Monoids, Embedding Functors and Quantum Groups*

Michael Müger\(^1\) and Lars Tuset\(^1\)

February 2, 2008

Abstract

We show that the left regular representation \(\pi_l\) of a discrete quantum group \((A, \Delta)\) has the absorbing property and forms a monoid \((\pi_l, m, \eta)\) in the representation category \(\text{Rep}(A, \Delta)\).

Next we show that an absorbing monoid in an abstract tensor +-category \(\mathcal{C}\) gives rise to an embedding functor (or fiber functor) \(E : \mathcal{C} \to \text{Vect}_c\), and we identify conditions on the monoid, satisfied by \((\pi_l, m, \eta)\), implying that \(E\) is +-preserving.

As is well-known, from an embedding functor \(E : \mathcal{C} \to \text{Hilb}\) the generalized Tannaka theorem produces a discrete quantum group \((A, \Delta)\) such that \(\mathcal{C} \simeq \text{Rep}_{\pi}(A, \Delta)\). Thus, for a \(C^*\)-tensor category \(\mathcal{C}\) with conjugates and irreducible unit the following are equivalent: (1) \(\mathcal{C}\) is equivalent to the representation category of a discrete quantum group \((A, \Delta)\), (2) \(\mathcal{C}\) admits an absorbing monoid, (3) there exists a +-preserving embedding functor \(E : \mathcal{C} \to \text{Hilb}\).

1 Introduction and related work

1.1 Our approach

As is well-known, see for example [21, Sections 2-3], the finite dimensional representations of a discrete quantum group form a \(C^*\)-tensor category with conjugates and irreducible unit. It is therefore natural to ask for a characterization of representation categories of discrete quantum groups among the \(C^*\)-tensor categories. A partial solution is provided by the generalized Tannaka theorem, cf. [24, 12], according to which a \(C^*\)-tensor category is such a representation category whenever it comes equipped with an embedding functor, i.e. a faithful +-preserving tensor functor into the category \(\mathcal{H}\) of finite dimensional Hilbert spaces. In this case the category is called concrete as opposed to abstract. The most transparent approach to the Tannaka theorem defines the quantum group as the algebra of natural transformations of the embedding functor to itself. The monoidal structures of the category and of the embedding functor then give rise to the coproduct of the quantum group. For this approach and further references cf. [21].

The generalized Tannaka theorem reduces the characterization problem to that of producing an embedding functor. Since the representation category of a quantum group comes with an obvious embedding functor, the existence of such a functor clearly is a necessary condition. However, there exist \(C^*\)-tensor categories with conjugates and irreducible unit that do not admit an embedding functor: Infinitely many examples (which are even braided) are provided by the categories associated with quantum groups at roots of unity, cf. [23]. This shows that additional assumptions on an abstract \(C^*\)-tensor category are needed in order to identify it as the representation category of a quantum group. For example, in [14] it is proven that any \(C^*\)-tensor category with conjugates, irreducible unit and with fusion ring isomorphic to that of \(SU(N)\) is equivalent to the representation category of the discrete quantum group dual to \(SU_q(N)\) for some \(q \in \mathbb{R}\). Analogous results have been proven for the other classical groups, assuming in addition that the category is braided.

The case of abstract symmetric tensor categories was settled already in the late 80’s. By a remarkable result of Doplicher and Roberts [6], any symmetric \(C^*\)-tensor category with conjugates and irreducible unit is equivalent as a \(C^*\)-tensor category to the representation category of a unique compact group. If one wishes an equivalence of symmetric categories, one must also allow super groups. This result has applications [7] to algebraic quantum field theory, where symmetric \(C^*\)-tensor categories arise without an a priori given embedding functor. The proof in [6], however, does not follow the strategy outlined above of constructing an embedding functor and then applying the Tannaka theorem.

\(^{\dagger}\)AMS Subject Classification: 81R50, 18D10.

\(^{\dagger}\)Department of Mathematics, Radboud University, Nijmegen, The Netherlands. email: mueger@math.ru.nl

\(^{\dagger}\)Faculty of Engineering, Oslo University College, Oslo, Norway. email: Lars.Tuset@iu.hio.no
Independently and at about the same time, motivated by applications to algebraic geometry, Deligne proved [3] that a rigid abelian symmetric tensor category with irreducible unit is equivalent to the representation category of a proalgebraic group, provided that the intrinsic dimension of every object is a positive integer. His proof consists of constructing an embedding functor and applying the algebraic Tannaka theorem of N. Saavedra Rivano.

The crucial notion in Deligne’s construction of the embedding functor is that of an absorbing commutative monoid. Recall that a monoid in a tensor category is a triple \((Q, m, \eta)\), where \(m : Q \otimes Q \to Q\) and \(\eta : 1 \to Q\) are morphisms such that \((m \otimes \text{id}_Q) \circ m = (\text{id}_Q \otimes m) \circ m\) and \(m \circ (\eta \otimes \text{id}_Q) = \text{id}_Q = m \circ (\text{id}_Q \otimes \eta)\). An object \(Q\) is called absorbing if the \(Q\)-module \(Q \otimes X\) is isomorphic to some multiple of \(Q\) for any object \(X\). Deligne obtained the absorbing commutative monoid using categorical generalizations of results from commutative algebra – it is here that the symmetry plays a central role. His proof was simplified considerably in [2]. Note, however, that the monoid of [3, 2] fails to satisfy hypothesis 1 of Proposition 3.2 below, which complicates the construction of an embedding functor. For a construction of a monoid satisfying all assumptions of Proposition 3.2 cf. [20].

The aim of this paper is to demonstrate the usefulness of the monoid approach in the general non-symmetric case. This is done in two steps. On the one hand we prove that the passage from an absorbing monoid to an embedding functor works in the general case. We also identify conditions on the monoid guaranteeing that the functor is \(*\)-preserving. Whereas the existence of an embedding functor refers to \(\mathcal{H}\) and thus is an external condition on the category, the existence of an absorbing monoid is an internal property. As such it is more amenable to proof, as Deligne’s result in the symmetric case illustrates. A technical aspect should be pointed out though: A category \(\mathcal{C}\) with conjugates can contain an absorbing object only if it has finitely many equivalence classes of objects. Otherwise it needs to be suitably enlarged, which is done using the category \(\mathcal{C}\) of inductive limits. We say that \(\mathcal{C}\) admits an absorbing object if there exists a monoid \((Q, m, \eta)\) in \(\mathcal{C}\) such that the \(Q\)-module \((Q \otimes X, m \otimes \text{id}_X)\) is isomorphic to a multiple of the \(Q\)-module \((Q, m)\), for every \(X \in \mathcal{C}\).

On the other hand, starting with a discrete quantum group \((A, \Delta)\), we explicitly construct an absorbing monoid \((\pi, \tilde{m}, \tilde{\eta})\) in the representation category. Here \(\pi\) is the regular representation of the algebra \(A\) on the vector space \(A\) given by multiplication from the left. In order to define the morphisms \(\tilde{m}, \tilde{\eta}\), let \((\tilde{A}, \tilde{\Delta})\) denote the dual compact quantum group with multiplication \(\tilde{m}\) and unit \(1_{\tilde{A}}\), and let \(\mathcal{F} : A \to \tilde{A}, a \mapsto \varphi(a)\) denote the Fourier transform, where \(\varphi : A \to \mathbb{C}\) is the left invariant positive functional of \((A, \Delta)\). The linear maps \(\tilde{m} : A \otimes A \to A\) and \(\tilde{\eta} : \mathbb{C} \to A\) are then given by \(\tilde{m} = \mathcal{F}^{-1}(m(\mathcal{F} \otimes \mathcal{F}))\) and \(\tilde{\eta}(1) = \mathcal{F}^{-1}(1_{\tilde{A}})\). We call this absorbing monoid the regular monoid of \((A, \Delta)\).

Our main result then is that, for a \(C^*\)-tensor category \(\mathcal{C}\) with conjugates and irreducible unit, we have three equivalent statements illustrated by the following diagram:

\[
\begin{align*}
\text{There is a discrete AQG } (A, \Delta) \\
\text{such that } \mathcal{C} \cong \text{Rep}_f(A, \Delta) \\
\end{align*}
\]

\[
\begin{align*}
\text{There is an embedding functor } E : \mathcal{C} \to \mathcal{H} \\
\mathcal{C} \text{ admits an absorbing monoid}
\end{align*}
\]

We summarize some further results. Our construction actually provides an absorbing semigroup \((\pi, \tilde{m})\) for any algebraic quantum group, and we show that this semigroup has a unit \(\tilde{\eta}\) if and only if the quantum group is discrete. Dually, there exists a regular comonoid if and only if the quantum group is compact. In the finite dimensional case the regular monoid and comonoid combine to a Frobenius algebra. We identify the intrinsic group of a discrete quantum group with the intrinsic group of its regular monoid.

We also show that an abstract \(C^*\)-tensor category \(\mathcal{C}\) with conjugates and irreducible unit admits an absorbing object \(Q\) in \(\mathcal{C}\) if and only if \(\mathcal{C}\) admits an integer valued dimension function, i.e. a map \(\text{Obj}\mathcal{C} \to \mathbb{N}\) that is additive and multiplicative. While this clearly is a necessary condition for \(\mathcal{C}\) to admit an absorbing monoid, to proceed further in the opposite direction one also needs an associative morphism \(m : Q \otimes Q \to Q\), but the existence of such a morphism remains to be proven.
1.2 Related work

We would like to point out several earlier references that are related to the present work. The fact that a C*-tensor category with finitely many simple objects and an absorbing monoid is the representation category of a finite dimensional C*-Hopf algebra was obtained in [17, Theorem 6.7]. The proof basically proceeds by showing that a finite C*-tensor category can be faithfully realized by endomorphisms of a von Neumann algebra and then appealing to [16, Theorem 6.2]. This approach can in principle (this has never been done) be extended to C*-tensor categories with countably many simple objects by combining [28], which realizes such categories as categories of bimodules over a von Neumann algebra N, and the extension of Longo’s result [16] to infinite index subfactors of depth two obtained in [10]. Concerning this generalization we observe that putting the above-mentioned results together as indicated would require a non-trivial amount of work since they use different frameworks (type II vs. III algebras, endomorphisms vs. bimodules), and dropping the countability assumption on the category made in [28] seems very difficult. Furthermore, the above approaches (in the finite and countable cases) use very heavy operator algebraic machinery, whereas the approach outlined in Subsection 1.1 is essentially purely algebraic and quite elementary and has the added benefit of working without any assumption on the cardinality of the category.

More recently, the relationship between the absorbing property and embedding functors has been studied in [27, Appendices A-B], though with different emphasis and results. Finally, we’d like to point out the papers [8], which provide a study, in the context of C*-tensor categories, of multiplicative unitaries, which are a convenient tool for the study of the regular representation in the theory of locally compact groups and quantum groups.

2 From Algebraic Quantum Groups to Absorbing Monoids

2.1 Three Representation Categories of AQG

For the general theory of algebraic quantum groups (AQG) we refer to [26] and to, e.g., [9] for the basics of representation theory, as well as to the survey [21], where both subjects are covered in considerable detail. For the standard categorical notions of (braided/symmetric) tensor categories, natural transformations etc., our standing reference is [18], but most of the relevant notions can also be found in [21]. We will always denote AQG by (A, Δ), where A is a non-degenerate *-algebra and Δ : A → M(A ⊗ A) is the comultiplication. As usual, we denote the multiplication, counit and coinverse by m : A ⊗ A → A, ε : A → C and S : A → A, respectively. The left invariant positive functional is denoted by ϕ.

2.1 Definition Let (A, Δ) be an AQG. A homomorphism \(\varphi : A \rightarrow \text{End} K \), where K is a complex vector space, is called a representation of A on K if \(\varphi(A)K = K \). A *-representation is a representation \(\varphi = \varphi^* \) on a pre-Hilbert space K, that is *-preserving in the sense that \(\langle \varphi(a)u, v \rangle = \langle u, \varphi(a^*)v \rangle \) for all \(a \in A \) and \(u, v \in K \). By Rep(\((A, \Delta) \)) we denote the category whose objects are *-representations and whose arrows are the intertwining linear maps, i.e. if \(\varphi = \varphi^* \) is another *-representation of A on \(K' \), then

\[
\text{Hom}(\varphi, \varphi') = \{ s \in \text{Hom}(K, K') \mid s \varphi(a)v = \varphi'(a)sv \forall v \in K, a \in A \}.
\]

2.2 Remark Recall that a homomorphism \(\varphi : A \rightarrow B \) of non-degenerate algebras is called non-degenerate if \(\varphi(A)B = B = B\varphi(A) \). It would therefore seem natural to define a representation of A on K to be a homomorphism \(\varphi : A \rightarrow \text{End} K \) that satisfies \(\varphi(A)\text{End} K = \text{End} K = \text{End} K \varphi(A) \). However, this notion is too restrictive since it is never satisfied by the usual left regular representation \(\varphi_l \), to be introduced shortly, if \((A, \Delta) \) is discrete and non-unital. So see this it suffices to notice that the image of \(\varphi_l(a)c \in \text{End} A \) is finite dimensional for all \(a \in A \) and \(c \in \text{End} A \).

