgrounds, limited MC samples used to calculate the response matrices, acceptance and efficiency corrections, charge misidentification and PDFs. The unfolded A_{FB} together with the PYTHIA and ZGRAD2 predictions for each mass bin can be found in Table I. The correlations between invariant mass bins are shown in Table II.

In conclusion, we have measured the forward-backward charge asymmetry for the $p\bar{p} \rightarrow Z/\gamma^* + X \rightarrow e^+e^- + X$ process in the dielectron invariant mass range $50 - 500$ GeV using 1.1 fb$^{-1}$ of data collected by the D0 experiment. The measured A_{FB} values are in good agreement with the SM predictions. We use the A_{FB} measurements in the range $70 < M_{ee} < 130$ GeV to determine $\sin^2 \theta_W^\text{eff} = 0.2326 \pm 0.0018$ (stat.) ± 0.0006 (syst.). The precision of this measurement is comparable to that obtained from LEP measurements of the inclusive hadronic charge asymmetry [3] and that of NuTeV measurement [4]. Our measurements of $\sin^2 \theta_W^\text{eff}$ in a dilepton mass region dominated by Z exchange, which is primarily sensitive to the vector coupling of the Z to the electron, and of A_{FB} over a wider mass region, which is in addition sensitive to the couplings of the Z to light quarks, agrees well with predictions. With about 8 fb$^{-1}$ of data expected by the end of Run II, a combined measurement of A_{FB} by the CDF and D0 collaborations using electron and muon final states could lead to a measurement of $\sin^2 \theta_W^\text{eff}$ with a precision comparable to that of the current measurements.
world average. Further improvements to current MC generators, incorporating higher order QCD and electroweak corrections, would enable the use of such measurement in a global electroweak fit.

![Graph showing unfolded A_{FB} (points) and the PYTHIA (solid curve) and ZGRAD2 (dashed line) predictions. The inner (outer) vertical lines show the statistical (total) uncertainty.](image)

FIG. 1: Comparison between the unfolded A_{FB} (points) and the PYTHIA (solid curve) and ZGRAD2 (dashed line) predictions. The inner (outer) vertical lines show the statistical (total) uncertainty.

<table>
<thead>
<tr>
<th>M_{ee} range (GeV)</th>
<th>Predicted A_{FB} (GeV)</th>
<th>Unfolded A_{FB} (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 - 60</td>
<td>-0.293 - 0.307</td>
<td>-0.262 ± 0.066 ± 0.072</td>
</tr>
<tr>
<td>60 - 70</td>
<td>-0.426 - 0.431</td>
<td>-0.434 ± 0.039 ± 0.040</td>
</tr>
<tr>
<td>70 - 75</td>
<td>-0.449 - 0.452</td>
<td>-0.386 ± 0.032 ± 0.031</td>
</tr>
<tr>
<td>75 - 81</td>
<td>-0.354 - 0.354</td>
<td>-0.342 ± 0.022 ± 0.022</td>
</tr>
<tr>
<td>81 - 86.5</td>
<td>-0.174 - 0.166</td>
<td>-0.176 ± 0.012 ± 0.014</td>
</tr>
<tr>
<td>86.5 - 89.5</td>
<td>-0.033 - 0.031</td>
<td>-0.034 ± 0.007 ± 0.008</td>
</tr>
<tr>
<td>89.5 - 92</td>
<td>0.051 0.052</td>
<td>0.048 ± 0.006 ± 0.005</td>
</tr>
<tr>
<td>92 - 97</td>
<td>0.127 0.129</td>
<td>0.122 ± 0.006 ± 0.007</td>
</tr>
<tr>
<td>97 - 105</td>
<td>0.289 0.296</td>
<td>0.301 ± 0.013 ± 0.015</td>
</tr>
<tr>
<td>105 - 115</td>
<td>0.427 0.429</td>
<td>0.416 ± 0.030 ± 0.022</td>
</tr>
<tr>
<td>115 - 121.3</td>
<td>0.526 0.530</td>
<td>0.543 ± 0.039 ± 0.028</td>
</tr>
<tr>
<td>130 - 147.9</td>
<td>0.593 0.603</td>
<td>0.617 ± 0.046 ± 0.013</td>
</tr>
<tr>
<td>180 - 250</td>
<td>0.613 0.600</td>
<td>0.594 ± 0.085 ± 0.016</td>
</tr>
<tr>
<td>250 - 500</td>
<td>0.616 0.615</td>
<td>0.320 ± 0.150 ± 0.018</td>
</tr>
</tbody>
</table>

TABLE I: The first column shows the mass ranges used. The second column shows the cross section weighted average of the invariant mass in each mass bin derived from PYTHIA. The third and fourth columns show the A_{FB} predictions from PYTHIA and ZGRAD2. The last column is the unfolded A_{FB}; the first uncertainty is statistical, and the second is systematic.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Ciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation.
<table>
<thead>
<tr>
<th>Mass bin</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.21</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>0.42</td>
<td>0.08</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>1.00</td>
<td>0.49</td>
<td>0.13</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>1.00</td>
<td>0.52</td>
<td>0.16</td>
<td>0.08</td>
<td>0.04</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>1.00</td>
<td>0.72</td>
<td>0.32</td>
<td>0.11</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>1.00</td>
<td>0.79</td>
<td>0.40</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>1.00</td>
<td>0.80</td>
<td>0.15</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>1.00</td>
<td>0.50</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>1.00</td>
<td>0.38</td>
<td>0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>1.00</td>
<td>0.30</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>1.00</td>
<td>0.14</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>1.00</td>
<td>0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>1.00</td>
<td>0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>14</td>
<td>1.00</td>
<td>0.06</td>
<td>0.00</td>
</tr>
</tbody>
</table>

TABLE II: Correlation coefficients between different M_{ee} mass bins. Only half of the symmetric correlation matrix is presented.

[24] This value of $\sin^2\theta_W$ cannot be compared directly with the world average due to the different treatment of electroweak corrections.