We define the left regular representation \(\varphi_l : A \rightarrow \text{End} A \) of an AQG by \(\varphi_l(a)(x) = ax \) for \(a, x \in A \). This terminology is justified, since the non-degeneracy condition in Definition 2.1 holds because \(A^2 = A \), which again follows from the existence of local units for A. Furthermore, \(\varphi_l \) is a *-representation with respect to the inner product \((\cdot, \cdot) \) on A given by \((x, y) = \varphi(y^*x) \). Thus \(\varphi_l \in \text{Rep}(A, \Delta) \). Similarly, one defines the right regular representation \(\varphi_r \in \text{Rep}(A_{\text{op}}, \Delta) \) by the formula \(\varphi_r(a)(x) = xa \) for \(a, x \in A \). It is a *-representation with respect to the inner product on the opposite algebra \(A_{\text{op}} \) given by \((x, y) = \varphi(xy^*) \).

Recall that the left multiplier algebra \(L(A) \) of a non-degenerate algebra A is the vector space \(L(A) = \{ \psi \in \text{End} A \mid \psi(ab) = \psi(a)b \forall a, b \in A \} \) with product \(\psi_1 \psi_2 = \psi_1 \circ \psi_2 \), i.e. composition of maps. Note that \(\varphi_l : A \rightarrow L(A) \) is an injective algebra homomorphism. Similarly, the right multiplier algebra \(R(A) \) of a non-degenerate algebra A is the vector space \(R(A) = \{ \phi \in \text{End} A \mid \phi(ab) = a\phi(b) \forall a, b \in A \} \) together with
the product given by opposite composition: $\phi_1 \phi_2 = \phi_2 \circ \phi_1$. Again $\pi_r : A \to R(A)$ is an injective algebra homomorphism. Further, note that by definition the identity map is a linear antimultiplicative map from $\text{Hom}(\pi_r, \pi_r)$ to $L(A)$. Assume A is a non-degenerate $*$-algebra and let $\psi \in L(A)$. Define $\psi^* \in R(A)$ by $\psi^*(a) = (\psi(a^*))^*$ for $a \in A$. The assignment $\psi \mapsto \psi^*$ is an antilinear and antimultiplicative bijection from $L(A)$ to $R(A)$. The multiplier algebra $M(A)$ of a non-degenerate algebra A is the vector space $M(A) = \{(\psi, \phi) \in L(A) \times R(A) \mid \phi(a)b = a\psi(b) \forall a, b \in A\}$ with pointwise multiplication, i.e. $(\psi_1, \phi_1)(\psi_2, \phi_2) = (\psi_1 \psi_2, \phi_1 \phi_2) = (\psi_1 \circ \psi_2, \phi_1 \circ \phi_2)$. Now the map $\pi_r : a \mapsto (\pi_r(a), \pi_r(a))$ embeds A into $M(A)$ as an algebra. Whenever A is a $*$-algebra, so is $M(A)$ and the embedding is $*$-preserving. If A is unital then we have the algebra isomorphisms $M(A) \cong L(A) \cong R(A) \cong A$.

Any homomorphism $\pi : A \to \text{End}K$ of a non-degenerate algebra A such that $\pi(A)K = K$ and such that $\pi(A)v = 0$ implies $v = 0$ has a unique extension to a unital homomorphism $\tilde{\pi} : M(A) \to \text{End}K$ given by the formula $\tilde{\pi}(x)\pi(a)v = \pi(xa)v$, for $x \in M(A), a \in A$ and $v \in K$. Whenever A has local units, the property $\pi(A)v = 0 \Rightarrow v = 0$ follows immediately from $\pi(A)K = K$, see [9] for more details. If $\pi, \pi' \in \text{Rep}(A, \Delta)$, then clearly $\pi \otimes \pi' : A \otimes A \to \text{End}K \otimes \text{End}K' \subset \text{End}(K \otimes K')$ determined by $(\pi \otimes \pi')(a \otimes a') = \pi(a) \otimes \pi(a')$ for $a, a' \in A$ satisfies $(\pi \otimes \pi')(A \otimes A)(K \otimes K') = K \otimes K'$. It therefore has a unique extension to a unital $*$-homomorphism from $M(A \otimes A)$ to $\text{End}(K \otimes K')$, which we again denote by $\pi \otimes \pi'$. It is obvious that $\pi \otimes \pi' = (\pi \otimes \pi') \circ \Delta$ is non-degenerate, and therefore belongs to $\text{Rep}(A, \Delta)$. Hence $\text{Rep}(A, \Delta)$ is a tensor category with irreducible unit ϵ. Suppressing the totally canonical associativity constraint, we treat the tensor category $\text{Rep}(A, \Delta)$ as strict. Note that $(\pi \otimes \pi)(a)x = \Delta(a)x$ for $a \in A$ and $x \in A \otimes A$. By $\text{Rep}_f(A, \Delta)$ we mean the full tensor subcategory of $\text{Rep}(A, \Delta)$ consisting of finite dimensional representations, i.e. those $\pi \in \text{Rep}(A, \Delta)$ for which $\dim K < \infty$.

Clearly, $\text{Rep}_f(A, \Delta)$ is a tensor category w.r.t. the adjoint operation for bounded linear maps between Hilbert spaces, but we are not aware of a method to turn $\text{Rep}(A, \Delta)$ into a tensor category which works for any AQG (A, Δ). Yet, we have the following.

2.3 Proposition Let (A, Δ) be an AQG and define $\text{Rep}_*(A, \Delta)$ to be the full subcategory of $\text{Rep}(A, \Delta)$ consisting of representations that are direct sums of finite dimensional irreducible $*$-representations with finite multiplicities. Then there exists a $*$-operation on $\text{Rep}_*(A, \Delta)$ extending that of $\text{Rep}_f(A, \Delta)$. This $*$-operation is compatible with the scalar products in the sense that $(su, v)_K = (u, s^*v)_K$ for $u \in K, v \in K'$ and $s \in \text{Hom}(\pi, \pi')$, where π, π' are representations on K, K' with inner products $(\cdot, \cdot)_K$ and $(\cdot, \cdot)_{K'}$, respectively. For $\pi \cong \oplus_i \pi_i$ and $\pi' \cong \oplus_i \pi'_i$, where the representations $\pi_i \in \text{Rep}_f(A, \Delta)$ are irreducible and pairwise non-isomorphic, we use the isomorphisms $\text{Hom}(\pi, \pi') \cong \prod_i \text{Hom}(\pi_i, \pi'_i) \cong \prod_i \text{Hom}(\pi_i, \pi'_i)(\mathbb{C})$ to equip the spaces $\text{Hom}(\pi, \pi')$, where $\pi, \pi' \in \text{Rep}_*(A, \Delta)$, with the product topology. With respect to these topologies the composition \circ is continuous.

Proof. Let I be the set of unitary equivalence classes of finite dimensional irreducible $*$-representations and let π_i be a representation in the class $i \in I$ acting on the Hilbert space H_i. Consider two representations $\pi \cong \oplus_i \pi_i \otimes I_{K_i}$ and $\pi' \cong \oplus_i \pi'_i \otimes I_{K'_i}$; where K_i, K'_i are finite dimensional multiplicity spaces. Here it is understood that the scalar products on the finite dimensional spaces $H_i \otimes K_i$ are the restrictions of that of K and similarly for K', etc. Since the representations $\pi_i \otimes I_{K_i}$ and $\pi'_i \otimes I_{K'_i}$ are disjoint if $i \neq j$, every morphism $s : \pi \to \pi'$ is given by a family (s_i), where $s_i \in \text{Hom}(\pi_i \otimes I_{K_i}, \pi'_i \otimes I_{K'_i})$. Here s_i is a morphism in the $*$-category $\text{Rep}_f(A, \Delta)$ and therefore has an adjoint s_i^* defined by $(s_i u_i, v_i)_{K_i \otimes K'_i} = (u_i, s_i^* v_i)_{H_i \otimes K_i}$. Conversely, every such family constitutes a morphism in $\text{Hom}(\pi, \pi')$. Thus we can define an element of $\text{Hom}(\pi', \pi)$ by $s^* = (s_i^*)$. It is evident that this definition satisfies the properties of a $*$-operation and extends the $*$-operation of $\text{Rep}_f(A, \Delta)$. Now $(su, v)_{K'} = (u, s^*v)_K$ is automatic since $(\cdot, \cdot)_K = \sum_i (\cdot, \cdot)_{H_i \otimes K_i}$, etc. The continuity of \circ is also obvious.

2.4 Remark 1. Note that $\text{Rep}_*(A, \Delta)$ is not closed under tensor products, but it is stable under tensor products with finite dimensional $*$-representations.

2. For a general AQG the category $\text{Rep}_*(A, \Delta)$ may consist only of copies of ε. This does not happen in the discrete case to be discussed below.
2.5 Proposition Let \((A, \Delta)\) be a discrete AQG, so \(A = \bigoplus_{i \in J} \text{End } H_i\) with \(H_i\) finite dimensional Hilbert spaces. Let \(I_i\) be the unit of \(\text{End } H_i\) and let \(p_i \in \text{Rep}(A, \Delta)\) denote the canonical projection from \(A\) to \(\text{End } H_i\). Then:

1. For any \(\pi \in \text{Rep}(A, \Delta)\) we have \(\pi = \bigoplus_i \pi_i p_i\) with \(n_i = \dim(\pi(I_i)K) / \dim H_i\).

2. \(\pi_i \cong \bigoplus_{i \in J} \dim H_i p_i\), so \(\pi_i \in \text{Rep}_s(A, \Delta)\).

3. \(\text{Rep}_f(A, \Delta)\) is equivalent to the tensor category of all finite dimensional representations of \((A, \Delta)\) and \(\text{Rep}(A, \Delta)\) is equivalent to the tensor category of all representations.

4. \(R(A) \cong M(A)\) as unital algebras, whereas \(\text{Hom}(\pi, \pi)\) and \(M(A)\) are anti-isomorphic as unital \(*\)-algebras.

Proof. 1. The subspaces \(K_i = \pi(I_i)K\) are clearly linear independent and a short argument using \(\pi(A)K = K\) shows that \(K = \bigoplus_i K_i\). Define \(*\)-representations \(\pi_i\) of \((A, \Delta)\) on \(K_i\) by \(\pi_i(a) = \pi(a) | K_i\) for \(a \in A\), and note that \(\pi = \bigoplus_i \pi_i\) with \(n_i = \dim p_i\).

2. This follows from 1. by noting that \(K_i = \text{End } H_i\) so \(n_i = \dim H_i\).

3. This follows from the facts that the decomposition in 1. holds also for representations which are not \(*\)-representations and that the irreducible representations \(p_i\) are \(*\)-representations.

4. By definition \(\text{Hom}(\pi, \pi)\) and \(R(A)\) are anti-isomorphic as unital algebras. Let \(\phi \in R(A)\). In view of the definition of right multipliers we have \(\phi(\pi_i(a)) = \phi(I_i)\pi_i(a) \in \text{End } H_i\) for every \(\pi_i(a) \in \text{End } H_i\). Thus we obtain restrictions \(\phi_i = \phi \mid \text{End } H_i \in R(\text{End } H_i)\) such that \(\phi = \bigoplus_i \phi_i\). Conversely, the latter formula defines an element of \(R(A)\) for every \(\phi_i\). If \(s : i \rightarrow j\) is a morphism of \(J\), then \(\phi = \bigoplus_i \phi_i\) satisfies \(\phi = \phi_j \circ \phi_i\). Since \(\text{End } H_i\) are unital we have \(R(\text{End } H_i) = \text{End } H_i\), and therefore \(R(A) = \bigoplus_i \text{End } H_i = M(A)\) as unital algebras. It follows that \(\text{Hom}(\pi, \pi)\) and \(M(A)\) are anti-isomorphic as unital \(*\)-algebras.

For a discrete AQG we normalize the left invariant positive functional by requiring \(\varphi(I_0) = 1\).

We aim now at understanding the relation between \(\text{Rep}_f(A, \Delta)\) and \(\text{Rep}(A, \Delta)\) in more categorical terms, whenever \((A, \Delta)\) is a discrete quantum group.

In order to make sense of infinite direct sums of objects we need some categorical devices. Let \(J\) be a small index category, and let \(F: J \rightarrow C\) be a functor. We denote the objects of \(J\) by \(i, j, k\) and write \(X^* = F(i)\). A pair \((X, ƒ^*)\), where \(X \in C\) and the morphisms \(ƒ^*_i : X^* \rightarrow X\) for \(i \in J\), is called a cone. We say \(F\) has an inductive limit (or colimit) if there exists a cone \((X, ƒ^*)\) that is universal, i.e., for any other cone \((Y, g^*)\) there exists a unique \(t : X \rightarrow Y\) such that \(t \circ ƒ^*_i = g^*_i\) for all \(i \in J\).

The category \(J\) is filtered if it satisfies the following conditions:

1. For every \(i, j \in J\), there exists \(k \in J\) and morphisms \(u : i \rightarrow k\) and \(v : j \rightarrow k\).

2. For every \(i, j, k \in J\) and \(u, v : i \rightarrow j\), there exists \(s : j \rightarrow k\) such that \(s \circ u = s \circ v\).

An inductive limit \(F : J \rightarrow C\) is called filtered if \(J\) is a filtered category. Every directed partially ordered set \(J\) gives rise to a filtered category \(J\), where \(\text{Obj } J = J\) and \(\text{Hom } J(i, j)\) contains one element if \(i \leq j\) and none otherwise. Given a set \(S\), the power set \(2^S\) is a directed partially ordered set.

In our applications \(C\) has finite direct sums, and we define an infinite direct sum \(\bigoplus_{i \in S} Y_i\) as a filtered inductive limit over \(F : 2^S \rightarrow C\). Here \(2^S\) is the filtered category corresponding to the power set \(2^S\), and the functor \(F\) is given by choosing a finite direct sum for every \(s \in 2^S\). An example of a category for which all filtered inductive limits exist is the category \(\text{Rep}(A, \Delta)\), where \((A, \Delta)\) is a discrete AQG.

We will now consider a completion \(\hat{C}\) w.r.t. all filtered inductive limits of a given category \(C\). Given any category \(C\) there exists a category \(\text{Ind } C\) of filtered inductive limits of objects in \(C\). The standard reference is [1]. We collect some of its properties that we shall need, none of which is new.

2.6 Proposition Let \(C\) be a category and denote \(\hat{C} = \text{Ind } C\). Then

1. \(\hat{C}\) contains \(C\) as a full subcategory.

2. \(\hat{C}\) is complete w.r.t. filtered inductive limits. In particular, there exist infinite sums \(Z = \bigoplus_{i \in I} Z_i\), where \(Z_i \in C\).

3. If \(C\) is abelian, in particular semisimple, then \(\hat{C}\) is abelian.

4. If \(C\) is semisimple then every object of \(\hat{C}\) is a filtered inductive limit of objects in \(C\). In this case, \(\hat{C}\) is uniquely characterized up to equivalence by this property and 1-2.
5. If \(\mathcal{C} \) is monoidal then the tensor product extends uniquely to \(\hat{\mathcal{C}} \). Similarly if \(\mathcal{C} \) is braided or symmetric, then so is \(\hat{\mathcal{C}} \).

6. If \(\mathcal{C} \) has exact tensor product, in particular if \(\mathcal{C} \) has duals, then the tensor product of \(\hat{\mathcal{C}} \) is also exact.

Proof. We limit ourselves giving references for the interested reader. Statements 1-2 are proven in [1], whereas 3. follows from [1, 11]. Claim 4 is proven in [4, §4], and for 5-6. see [5, 3]. ■

2.7 **Remark** Concerning the construction of \(\hat{\mathcal{C}} \) we only note that its objects are pairs \((G, F)\), where \(G \) is a small filtered category and \(F : G \to \mathcal{C} \) is a functor. Denoting objects of \(\hat{\mathcal{C}} \) by \((X_i)\), where \(i \in \text{Obj} G \) and \(X_i = F(i) \), the hom-sets are defined by

\[
\text{Hom}_\mathcal{C}((X_i), (Y_j)) = \lim_{i \to j} \text{Hom}_\mathcal{C}(X_i, Y_j).
\]

2.8 **Lemma** Let \(\mathcal{C} \) be a semisimple tensor *-category, and let \(\mathcal{C}_* \) be the full subcategory of \(\hat{\mathcal{C}} \) consisting of direct sums of irreducible objects of \(\mathcal{C} \) with finite multiplicities. Then \(\mathcal{C}_* \) has a *-operation extending that of \(\mathcal{C} \).

Proof. Exactly as for Proposition 2.3. ■

2.9 **Proposition** Let \((A, \Delta)\) be a discrete AQG and let \(\mathcal{C} = \text{Rep}_f (A, \Delta) \). Then there is a canonical equivalence \(\hat{F} : \mathcal{C} \to \text{Rep}(A, \Delta) \) of tensor categories which restricts to the identity on the full subcategory \(\mathcal{C} \) of \(\hat{\mathcal{C}} \) and restricts to an equivalence of \(\mathcal{C}_* \) and \(\text{Rep}_*(A, \Delta) \).

Proof. Note that if \(\mathcal{C} \) is a category of vector spaces or of representations, then the filtered inductive limits above are inductive limits in the ordinary sense. The category \(\text{Rep}_f (A, \Delta) \) is semisimple and every object of \(\text{Rep}(A, \Delta) \) is an inductive limit of objects in \(\text{Rep}_f (A, \Delta) \). Since \(\text{Rep}(A, \Delta) \) is closed w.r.t. inductive limits, the equivalence \(\hat{\mathcal{C}} \simeq \text{Rep}(A, \Delta) \) follows from assertion 4 in Proposition 2.6. The last statement is obvious since both \(\mathcal{C}_* \) and \(\text{Rep}_*(A, \Delta) \) are defined as the respective full subcategories of objects that contain the simple objects with finite multiplicities. ■

2.2 **Construction of the Regular Monoid**

Let \((A, \Delta)\) be an AQG and \((\hat{A}, \hat{\Delta})\) its Pontryagin dual with the conventions that \(\hat{\Delta}(\omega)(a \otimes b) = \omega(ab) \) and \(\hat{m}(\omega \otimes \omega') = (\omega \otimes \omega')\Delta \), where \(a, b \in A \) and \(\omega, \omega' \in \hat{A} \). Consider the Fourier transform \(F : A \to \hat{A} \) which is given by \(F(a) = \hat{a} = a\varphi \), for \(a \in A \). Here and in the sequel \(\varphi \) and \(\varphi^c \) denote the linear functionals on \(A \) given by \(\varphi = \varphi(c \cdot \cdot) \) and \(\varphi^c = \varphi(c \cdot \cdot) \), for \(c \in M(A) \). It is known that \(F \) is a bijective linear map satisfying Plancherel’s formula \(\hat{\psi}(F(a^*F(b)) = \varphi(a^*b) \), for \(a, b \in A \). Here \(\hat{\psi} \) is the right invariant functional on \((\hat{A}, \hat{\Delta})\) determined by \(\hat{\psi}F = e \). If \((A, \Delta)\) is discrete, then \((\hat{A}, \hat{\Delta})\) is a Hopf *-algebra and \(\hat{\psi} \) is a bounded functional on \(\hat{A} \) which is both left- and right invariant.

2.10 **Lemma** Let \((A, \Delta)\) be an AQG. Then

\[
(\varphi \otimes \varphi)(\Delta(c)(a \otimes b)) = \varphi(c(\varphi \otimes \varphi)((S^{-1} \otimes i)(\Delta(b))(a \otimes 1))),
\]

for \(a, b \in A \) and \(c \in M(A) \).

Proof. The formula \(\varphi((\omega S \otimes i)\Delta(c)b) = \varphi(c(\omega \otimes i)(\Delta(b))) \) holds for any \(\omega \in \hat{A} \), \(b \in A \) and \(c \in M(A) \), and is known as the strong left invariance property [15]. Thus

\[
(\varphi \otimes \varphi)(\Delta(c)(a \otimes b)) = \varphi((\Delta(c)(a \otimes b))b)
= \varphi(c(\Delta(c)(a \otimes b))b).
\]
for $a, b \in A$ and $c \in M(A)$. The computation

$$
\varphi(c(\varphi \otimes \iota)[(S^{-1} \otimes \iota)\Delta(b)](a \otimes 1))] = \varphi(c(\sigma S^{-1} \otimes \iota)\Delta(b))
$$

$$
= \sigma S^{-1}((\iota \otimes \varphi)\Delta(b)) = \varphi(S^{-1}[(\iota \otimes \varphi)\Delta(b)]a)
$$

$$
= \varphi((\varphi S \otimes \iota)\Delta S^{-1}(b)a) = \varphi(S^{-1}(b)(\varphi \otimes \iota)\Delta(a))
$$

$$
= \varphi(c(\iota \otimes \varphi)[(1 \otimes S^{-1}(b))\Delta(a)]])
$$

proves the second identity.

Let $\hat{m} : \hat{A} \otimes \hat{A} \to \hat{A}$ be the linearized multiplication on \hat{A}, so $\hat{m}(\omega \otimes \eta) = \omega \eta$, for $\omega, \eta \in \hat{A}$, which means that

$$
\hat{m}(\hat{a} \otimes \hat{b})(c) = (\hat{a} \otimes \hat{b})(c) = (\varphi \otimes \varphi)(\Delta(c)(a \otimes b)),
$$

for $a, b, c \in A$, and remains valid also for $c \in M(A)$.

2.11 Definition A semigroup in a (strict) tensor category \mathcal{C} is a pair (Q, m), where Q is an object and $m : Q \otimes Q \to Q$ satisfies $m \circ (m \otimes \text{id}_Q) = m \circ (\text{id}_Q \otimes m)$. A monoid is a triple (Q, m, η) where (Q, m) is a semigroup and $\eta : 1 \to Q$ satisfies $m \circ (\eta \otimes \text{id}_Q) = m \circ (\text{id}_Q \otimes \eta) = \text{id}_Q$. Two semigroups (monoids) (Q, m, η), (Q', m', η') are isomorphic if there exists an isomorphism $s : Q \to Q'$ such that $s \circ m = m' \circ (s \otimes s)$ (and $s \circ \eta = \eta'$).

2.12 Proposition Let notation be as above and consider the linear map $\tilde{m} = F^{-1}\hat{m}(F \otimes F) : A \otimes A \to A$. Then:

1. $\varphi(c\hat{m}(x)) = (\varphi \otimes \varphi)(\Delta(c)x)$ for $x \in A \otimes A$ and $c \in M(A)$.
2. $\tilde{m}(a \otimes b) = (\varphi \otimes \iota)[(S^{-1} \otimes \iota)\Delta(b)](a \otimes 1)] = (\iota \otimes \varphi)[(1 \otimes S^{-1}(b))\Delta(a)]$ for $a, b \in A$.
3. $\tilde{m}(\iota \otimes \varphi) = \tilde{m}(\iota \otimes \tilde{m})$, so \tilde{m} is a multiplication on A.
4. $\tilde{m}(\Delta(a)x) = a\tilde{m}(x)$ for $a \in A$ and $x \in A \otimes A$.

Proof. The identity $F\tilde{m} = \hat{m}(F \otimes F)$ means that

$$
\varphi(c\hat{m}(a \otimes b)) = (\varphi \otimes \varphi)(\Delta(c)(a \otimes b)) = \hat{m}(\hat{a} \otimes \hat{b})(c) = \hat{m}(\hat{a} \otimes \hat{b})(c) = (\varphi \otimes \varphi)(\Delta(c)(a \otimes b)),
$$

for $a, b, c \in A$, which proves statement 1. Statement 2 is now immediate from Lemma 2.10 and faithfulness of φ. To show 3., calculate

$$
\tilde{m}(\iota \otimes \varphi) = F^{-1}\hat{m}(F \otimes F)(F^{-1}\hat{m}(F \otimes F) \otimes \iota) = F^{-1}\hat{m}(\iota \otimes \tilde{m})(F \otimes F \otimes F) = \tilde{m}(\iota \otimes \tilde{m}).
$$

Claim 4 is checked by using 1. and computing

$$
\varphi(c\hat{m}(\Delta(a)x)) = (\varphi \otimes \varphi)(\Delta(c)\Delta(a)x) = (\varphi \otimes \varphi)(\Delta(c)(a \otimes b)) = \varphi(ca\tilde{m}(x)),
$$

for $x \in A \otimes A$ and $a, c \in A$. Now 4. follows by faithfulness of φ. ■

2.13 Corollary We have $\tilde{m} \in \text{Hom}(\pi_1 \times \pi_1, \pi_1)$, and (π_1, \tilde{m}) is a semigroup in $\text{Rep}(A, \Delta)$.

Proof. By the previous proposition the linear map $\tilde{m} : A \otimes A \to A$ is associative and satisfies

$$
\tilde{m}(\pi_1 \times \pi_1)(a)x = \tilde{m}(\Delta(a)x) = \pi_1(a)\tilde{m}x,
$$

for $a \in A$ and $x \in A \otimes A$. Thus \tilde{m} is an intertwiner from $\pi_1 \times \pi_1$ to π_1. ■

2.14 Remark If $s : \pi \to \pi'$ is bounded w.r.t. the scalar products on K, K', then s^* can be defined as the adjoint of the unique extension of s to the Hilbert space completions. Therefore, the reader might wonder why we do not work with the usual tensor $*$-category of non-degenerate $*$-representations of a discrete AQG on Hilbert spaces. Considering bounded morphisms is, however, not sufficient for our purposes, since the morphism \tilde{m}, which plays a fundamental role in our considerations, is not bounded w.r.t the 2-norms on $H \otimes H$ and H. To see
this it suffices to consider the simple case of $(\hat{A}, \hat{\Delta})$ with $\hat{A}_r = C(T)$, so $\hat{m}(f \otimes g)(s,t) = f(s)g(t)$, for $f, g \in C(T)$ and $s, t \in T$. Here $(\hat{A}_r, \hat{\Delta}_r)$ is the analytic extension of $(\hat{A}, \hat{\Delta})$ in the sense of [15], so \hat{A}_r is a unital C*-algebra and $(\hat{A}_r, \hat{\Delta}_r)$ is a compact quantum group in the sense of S.L. Woronowicz. By $C(T)$ we then mean the unital C*-algebra of all continuous complex valued functions of the circle T with pointwise algebraic operations and uniform norm. Since F is an isometry by Plancherel’s formula, we must then require \hat{m} to be bounded w.r.t. the 2-norms on the Hilbert spaces $L^2(T)$ and $L^2(T \times T)$ of square integrable functions on T and $T \times T$ (obtained from the GNS-constructions of \hat{A} and $\hat{A} \otimes \hat{A}$ described in [15]), and this is clearly false. Thus one cannot define \hat{m}^* by extension to the Hilbert space completion. Also Proposition 2.3 is not applicable, since in general $\pi_I \times \pi_I$ is not in $\text{Rep}_*(A, \Delta)$.

2.15 Proposition. Let (A, Δ) be an AQG. Then $\text{Hom}(\varepsilon, \pi_I) \neq \{0\}$ iff (A, Δ) is discrete. In this case, the map $\eta : c \mapsto cF^{-1}(1_A)$ belongs to $\text{Hom}(\varepsilon, \pi_I)$ and (π_I, m, η) is a monoid, which we call the regular monoid. We have $\eta c = cI_0$. Since $\eta : \varepsilon \rightarrow \pi_I$ is a morphism in $\text{Rep}_*(A, \Delta)$, the adjoint η^* exists and $\eta^* = \varepsilon$.

Proof. For every morphism $\eta \in \text{Hom}(\varepsilon, \pi_I)$ we have

$$\varepsilon(a)\eta(1) = \eta(\varepsilon(a)1) = \pi_I(a)\eta(1) = a\eta(1)$$

for $a \in A$, saying that $\eta(1)$ is a left integral in A. Thus $\eta \mapsto \eta(1)$ is a bijection from $\text{Hom}(\varepsilon, \pi_I)$ to the space of left integrals in A. By definition an AQG (A, Δ) is discrete iff a non-zero left integral exists, and in this case it is unique up to a scalar.

If (A, Δ) is discrete then $(\hat{A}, \hat{\Delta})$ is compact, i.e. \hat{A} has a unit $1_{\hat{A}}$. Now

$$F(I_0)(a) = \varphi(aI_0) = \varepsilon(a)\varphi(I_0) = \varepsilon(a).$$

Thus $F(I_0) = \varepsilon = 1_{\hat{A}}$ and $\hat{\eta}(1) = I_0$, which is a left integral in A, so $\hat{\eta} \in \text{Hom}(\varepsilon, \pi_I)$.

Finally, the equalities

$$(\hat{\eta}(c), a)_A = \varphi(a^*cI_0) = c\varepsilon(a^*) = c\varepsilon(a) = (c, \varepsilon(a))_C,$$

for $c \in C$ and $a \in A$, show that $\hat{\eta}^* = \varepsilon$. □

2.16 Remark 1. The above result shows in particular that a monoid structure on the regular representation exists only if (A, Δ) is discrete. It turns out that the multiplication \hat{m} is in general not unique, not even up to isomorphisms of π_I.

2. If (A, Δ) is a discrete and quasitriangular AQG with R-matrix R, the categories $\text{Rep}_*(A, \Delta)$ and $\text{Rep}_1(A, \Delta)$ are braided. It is therefore natural to ask whether the monoid (π_I, m, η) is commutative in the sense that $m \circ c_{\pi_I, \pi_I} = m$, where c denotes the braiding. One can easily show that this is the case iff $R = 1 \otimes 1$. In that case, (A, Δ) is cocommutative and the representation categories are symmetric. □

2.17 Definition. A comonoid in a (strict) tensor category C is a triple (Q, Δ, ε), where Q is an object and $\Delta : Q \rightarrow Q \otimes Q$, $\varepsilon : Q \rightarrow 1$ satisfy $\Delta \otimes \text{id}_Q \circ \Delta = \text{id}_Q \otimes \Delta \circ \Delta$ and $\varepsilon \otimes \text{id}_Q \circ \Delta = \text{id}_Q \otimes \varepsilon \circ \Delta = \text{id}_Q$.

For a compact AQG we have the following easy result.

2.18 Proposition. Let (A, Δ) be an AQG. The map $\varepsilon : A \rightarrow C$ is in $\text{Hom}(\pi_I, \varepsilon)$. Furthermore, (A, Δ) is compact iff $\Delta(A) \subset A \otimes A$ iff $\Delta \in \text{Hom}(\pi_I, \pi_I \times \pi_I)$. In this case $(\pi_I, \varepsilon, \Delta)$ is a comonoid in $\text{Rep}(A, \Delta)$, which we call the regular comonoid.

Proof. For any AQG we have the equation $m(S \otimes \varepsilon)\Delta(a) = \varepsilon(a)I$ in $M(A)$. If $\Delta(A) \subset A \otimes A$ the left hand side and therefore the unit I belongs to A. The remaining facts are obvious consequences of ε and Δ being algebra homomorphisms. □

2.19 Remark. Again, one might try to work with the usual tensor *-category of unital *-representations of a compact AQG (A, Δ) on Hilbert spaces. There is no problem with Δ, as it is an isometry, but $\varepsilon : A \rightarrow C$ has in the general case no continuous extension w.r.t the 2-norm on A given by the GNS-construction. □
2.20 Definition A Frobenius algebra in a tensor category C is a quintuple $(Q, m, \eta, \Delta, \varepsilon)$ such that (Q, m, η) is a monoid in C, (Q, Δ, ε) is a comonoid in C, and the following compatibility condition holds

$$id_Q \otimes m \circ \Delta \otimes id_Q = \Delta \circ m = m \otimes id_Q \circ id_Q \otimes \Delta.$$ \hspace{1cm} (2.1)

2.21 Proposition Let (A, Δ) be a finite dimensional AQG. Then $m^* = \Delta$ so the regular monoid and comonoid are each others adjoints: $(\pi_t, \tilde{m}, \tilde{\eta})^* = (\pi_t, \tilde{m}^*, \tilde{\eta}^*) = (\pi_t, \Delta, \varepsilon)$. Furthermore, the quintuple $(\pi_t, \tilde{m}, \tilde{\eta}, \Delta, \varepsilon)$ is a Frobenius algebra in $Rep_f(A, \Delta)$, which we call the regular Frobenius algebra.

Proof. That $\tilde{\eta}^* = \varepsilon$ is shown in Proposition 2.15. If (A, Δ) is finite dimensional, $m^* = \Delta$ follows from statement 1 of Proposition 2.12. The Frobenius property (2.1) will be shown at the end of the next subsection. (Cf. also [19].) ■

2.22 Remark 1. Conversely, the existence of both the regular monoid and the regular comonoid requires (A, Δ) to be discrete and compact, thus A is finite dimensional.

2. Given a Frobenius algebra $(Q, m, \eta, \Delta, \varepsilon)$, it is easy to show that the morphisms $\varepsilon \circ m : Q \otimes Q \to 1$ and $\Delta \circ \eta : 1 \to Q \otimes Q$ satisfy the triangular equations [13], i.e. the object Q is its own two-sided dual. If C is a $*$-category and $m^* = \Delta$, $\eta^* = \varepsilon$ we have $(\Delta \circ \eta)^* = \varepsilon \circ m$ and we obtain a solution of the conjugate equations [17]. In the case considered above, this in particular implies that π_t is a finite dimensional object in $Rep(A, \Delta)$, thus again A is finite dimensional. □

We show now how one can recover the intrinsic group, cf. [21], from the regular monoid of a discrete AQG.

2.23 Definition Let C be a tensor category and C_* a full $*$-subcategory. Let (Q, m, η) be a monoid in C with $Q \in C_*$. Denote by G_Q the group in $\text{End}Q$ given by

$$G_Q = \{ t \in \text{End}Q \mid t \circ t^* = t^* \circ t = id_Q, \quad m \circ t \otimes t = t \circ m \}$$

with group multiplication being composition of arrows, so the unit of G_Q is id_Q and the inverse t^{-1} of $t \in G_Q$ is t^*. The group G_Q is called the intrinsic group of the monoid (Q, m, η).

2.24 Proposition Let (A, Δ) be a discrete AQG with intrinsic group G defined by

$$G = \{ g \in M(A) \mid \Delta g = g \otimes g, \quad g^* g = g g^* = 1 \},$$

which is compact w.r.t. the product topology on $M(A)$. Let $G_{\pi_t} \subset \text{Hom}(\pi_t, \pi_t)$ be the intrinsic group of the regular monoid $(\pi_t, \tilde{m}, \tilde{\eta})$ with topology defined in Proposition 2.3. Then $G \cong G_{\pi_t}$ as topological groups.

Proof. By Proposition 2.5 $M(A) \cong R(A)$ as unital algebras, and $R(A)$ and $\text{Hom}(\pi_t, \pi_t)$ are anti-isomorphic as unital $*$-algebras. Let $\rho : A \to A$ denote the linear map such that $\varphi(ab) = \varphi(b \rho(a))$ for $a, b \in A$. It suffices to show that for any $g \in R(A)$, we have $m \circ (g \otimes g) = g \circ m$ iff $\Delta g = g \otimes g$. But $m \circ (g \otimes g) = g \circ m$ means that $\tilde{m} \circ (g \otimes g)(a \otimes b) = g \circ \tilde{m}(a \otimes b)$, for $a, b \in A$, or $m \circ (g \otimes g)_* = m \circ (g \otimes g)_*$, which by faithfulness of φ, can be expressed as

$$\varphi(c \tilde{m}(ag \otimes bg)) = \varphi(c \tilde{m}(ab)) = \varphi(\rho^{-1}(g) c \tilde{m}(a \otimes b)),$$

for $a, b, c \in A$. Hence by Proposition 2.12 the formula $m \circ (g \otimes g) = g \circ m$ can be rewritten as

$$(\varphi \otimes \varphi)(\Delta c(\rho^{-1}(g))c)(a \otimes b)) = (\varphi \otimes \varphi)(\Delta c(a \otimes b)) = (\varphi \otimes \varphi)(\Delta c)(a \otimes b)(\rho \circ \rho) \Delta \rho^{-1}(g),$$

for $a, b, c \in A$. Thus again by faithfulness of φ, we see that $m \circ (g \otimes g) = g \circ m$ iff $\Delta g = g \otimes g$.

We assert now that $(\rho \otimes \rho) \Delta \rho^{-1} = \Delta$ for any discrete AQG, which clearly completes the proof of the proposition. Since $(S^2 \otimes \rho) \Delta = \Delta \rho$ for any AQG, we see that $(\rho \otimes \rho) \Delta \rho^{-1} = \Delta$ for discrete AQG. ■
2.3 The Absorbing Property

The following obvious fact will be used without further reference.

2.25 Lemma Let \((A, \Delta)\) be a AQG. If \(\theta\) is a \(*\)-representation of \((A, \Delta)\) on \(K\) then

\[
(\theta \times \pi_1)(a)(v \otimes x) = \sum_i \theta(a_i)v \otimes b_i \quad \text{where} \quad \sum_i a_i \otimes b_i = \Delta(a)(1 \otimes x),
\]

\[
(\pi_1 \times \theta)(a)(x \otimes v) = \sum_i a_i \otimes \theta(b_i)v \quad \text{where} \quad \sum_i a_i \otimes b_i = \Delta(a)(x \otimes 1)
\]

for \(v \in K\) and \(x \in A\).

2.26 Proposition Let \((A, \Delta)\) be an AQG. For every \(\theta \in \text{Rep}(A, \Delta)\) we have the absorption property

\[
\theta \times \pi_1 \cong \pi_1 \times \theta \cong I_\theta \times \pi_1 \cong \dim K \pi_1
\]

for \(\pi_1\), where \(I_\theta\) is the \(*\)-representation of \(A\) on \(K\) given by \(I_\theta(a) = \varepsilon(a)id_K\) for \(a \in A\).

Proof. We start by showing \(\theta \times \pi_1 \cong I_\theta \times \pi_1\). Define a linear map \(U_\theta : K \otimes A \to K \otimes A\) by

\[
U_\theta(\theta(a)v \otimes x) = \sum_i \theta(a_i)v \otimes x_i,
\]

where \(\sum_i a_i \otimes x_i = \Delta(x)(a \otimes 1)\) for \(a, x \in A\). To see that \(U_\theta\) is well-defined suppose \(\sum_j \theta(a_j)v^j \otimes x^j = 0\), where \(a_j, x^j \in A\) and \(v^j \in K\), and write \(\sum_j \Delta(x^j)(a^j \otimes 1) = \sum_j a_j^1 \otimes x_j^1\) with \(a_j^1, x_j^1 \in A\). We must show that \(\sum_{ij} \theta(a_j^1)v^j \otimes x^j = 0\) and in doing so, we can assume that \((x^j)\) are linear independent, so \(\theta(a_j^1)v^j = 0\) for all \(j\).

Pick a two sided local unit \(e\) for the collection \(\{a_j^1, x_j^1\}\) and a local unit \(e'\) for \(e\). Then

\[
\sum_{ij} \theta(a_j^1)v^j \otimes x_j^1 = \sum_{ij} (\theta(e) \otimes e)(\theta(a_j^1)v^j \otimes x_j^1) = (\theta(e) \otimes e)\sum_j (\theta(e) \otimes e)\sum_j \Delta(x^j)(a^j \otimes 1)\theta(a_j^1)v^j \otimes x_j^1 = 0
\]

as \(\theta(a_j^1)v^j = 0\) for all \(j\). Thus \(U_\theta\) is well-defined.

Furthermore, for \(a, b, x \in A\) and \(v \in K\), we have

\[
(\theta \times \pi_1)(b)U_\theta(\theta(a)v \otimes x) = \sum_i (\theta \times \pi_1)(b)(\theta(a_i)v \otimes x_i) = \sum_i \theta(b_i^1)\theta(a_i)v \otimes y_i^1 = \sum_i \theta(b_i^1 a_i)v \otimes y_i^1,
\]

where \(\sum_i a_i \otimes x_i = \Delta(x)(a \otimes 1)\) and \(\sum_i b_i^1 \otimes y_i^1 = \Delta(b)(1 \otimes x_i)\). But

\[
\sum_{ik} b_i^k a_i \otimes y_i^k = \sum_i \Delta(b)(1 \otimes x_i)(a_i \otimes 1) = \Delta(b)\Delta(x)(a \otimes 1) = \Delta(bx)(a \otimes 1),
\]

so \((\theta \times \pi_1)(b)U_\theta(\theta(a)v \otimes x) = U_\theta(\theta(a)v \otimes bx)\) for \(a, b, x \in A\) and \(v \in K\). On the other hand, if we write \(\Delta(b)(1 \otimes x) = \sum_i c_i \otimes z_i\), for \(b, x \in A\), and calculate

\[
(I_\theta \times \pi_1)(b)(\theta(a)v \otimes x) = \sum_i I_\theta(c_i)\theta(a)v \otimes z_i = \sum_i \varepsilon(c_i)\theta(a)v \otimes z_i = \theta(a)v \otimes (\sum_i \varepsilon(c_i)z_i) = \theta(a)v \otimes (\varepsilon \otimes i)[\Delta(b)(1 \otimes x)] = \theta(a)v \otimes bx,
\]

for \(a \in A\) and \(v \in K\), we see that

\[
(\theta \times \pi_1)(b)U_\theta(\theta(a)v \otimes x) = U_\theta(\theta(a)v \otimes bx) = U_\theta(I_\theta \times \pi_1)(b)(\theta(a)v \otimes x),
\]

for \(a, b, x \in A\) and \(v \in K\), so

\[
(\theta \times \pi_1)(b)U_\theta = U_\theta(I_\theta \times \pi_1)(b),
\]

for \(b \in A\) and therefore \(U_\theta \in \text{Hom}(I_\theta \times \pi_1, \theta \times \pi_1)\) in \(\text{Rep}(A, \Delta)\).
By the cancellation laws for \((A,\Delta)\), we see that \(U_\theta\) is invertible, and thus \(\theta \times \pi_\iota \cong I_\theta \times \pi_\iota\). In fact, the inverse of \(U_\theta\) in \(\text{Rep}(A,\Delta)\) is given by the following formula \(U_{\theta}^{-1}(\theta(a)v \otimes x) = \sum_i \theta(a_i)v \otimes x_i\), where

\[
\sum_i a_i \otimes x_i = ((S^{-1} \otimes \epsilon)\Delta(x))(a \otimes 1)
\]

for \(a, x \in A\) and \(v \in K\).

Similarly, one shows that the linear map \(V_\theta : A \otimes K \rightarrow A \otimes K\) given by

\[
V_\theta(x \otimes \theta(a)v) = \sum_i x_i \otimes \theta(a_i)v,
\]

for \(a, x \in A\) and \(v \in K\), and where \(\sum_j x_j \otimes a_j = \Delta(x)(1 \otimes a)\), is well-defined and is an isomorphism in \(\text{Hom}(\pi_\iota \times I_\theta, \pi_\iota \times \theta)\). Thus \(\pi_\iota \times I_\theta \cong \pi_\iota \times \theta\) in \(\text{Rep}(A,\Delta)\).

From the previously derived expression

\[
(I_\theta \times \pi_\iota)(b)(\theta(a)v \otimes x) = \theta(a)v \otimes bx,
\]

valid for \(a, b, x \in A\) and \(v \in K\), we see that \((I_\theta \times \pi_\iota)(b) = I_{E(K)} \otimes \pi_\iota(b)\), so \(I_\theta \times \pi_\iota \cong (\dim K)\pi_\iota\) and similarly \(\pi_\iota \times I_\theta \cong (\dim K)\pi_\iota\).

2.27 **Proposition** Let \((A,\Delta)\) be a discrete AQG and \(V_\theta \in \text{Rep}_f(A,\Delta)\). Then \(\pi_\iota \times \theta, \pi_\iota \times I_\theta, \theta \times \pi_\iota, I_\theta \times \pi_\iota \in\)

\[\text{Rep}_u(A,\Delta),\]

and the morphisms \(U_\theta, V_\theta\) considered in the preceding proposition are unitary.

Proof. In the discrete case \(\pi_\iota \in \text{Rep}_u(A,\Delta)\) by Proposition 2.5 and the same is true for \(\pi_\iota \times \theta\) and \(\theta \times \pi_\iota\). Since we know that \(U_\theta\) is invertible, we need only show that it is an isometry. (As always, the regular representation \(\pi_\iota\) is understood to come with its scalar product defined using \(\gamma>\).) Recall that \(U_\theta\) is defined by

\[
U\theta(\theta(a)v \otimes x) = \sum_i \theta(a_i)v \otimes x_i,
\]

where \(\sum_i a_i \otimes x_i = \Delta(x)(a \otimes 1)\) for \(a, x \in A\). We compute

\[
(U_\theta(\theta(a)v \otimes x), U_\theta(\theta(a)v \otimes x)) = \sum_{ij} (\theta(a_i)v \otimes x_i, \theta(a_j)v \otimes x_j)
\]

\[
= \sum_{ij} (\theta(a_i)v, \theta(a_j)v)(x_i^*x_j) = (\theta(\sum_{ij} a_i^*a_i v^*x_i^*x_j))(v,v)
\]

\[
= (\theta((\iota \otimes \varphi)(a_i^*a_i \otimes x_i^*x_j)v,v) = (\theta((\iota \otimes \varphi)([\Delta(x)(a \otimes 1)]^*\Delta(x)(a \otimes 1))v,v)
\]

\[
= (\theta((\iota \otimes \varphi)(a_i^*a_i \Delta(x^*x)(a \otimes 1))v,v) = (\theta(a_i^*a_i v^*x_i^*x_j)v,v)
\]

\[
= (\theta(a)v, \theta(a)v)(x,x) = (\theta(a)v \otimes x, \theta(a)v \otimes x),
\]

for \(a, x \in A\) and \(v \in K\). Thus \(U_\theta\) is an isometry. The same is true for \(V_\theta\) by a similar computation. \(\blacksquare\)

2.28 **Remark** 1. Let \(\theta\) be a \(*\)-representation of \((A,\Delta)\) with \(U_\theta\) as above. Clearly, there is a \(*\)-representation \(\tilde{\theta}\) of \((A,\Delta_{op})\) which coincides with \(\theta\) as a map from \(A\) to \(\text{End} K\). It is then easy to see that \(V_\theta = \Sigma U_{\tilde{\theta}}\Sigma^{-1}\), where \(\Sigma : K \otimes A \rightarrow A \otimes K\) is the flip map. This observation obviates separate proofs for \(V_\theta\).

2. Note that the assumptions on \((A,\Delta)\) and \(\theta\) were only made in order for \(U_{\theta}^*\) to be definable in \(\text{Rep}_u(A,\Delta)\). The computation showing that \(U_\theta\) is isometric holds in general and provides an alternative proof for the well-definedness of \(U_\theta\). \(\blacksquare\)
2.30 Proposition The morphisms \(V_{\theta} : \pi_t \times I_\theta \to \pi_t \times \theta \) are natural w.r.t. \(\theta \), i.e. the diagrams
\[
\begin{array}{c}
\pi_t \times I_\theta \xrightarrow{V_{\theta}} \pi_t \times \theta \\
\downarrow \text{id}_{\pi_t} \otimes s \quad \downarrow \text{id}_{\pi_t} \otimes s \\
\pi_t \times I_{\theta'} \xrightarrow{V_{\theta'}} \pi_t \times \theta'
\end{array}
\]
commute for all \(s : \theta \to \theta' \), and similarly for \(U_{\theta} \).

Proof. This is obvious by definition of \(V_{\theta} \). \(\blacksquare \)

Having defined monoids in tensor categories, we will also need the notion of a module over a monoid.

2.31 Definition Let \(C \) be a tensor category and \((Q, m)\) a semigroup in \(C \). Then a (left) \(Q \)-module is a pair \((X, \mu)\), where \(X \in C \) and \(\mu : Q \otimes X \to X \) satisfies
\[
\mu \circ m \otimes \text{id}_X = \mu \circ \text{id}_Q \otimes \mu.
\]
For a monoid \((Q, m, \eta)\) we require in addition that \(\mu \circ \eta \otimes \text{id}_X = \text{id}_X \).

With
\[
\text{Hom}_{Q-mod}((X, \mu), (X', \mu')) = \{ s \in \text{Hom}(X, X') \mid s \circ \mu = \mu' \circ \text{id}_Q \otimes s \}
\]
as morphisms, the \(Q \)-modules form a category which we denote by \(Q-mod \).

2.32 Proposition The diagram
\[
\begin{array}{c}
\pi_t \times \pi_t \times I_\theta \xrightarrow{\tilde{m} \otimes \text{id}_\theta} \pi_t \times I_\theta \\
\downarrow \text{id}_{\pi_t} \otimes V_{\theta} \quad \downarrow V_{\theta} \\
\pi_t \times \pi_t \times \theta \xrightarrow{\tilde{m} \otimes \text{id}_\theta} \pi_t \times \theta
\end{array}
\]
commutes. We have similar commutative diagrams for the morphisms \(V_{\theta}^* : \pi_t \times \theta \to \pi_t \times I_\theta \).

Proof. We must show that \((\tilde{m} \otimes \text{id})(\tilde{m} \otimes \text{id} V_{\theta}) \circ (\phi \otimes \iota)(\tilde{\pi} \otimes \iota V_{\theta})\) is a map from \(A \otimes A \otimes K \) to \(A \otimes K \). Let \(a, c, x, y \in A \) and \(v \in K \) and write \(\Delta(a) \otimes 1 \otimes a = \sum_i x_i \otimes a_i \), where \(a_i, x_i \in A \). Then
\[
(\phi \otimes \iota)(\tilde{m} \otimes \iota V_{\theta})(\tilde{m} \otimes \iota V_{\theta})(y \otimes x \otimes \theta(a)v) = \sum_i \phi(c \tilde{m}(y \otimes x_i))(\theta(a_i)v)
\]
\[
= \theta \left(\sum_i (\phi \otimes \varphi)(\Delta(c)(y \otimes x_i) \otimes a_i) \right)(\theta(a_i)v)
\]
\[
= \theta((\phi \otimes \varphi \otimes \iota)(\Delta(c) \otimes 1)(\Delta(x))(y \otimes 1 \otimes a))(\theta(a)v),
\]
whereas if we write
\[
\Delta(\phi \otimes \iota)((S^{-1} \otimes \iota) \Delta(x))(y \otimes 1) = \sum_j y_j \otimes b_j
\]
for \(b_j, y_j \in A \) and use 2. in Proposition 2.12, we get
\[
(\phi \otimes \varphi \otimes \iota)V_{\theta}(\tilde{m} \otimes \iota)(y \otimes x \otimes \theta(a)v) = (\phi \otimes \varphi \otimes \iota)V_{\theta}((\phi \otimes \iota)\Delta(x))(y \otimes 1) \otimes \theta(a)v)
\]
\[
= \theta \left(\sum_j \phi(cy_j)b_j \right) v.
\]
Hence \((\tilde{m} \otimes \iota)(\iota \otimes V_{\theta}) = V_{\theta}(\tilde{m} \otimes \iota)\) follows if
\[
(\phi \otimes \varphi \otimes \iota)((\Delta(c) \otimes 1)(1 \otimes \Delta(x))(y \otimes 1 \otimes a)) = \sum_j \phi(cy_j)b_j.
\]
Now,
\[
\sum_j \varphi(cy_j)b_j = (\varphi \otimes \iota)(\sum_j y_j \otimes b_j) = (\varphi \otimes \iota)[(S^{-1} \otimes \iota)\Delta(x)][y \otimes 1][(1 \otimes a)],
\]
so \((\tilde{m} \otimes \iota) (\iota \otimes V_{\theta}) = V_{\theta}(\tilde{m} \otimes \iota)\) if
\[
(\varphi \otimes \iota)[(S^{-1} \otimes \iota)\Delta(x)][y \otimes 1] = (\varphi \otimes \iota)((\Delta(c) \otimes 1)(1 \otimes \Delta(x))(y \otimes 1 \otimes 1)).
\]
But
\[
\text{L.H.S.} = (\varphi \otimes \iota)(\delta S^{-1}(\varphi \otimes \iota)(\Delta(c) \otimes 1)(1 \otimes \Delta(x)))
= (\delta S^{-1}(\varphi \otimes \iota)\Delta(c) \otimes 1)(1 \otimes \Delta(x))
\]

whereas by strong left-invariance of \(\varphi\), we get
\[
\text{R.H.S.} = (\delta \otimes \iota)(\delta \otimes \iota)(\Delta(c) \otimes 1)(1 \otimes \Delta(x))
= (\delta \otimes \iota)(\delta \otimes \iota)(\Delta(c) \otimes 1)(1 \otimes \Delta(x)),
\]
as desired. Now, replacing \(V_{\theta}\) by its inverse \(V_{\theta}^*\), the direction of the vertical arrows in the diagram is reversed, and we see that also \(V_{\theta}^*\) is a \(\pi_t\)-module morphism. ■

2.33 COROLLARY The morphisms \(V_{\theta} : \pi_t \times I_\theta \rightarrow \pi_t \times \theta\) and \(V_{\theta}^* : \pi_t \times \theta \rightarrow \pi_t \times I_\theta\) are morphisms of \(\pi_t\)-modules.

2.34 PROPOSITION Let \((A, \Delta)\) be a discrete AQG. Then
\[
(\tilde{m} \otimes \iota)(y \otimes (\Delta(x)(1 \otimes a))) = \Delta((\tilde{m} (y \otimes x))(1 \otimes a))
\]
holds for \(x, y, a \in A\).

Proof. First note that for \(V_{\theta}\) with \(\theta = \pi_t\), we have \(V_{\theta}(x \otimes a) = \Delta(x)(1 \otimes a)\) for \(a, x \in A\). To see this write \(\Delta(x)(1 \otimes a) = \sum_i x_i \otimes a_i\) with \(a_i, x_i \in A\) and pick a right-sided local unit \(e \in A\) for \(\{a, a_i\}\). Then
\[
V_{\theta}(x \otimes a) = V_{\theta}(x \otimes \pi_t(a_i)e) = \sum_i x_i \otimes \pi_t(a_i)e = \sum_i x_i \otimes a_i e = \sum_i x_i \otimes a_i = \Delta(x)(1 \otimes a).
\]
By Proposition 2.32 we have \((\tilde{m} \otimes \iota)(\iota \otimes V_{\theta}) = V_{\theta}(\tilde{m} \otimes \iota)\). Thus
\[
(\tilde{m} \otimes \iota)(y \otimes (\Delta(x)(1 \otimes a))) = (\tilde{m} \otimes \iota)(\iota \otimes V_{\theta})(y \otimes x \otimes a)
= V_{\theta}(\tilde{m} \otimes \iota)(y \otimes x \otimes a) = \Delta((\tilde{m} (y \otimes x))(1 \otimes a))
\]
for \(x, y, a \in A\). ■

2.35 REMARK Clearly, it follows from the proof of this proposition that \(\tilde{m}\) has the property stated in the proposition iff \(V_{\pi_t}\) is a \(\pi_t\)-module map. In the discrete case, where every representation is a direct sum of representations contained in \(\pi_t\), Proposition 2.32 can therefore also be deduced using the naturality property of Proposition 2.30. ■

End of proof of Proposition 2.21. If \((A, \Delta)\) is finite dimensional, we can put \(a = 1\) in (2.2) and obtain
\[
(\tilde{m} \otimes \iota)(\iota \otimes \Delta)(y \otimes x) = \Delta((\tilde{m} (y \otimes x))
\]
for \(x, y \in A\). In categorical terms this is the equality \(\tilde{m} \otimes \iota \circ \text{id}_{\pi_t} \circ \pi_t \otimes \Delta = \Delta \circ \tilde{m}\) in \(\text{End}(\pi_t \otimes \pi_t)\). Using the \(*\)-operation and \(\Delta^* = \tilde{m}\) we also find \(\text{id}_{\pi_t} \circ \tilde{m} \circ \Delta \otimes \text{id}_{\pi_t} = \Delta \circ \tilde{m}\). This completes the proof of the Frobenius property in Proposition 2.21. ■

We close this section by summarizing the results on the regular representation.

2.36 THEOREM Let \((A, \Delta)\) be an AQG with left regular representation \(\pi_t\). Then there exists a morphism \(\tilde{m} : \pi_t \times \pi_t \rightarrow \pi_t\) such that \((\pi_t, \tilde{m})\) is a semigroup in the tensor category \(\text{Rep}(A, \Delta)\). The representation \(\pi_t\) has the absorbing property \(\pi_t \otimes \theta \cong \pi_t \times I_\theta \cong \dim K \pi_t\) w.r.t. a natural family of equivalences \(V_{\theta} : \pi_t \times I_\theta \rightarrow \pi_t \times \theta\) of left \(\pi_t\)-modules. Similarly, there are natural equivalences \(U_{\theta} : I_\theta \times \pi_t \rightarrow \theta \times \pi_t\) of right \(\pi_t\)-modules. These equivalences are unitary whenever \((A, \Delta)\) is discrete and \(\theta \in \text{Rep}_f(A, \Delta)\).

There exists a morphism \(\tilde{m} : \varepsilon \rightarrow \pi_t\) such that \((\pi_t, \tilde{m}, \tilde{m})\) is a monoid if \((A, \Delta)\) is discrete. In the discrete case, there exists a non-monoidal \(*\)-subcategory \(\text{Rep}_*(A, \Delta) \subset \text{Rep}(A, \Delta)\) containing \(\pi_t\).
3 On Monoids, Embedding Functors and AQG

3.1 From Monoids to Embedding Functors

Some of the results in this section will be formulated over any ground field \(F \). Let \(\text{Vect}_F \) denote the tensor category of finite dimensional vector spaces over \(F \).

3.1 Lemma Let \(C \) be an \(F \)-linear semisimple category. Then an \(F \)-linear functor \(F: C \to \text{Vect}_F \) is faithful (i.e. \(F(s) = 0 \) for \(s: X \to Y \) implies \(s = 0 \)) if \(F(X) \) is non-zero for every irreducible \(X \in C \).

Proof. Suppose \(F(X) \) is non-zero for every irreducible \(X \) and consider \(s: X \to Y \) such that \(F(s) = 0 \). Let \(I_C \) be the set of isomorphism classes of irreducible objects with chosen representatives \(X_i, i \in I_C \). Let \((v_{i\alpha}) \) be bases in \(\text{Hom}(X_i, X) \) with dual bases \((v_{i\alpha}^*) \) satisfying \(v_{i\alpha}^* \circ v_{j\beta} = \delta_{ij} \delta_{\alpha\beta} \text{id}_{X_i} \) and \(\sum_{\alpha} v_{i\alpha} \circ v_{i\alpha}^* = \text{id}_X \). Pick \(w_{j\beta} \in \text{Hom}(X_i, Y) \) and \(w_{i\alpha}^* \) similarly. Since \(\text{Hom}(X_i, X_j) = \delta_{ij} \text{id}_{X_i} F \), which implies \(w_{j\beta} \circ s \circ v_{i\alpha} = \delta_{ij} c_{i\alpha\beta} \text{id}_{X_i} \), we can write

\[
s = \sum_{i\alpha,j\beta} w_{j\beta} \circ w_{i\alpha}^* \circ s \circ v_{i\alpha} \circ v_{i\alpha}^* = \sum_{i\alpha,j\beta} c_{i\alpha\beta} w_{i\alpha} \circ v_{i\alpha}.
\]

Thus

\[
0 = F(w_{k\eta}^*) \circ F(s) \circ F(v_{k\xi}) = \sum_{i\alpha,j\beta} c_{i\alpha\beta} F(w_{k\eta}^* \circ w_{i\beta} \circ v_{i\alpha} \circ v_{k\xi}) = c_{k\xi\eta} F(\text{id}_{X_k}),
\]

for \(k, \xi \) and \(\eta \). By assumption \(F(\text{id}_{X_k}) \neq 0 \) for \(k \in I_C \), thus all \(c_{i\alpha\beta} \) vanish and \(s = 0 \). \qed

3.2 Proposition Let \(C \) be a semisimple \(F \)-linear tensor category with \(\text{End} 1 \cong F \), and let \((Q, m, n) \) be a monoid in \(C \) such that:

1. \(\dim \text{Hom}_C(1, Q) = 1 \).
2. For every \(X \in C \), there is an isomorphism \(Q \otimes X \cong n(X)Q \) of \(Q \)-modules with \(n(X) \in \mathbb{N} \).

Then the functor \(E: C \to \text{Vect}_F \) defined by \(X \mapsto \text{Hom}_C(1, Q \otimes X) \) and

\[
E(s)\phi = \text{id}_Q \otimes s \circ \phi,
\]

where \(s: X \to Y \) and \(\phi \in \text{Hom}(1, Q \otimes X) \), is a faithful (strong) tensor functor with \(\dim E(X) = n(X) \).

Proof. We have \(E(X) = \text{Hom}(1, Q \otimes X) \cong \text{Hom}(1, n(X)Q) \cong E(X) \text{id}(X) \text{Hom}(1, Q) \cong F^{n(X)} \), thus \(E(X) \) is a vector space of dimension \(n(X) \). Since \(E(X) \neq 0 \) for every \(X \in C \), Lemma 3.1 tells us that \(E \) is faithful.

To see that \(E \) is monoidal first observe that \(E(1) = \text{Hom}(1, Q) = F \eta \) by 2. Thus there is a canonical isomorphism \(e: F = 1_{\text{Vect}_F} \to E(1) = \text{Hom}(1, Q) \) defined by \(c \mapsto c\eta \). Next we define morphisms

\[
d_{X,Y}^E: E(X) \otimes E(Y) \to E(X \otimes Y), \quad \phi \otimes \psi \mapsto m \otimes \text{id}_X \otimes \phi \otimes \text{id}_Y \otimes \psi.
\]

In terms of a diagram, this means

\[
d_{X,Y}^E(\phi \otimes \psi) = \psi
\]

By definition (3.1) of the map \(E(s): E(X) \to E(Y) \) it is obvious that the family \((d_{X,Y}^E) \) is natural w.r.t. both arguments. The equation

\[
d_{X_1 \otimes X_2, X_3}^E \circ d_{X_1, X_2}^E \otimes \text{id}_{E(X_3)} = d_{X_1, X_2 \otimes X_3}^E \circ \text{id}_{E(X_1)} \otimes d_{X_2, X_3}^E \quad \forall X_1, X_2, X_3 \in C
\]
required from a tensor functor is immediate by associativity of m:

That $(E, (d_{X,Y}, e))$ satisfies the unit axioms is almost obvious. The first condition follows by

$$d_{X,Y} (id_E(X) \otimes e) \phi = d_{X,Y} (\phi \otimes \eta) = m \otimes id_X \circ id_Q \otimes \phi \circ \eta = \phi,$$

and the second is shown analogously.

So far we have shown that E is a weak tensor functor for which $e : 1_{\text{Vect}_F} \to E(1)$ is an isomorphism. In order to conclude that E is a (strong) tensor functor it remains to show that the morphisms $d_{X,Y}^F$ are isomorphisms.

Let $X, Y \in C$. We consider the bilinear map

$$\gamma_{X,Y} : \text{Hom}_{Q\text{-mod}}(Q, Q \otimes X) \boxtimes \text{Hom}_{Q\text{-mod}}(Q, Q \otimes Y) \to \text{Hom}_{Q\text{-mod}}(Q, Q \otimes X \otimes Y),$$

$$s \boxtimes t \mapsto s \otimes id_Y \circ t,$$

and we write \boxtimes rather than \otimes_F for the tensor product of Vect_F in order to avoid confusion with the tensor product in $Q\text{-mod}$. By 2. we have Q-module morphisms $s_i : Q \to Q \otimes X$, $s'_i : Q \otimes X \to Q$ for $i = 1, \ldots, n(X)$ satisfying $s'_i \circ s_j = \delta_{ij} id_Q$, and $\sum_i s_i \circ s'_i = id_{Q \otimes X}$, and similar morphisms $t_i, t'_i, i = 1, \ldots, n(Y)$ with X replaced by Y. Then the $\gamma_{ij} = \gamma_{X,Y}(s_i \otimes t_j)$ are linearly independent because $\gamma_{ij} \circ \gamma_{ij} = \delta_{ij} \delta_{ij} id_Q$, where $\gamma_{ij} = t'_j \circ s'_i \otimes id_Y$. Bijectivity of $\gamma_{X,Y}$ follows from the fact that both the domain and codomain of $\gamma_{X,Y}$ have dimension $n(X)n(Y)$.

For any $X \in C$ we have a Q-module $(Q \otimes X, m \otimes id_X)$. If (Q, m, η) is a monoid in the tensor category then it is straightforward to check that the following maps are inverses of each other:

$$\delta_X : \text{Hom}_{Q\text{-mod}}(Q, Q \otimes X) \to \text{Hom}(1, Q \otimes X), \quad s \mapsto s \circ \eta,$$

$$\delta_X^{-1} : \text{Hom}(1, Q \otimes X) \to \text{Hom}_{Q\text{-mod}}(Q, Q \otimes X), \quad \tilde{s} \mapsto m \otimes id_X \circ id_Q \circ \tilde{s}.$$

But

$$d_{X,Y}^F = \delta_X \otimes \gamma_{X,Y} \circ \delta_X^{-1} \boxtimes \delta_Y^{-1},$$

which shows that $d_{X,Y}^F$ is an isomorphism for every $X, Y \in C$.

3.3 Remark
From the assumptions it follows that $Q \cong \bigoplus_i m(X_i)X_i$. Such an object Q cannot exist in C if C has infinitely many isomorphism classes of irreducible objects. This is the reason why we consider monoids living in a larger category \hat{C}.

The previous considerations being valid over any field F, we now turn to $*$-categories where $F = C$.

3.4 Proposition
Let C be a semisimple tensor $*$-category and let (Q, m, η) be a monoid in \hat{C} satisfying the conditions of Proposition 3.2 and in addition:

1. $Q \in \mathcal{C}_*$.

2. For every $s \in \text{Hom}_{Q\text{-mod}}(Q, Q \otimes X)$ we have $s^* \in \text{Hom}_{Q\text{-mod}}(Q \otimes X, Q)$.

3. $Q \in \mathcal{C}_*$.

4. For every $s \in \text{Hom}_{Q\text{-mod}}(Q, Q \otimes X)$ we have $s^* \in \text{Hom}_{Q\text{-mod}}(Q \otimes X, Q)$.

Then the functor E defined in Proposition 3.2 is $*$-preserving w.r.t. the scalar products on $E(X)$ given by $(\phi, \psi)_{id_Q} = \psi^* \circ \phi$, and the isomorphisms $d_{X,Y}$ are unitary for all $X, Y \in \mathcal{C}$.

Proof. Clearly the inner products are positive definite, thus the $E(X)$ Hilbert spaces. Let $s : X \to Y$, $\phi \in \text{Hom}(1, Q \otimes X)$ and $\psi \in \text{Hom}(1, Q \otimes Y)$. Then

$$(E(s)\phi, \psi) = \psi^* \circ id_Q \circ s \circ \phi = (\phi^* \circ id_Q \circ s^* \circ \psi)^* = (E(s^*)\psi, \phi) = (\phi, E(s^*)\psi).$$

Thus $E(s^*) = E(s)^*$, so E is a $*$-preserving functor.

By assumption 2 we have the isomorphism $Q \otimes X \cong n(X)Q$ in the category $Q - \text{mod}$, to wit there exist $s_i \in \text{Hom}_{Q-mod}(Q, Q \otimes X)$, $t_i \in \text{Hom}_{Q-mod}(Q \otimes Q, Q), i = 1, \ldots, n(X)$ satisfying $t_i \circ s_j = \delta_{ij} id_Q$ and $\sum_i s_i \circ t_i = id_Q \otimes X$. Now 4 implies that we can choose the s_i, t_i such that $t_i = s_i^*$. We must show that $d_{X,Y}^E : E(X) \otimes E(Y) \to E(X \otimes Y)$ is unitary for every $X, Y \in \mathcal{C}$. Since we already know that it is an isomorphism, it suffices to show that it is an isometry. Since δ_X and δ_Y are isomorphisms, we need only show that

$$(d_{X,Y}^E(\delta_X(s_i) \otimes \delta_Y(s_j)), d_{X,Y}^E(\delta_X(s_{ij}) \otimes \delta_Y(s_{ij})))_{E(X \otimes Y)} = (\delta_X(s_i), \delta_X(s_{ij}))_{E(X)}(\delta_Y(s_j), \delta_Y(s_{ij}))_{E(Y)}$$

for all i, j, j'. But definition of the inner products, the R.H.S. equals

$$(\eta^* \circ s_{ij}^* \circ s_i \circ \eta)(\eta^* \circ s_{ij}^* \circ s_j \circ \eta) = \delta_{ii'}\delta_{jj'}(\eta^* \circ \eta)^2 = \delta_{ii'}\delta_{jj'},$$

whereas the L.H.S. equals

$$(\delta_{X \otimes Y} \circ \gamma_{X,Y}(s_i \otimes s_j), \delta_{X \otimes Y} \circ \gamma_{X,Y}(s_{ij} \otimes s_{ij}))_{E(X \otimes Y)} = (\delta_{X \otimes Y} \circ (s_i \otimes id_Y) \circ s_j, \delta_{X \otimes Y} \circ (s_{ij} \otimes id_Y) \circ s_{ij})_{E(X \otimes Y)}$$

$$= ((s_i \otimes id_Y) \circ s_j \circ \eta, (s_{ij} \otimes id_Y) \circ s_{ij} \circ \eta)_{E(X \otimes Y)} = \eta^* \circ s_{ij}^* \circ (s_{ij} \otimes id_Y) \circ (s_i \otimes id_Y) \circ s_j \circ \eta = \delta_{ii'}\delta_{jj'}\eta^* \circ \eta = \delta_{ii'}\delta_{jj'},$$

as desired. ■

3.5 REMARK In the situation where $\mathcal{C} = \text{Rep}_f(A, A)$ for a discrete AQG, we have seen that $\hat{\mathcal{C}} \cong \text{Rep}(A, A)$ and $\hat{\mathcal{C}}^* \cong \text{Rep}^*(A, A)$. The regular monoid (π_1, \bar{m}, n) satisfies all assumptions of Proposition 3.4: As to assumption 3, recall from Proposition 2.5 that $\pi_1 \in \text{Rep}_e(A, \Delta)$. Assumption 4 follows from unitarity of the isomorphism $V_0 : \pi_1 \times I_0 \to \pi_1 \times \theta$ and the fact that V_0 and V_0^* are morphisms of π_1-modules. □

3.6 LEMMA Let \mathcal{C} be as in Proposition 3.2. Let $Q \in \hat{\mathcal{C}}$ be a direct sum of irreducible objects in \mathcal{C} with finite multiplicities, where 1 appears with multiplicity one. Consider the functor $\mathcal{C} \to \text{Vect}_{\mathbb{F}}$ defined by $E(X) = \text{Hom}(\mathbf{1}, Q \otimes X)$. Then the map $a : \text{End}_Q \to \text{Nat}_E$, $s \mapsto (a_X(s))$ with $a_X(s) = s \otimes id_X \in \text{End}_E(X)$, is an isomorphism. It restricts to an isomorphism $\text{Aut}_Q \to \text{Aut}_E$.

Proof. That $(a_X(s))$ is a natural transformation from E to itself is obvious. Injectivity follows from $a_1(s) = s \otimes id_1 = s$. The fact $Q \cong \oplus_i n_i X_i$, where i runs through I and $n_i \in \mathbb{Z}_{+}$, implies $\text{End}_Q \cong \prod_i M_{n_i}(\mathbb{F})$. On the other hand, by semisimplicity of \mathcal{C} we have $\text{Nat}_E \cong \prod_i \text{End}_E(X_i)$. Now it is easy to see that the composition of the latter two isomorphisms with the map $a : \text{End}_Q \to \text{Nat}_E$ preserves the factors in the respective direct products. Then surjectivity follows from $\text{dim} E(X_i) = n_i$. ■

3.7 LEMMA Let \mathcal{C} and the monoids (Q, m, n) and (Q', m', n') be as in Proposition 3.2. Assume in addition that \mathcal{C} has duals and that Q, Q' are direct sums of irreducibles in \mathcal{C} with finite multiplicities. Let $E, E' : \mathcal{C} \to \text{Vect}_{\mathbb{F}}$ be the ensuing embedding functors. Then there is a bijection between monoidal natural isomorphisms $b : E \to E'$ and isomorphisms $s : Q \to Q'$ of monoids.

Proof. One direction is easy: If $s : Q \to Q'$ is an isomorphism such that $s \circ m = m' \circ s \circ s$ and $\eta = \eta' \circ s$, then we define $a_X(s) : E(X) \to E'(X)$ by $a_X(s) \phi = s \otimes id_X \circ \phi \in E'(X)$ for $\phi \in E(X)$. The family (a_X) obviously is a natural isomorphism of E and E', and that it is monoidal, i.e. satisfies $d_{X,Y}^E \circ a_X \circ a_Y = a_{X \otimes Y} \circ d_{X,Y}^E$ for all X, Y, is obvious by the definition of d^E, d^E' and the fact that s is an isomorphism of monoids.

As to the converse, the existence of a monoidal natural isomorphism $b : E \to E'$ implies $\text{dim} \text{Hom}(\mathbf{1}, Q \otimes X) = \text{dim} \text{Hom}(\mathbf{1}, Q' \otimes X)$ for $X \in \mathcal{C}$. By duality we have $\text{dim} \text{Hom}(X_i, Q) = \text{dim} \text{Hom}(X_i, Q')$ for all irreducible $X_i \in \mathcal{C}$, which implies that Q and Q' are isomorphic. Fix an arbitrary isomorphism $s : Q' \to Q$ and consider
the monoid \((Q, m'', \eta'')\) where \(m'' = s \circ m' \circ s^{-1} \circ s^{-1}\) and \(\eta'' = s \circ \eta'\). Let \(E''\) be the embedding functor corresponding to \((Q, m'', \eta'')\). By construction, \((Q, m'', \eta'') \cong (Q', m', \eta')\), and by the preceding considerations we have the monoidal natural isomorphism \(a(s) : (a_X(s)) : E' \rightarrow E''\). If \(b : E \rightarrow E'\) is a monoidal natural isomorphism, then the composition \(c = a(s) \circ b : E \rightarrow E''\) is monoidal, and there exists \(t \in \text{Aut} \, Q\) such that \(c = c(t)\). Since \(E\) and \(E''\) coincide as functors, the condition \(c_{X,Y} \circ d_{X,Y}^{E} = d_{X,Y}^{E'} \circ c_X \circ c_Y\) is equivalent to

\[
(t \circ m') \circ \text{id}_{X \otimes Y} \circ \text{id}_Q \otimes \text{id}_Y \circ \psi = (m'' \circ t \otimes t) \circ \text{id}_{X \otimes Y} \circ \text{id}_Q \otimes \phi \circ \psi \circ \text{id}_Y \circ \psi
\]

for \(X, Y \in C\) and \(\phi \in E(X), \psi \in E(Y)\). Since \(C\) has duals, this means that

\[
m'' \circ t \otimes t \circ u \otimes v = t \otimes m \circ u \otimes v
\]

for \(X, Y \in C\) and \(u : X \rightarrow Q, v : Y \rightarrow Q\). But \(Q\) is a direct sum of simple objects in \(C\), so we can cancel \(u \otimes v\) and conclude \(m'' \circ t \otimes t = t \circ m\). The equality \(\eta'' \circ t = \eta\) is proven in a similar fashion using the morphisms \(e_E : F \rightarrow E(1)\) and \(e_{E''} : F \rightarrow E''(1)\). Thus we have an isomorphism \(t : (Q, m, \eta) \rightarrow (Q', m', \eta')\) of monoids and composing with the isomorphism \(s^{-1} : (Q, m'', \eta'') \rightarrow (Q', m', \eta')\) implies the claim. Clearly this gives us a bijection between isomorphisms of embedding functors and of monoids, respectively.

3.8 Remark Having assumed throughout that the tensor category \(C\) is strict, we now comment briefly on the non-strict case. If a tensor category \(C\) has a non-trivial associativity constraint

\[
\alpha_{X,Y,Z} : (X \otimes Y) \otimes Z \rightarrow X \otimes (Y \otimes Z),
\]

the definition of a monoid in \(C\) is changed in an obvious way: The associativity condition becomes

\[
m \circ (m \otimes \text{id}_Q) = m \circ (\text{id}_Q \otimes m) \circ \alpha_{Q,Q,Q},
\]

and the first equation in Definition 2.31 relating elements in \(\text{Hom}((Q \otimes Q) \otimes X, X)\) becomes

\[
\mu \circ m \otimes \text{id}_X = \mu \circ \text{id}_Q \otimes \mu \circ \alpha_{Q,Q,X}.
\]

It then remains true that an absorbing monoid gives rise to an embedding functor, but we omit the proofs.

3.2 Main Result

Given a discrete AQG it is occasionally convenient to consider an abstract tensor *-category \(\text{Rep}_{\text{abs}}^f(A, \Delta)\) together with an embedding functor \(E\), rather than the concrete category \(\text{Rep}_f(A, \Delta)\) and the forgetful functor \(K\).

3.9 Lemma Let \((A, \Delta)\) be a discrete AQG and write \(C = \text{Rep}^f_{\text{abs}}(A, \Delta)\). Let \(E : C \rightarrow \mathcal{H}\) be the obvious embedding functor. Let \((\pi_i, m, \eta)\) be the regular monoid in \(C \cong \text{Rep}(A, \Delta)\) and \(E' : C \rightarrow \mathcal{H}\) the embedding functor that it gives rise to by Proposition 3.4. Then there exists a unitary equivalence \(u : E \rightarrow E'\) of tensor functors.

Proof. For \(X \in C\) we have \((E(X), \pi_X) \in \text{Rep}(A, \Delta)\), and let us write \(V_X\) instead of \(V_{\pi_X}\). For \(\phi \in E(X)\) define \(u_X \phi \in A \otimes E(X)\) by \(u_X \phi = V_X(I_0 \otimes \phi)\). Then

\[
(\pi_1 \times \pi_X)(a)u_X \phi = (\pi_1 \times \pi_X)(a)V_X(I_0 \otimes \phi) = V_X(\pi_1 \times I_{\pi_X})(I_0 \otimes \phi) = V_X(\pi_1 \otimes \varepsilon)(\Delta(a)(I_0 \otimes \phi) = V_X(\pi_1(a)I_0 \otimes \phi) = V_X(\varepsilon(a)I_0 \otimes \phi) = \varepsilon(a)u_X \phi,
\]

thus \(u_X \phi \in \text{Hom}(\varepsilon, \pi_1 \times \pi_X)\). In order to show that \((u_X)\) is a natural transformation, we consider \(s : X \rightarrow X'\) and compute

\[
u_X : E(s) \phi = V_X(I_0 \otimes s \phi) = V_X(1 \otimes s)(I_0 \otimes \phi) = (1 \otimes s)V_X(I_0 \otimes \phi) = (1 \otimes s)u_X \phi = E'(s)u_X \phi,
\]

where we have used Proposition 2.30. Since \(V_X\) is invertible, the map \(\phi \mapsto u_X \phi\) is injective and therefore bijective by equality of the dimensions.

Thus \((u_X)\) is a natural isomorphism. It remains to show that it is monoidal, i.e.

\[
d_{X,X'}^{E'} \circ u_X \otimes u_{X'} = u_{X \otimes X'}
\]
for $X, X' \in \mathcal{C}$. Here we have as usual identified the vector spaces $E(X) \otimes E(X')$ and $E(X \otimes X')$. Let $\phi \in E(X)$ and $\phi' \in E(X')$. Then
\[
\phi_{X \otimes X'}(\phi \otimes \phi') = V_{X \otimes X'}(I_0 \otimes \phi \otimes \phi'),
\]
whereas
\[
d_{X \otimes X'}^\phi \circ (u_X \otimes u_{X'})(\phi \otimes \phi') = \left(\tilde{m} \otimes \text{id}_X \otimes \text{id}_{X'}\right) \circ (\text{id}_A \otimes u_X \phi \otimes \text{id}_{X'}) \circ u_{X'} \circ \phi' = \left(\tilde{m} \otimes \iota \otimes \iota\right)((V_{X'})^4(V_X)^{23}(1 \otimes 1 \otimes \phi \otimes \phi')).
\]
Thus we must show that
\[
(V_{X \otimes X'}(I_0 \otimes \phi \otimes \phi')) = VX(\text{id} \otimes \tilde{m} \otimes \iota \otimes \iota)((V_{X'})^4(V_X)^{23}(1 \otimes 1 \otimes \phi \otimes \phi')).
\]
By non-degeneracy of π_X and $\pi_{X'}$ we may assume $\phi = \pi_X(a)v$ and $\phi' = \pi_{X'}(b)v'$, for $a, b \in A$ and $v \in E(X)$ and $v' \in E(X')$. By the definition of V_X, $V_{X'}$ and $V_{X \otimes X'}$, it thus suffices to show that
\[
\left(\tilde{m} \otimes \iota \otimes \iota\right)((\Delta(I_0))^{14}(\Delta(I_0))^{23}(1 \otimes 1 \otimes a \otimes b)) = (\Delta \otimes \iota)((\Delta(I_0))^{14}(\Delta(I_0))^{23}(1 \otimes 1 \otimes a \otimes b))
\]
for $a, b \in A$. Write $\Delta(I_0)(1 \otimes b) = \sum_i a_i \otimes b_i$ for $a_i, b_i \in A$. Then by Proposition 2.34 and $\tilde{m}(\text{id} \otimes \tilde{\eta}) = \text{id}_{\pi}$, we get
\[
\left(\tilde{m} \otimes \iota \otimes \iota\right)((\Delta(I_0))^{14}(\Delta(I_0))^{23}(1 \otimes 1 \otimes a \otimes b)) = \sum_i (\tilde{m} \otimes \iota \otimes \iota)(a_i \otimes (\Delta(I_0)(1 \otimes a) \otimes b_i)
\]
\[
= \sum_i (\Delta \otimes \iota)((\Delta(I_0)(1 \otimes a)) \otimes b_i) = \sum_i (\Delta \otimes \iota)(a_i \otimes b_i)(1 \otimes a \otimes 1) = (\Delta \otimes \iota)((\Delta(I_0)(1 \otimes b))(1 \otimes a \otimes 1) = (\Delta \otimes \iota)(\Delta(I_0)(1 \otimes a \otimes b),
\]
as desired.

At this stage we need to recall the generalized Tannaka theorem for discrete AQG, as proven in [21].

3.10 THEOREM Let \mathcal{C} be a semisimple tensor $*$-category and let E be a an embedding functor. Then there exists a discrete AQG (A, Δ) and an equivalence $F : \mathcal{C} \to \text{Rep}_f(A, A)$ of tensor $*$-categories, such that $K \circ F = E$, where $K : \text{Rep}_f(A, A) \to \mathcal{H}$ is the forgetful functor.

We are now in a position to state our main result which describes the precise relationship between embedding functors, absorbing monoids and discrete AQG.

3.11 THEOREM 1. Let \mathcal{C} be a tensor $*$-category with conjugates and $\text{End}1 = \mathcal{C}$ and let $E : \mathcal{C} \to \mathcal{H}$ be an embedding functor. Let (A, Δ) be the discrete AQG and $F : \mathcal{C} \to \text{Rep}_f(A, A)$ the monoidal equivalence provided by the generalized Tannaka theorem. Let $(\pi, \tilde{m}, \tilde{\eta})$ be the regular monoid in $\text{Rep}(A, \Delta)$ and $E' : \mathcal{C} \to \mathcal{H}$ the embedding functor that it gives rise to. Then E and E' are naturally unitarily equivalent as tensor functors.

2. Let (A, Δ) be a discrete AQG and $(\pi, \tilde{m}, \tilde{\eta})$ the regular monoid in $\text{Rep}(A, \Delta)$. Let $E : \text{Rep}_{fgs}(A, \Delta) \to \mathcal{H}$ be the embedding functor obtained from the latter via Proposition 3.2 and (A', Δ') the discrete AQG given by the generalized Tannaka theorem. Then (A, Δ) and (A', Δ') are isomorphic.

3. Let \mathcal{C} be a tensor $*$-category with conjugates and $\text{End}1 = \mathcal{C}$ and let (Q, m, η) be a monoid in \mathcal{C} satisfying the assumptions in Proposition 3.4. Let E be the resulting embedding functor and (A, Δ) and F as in 2. Then the image (Q', m', η') of the regular monoid (Q, m, η) under the equivalence $\text{Rep}(A, \Delta) \to \mathcal{C}$ is isomorphic to (Q, m, η).

Proof. 1. Consider the equivalence $F : \mathcal{C} \to \text{Rep}_f(A, \Delta)$ satisfying $K \circ F = E$ provided by the generalized Tannaka theorem. Then the claim is just a reformulation of Lemma 3.9.

2. Let $\mathcal{C} = \text{Rep}_{fgs}(A, \Delta)$ with the canonical embedding functor $E : \mathcal{C} \to \mathcal{H}$. Obviously, (A, Δ) is isomorphic to the AQG given by the generalized Tannaka theorem from the pair (\mathcal{C}, E). Now the claim follows from Lemma 3.9 and the fact [21, Proposition 5.28] that isomorphic embedding functors give rise to isomorphic discrete AQG.

3. Given \mathcal{C} and the monoid (Q, m, η) in \mathcal{C}, we obtain an embedding functor $E : \mathcal{C} \to \mathcal{H}$ by Proposition 3.4. On the other hand, going from (\mathcal{C}, E) to an AQG, then to the regular monoid in $\text{Rep}(A, \Delta) \simeq \mathcal{C}$ and, finally, from the latter to the embedding functor $E' : \mathcal{C} \to \mathcal{H}$, Lemma 3.9 again implies $E \simeq E'$. Thus the monoids (Q, m, η) and (Q', m', η') in \mathcal{C} give rise to equivalent embedding functors and are therefore isomorphic by Lemma 3.7.
3.12 Remark 1. The preceding result can be formalized more conceptually as follows. Let Disc be the category of discrete AQG with isomorphisms as arrows. Let Emb be the category of pairs \((C, E)\) where \(C\) is a semisimple \(\mathbb{F}\)-linear tensor category with duals and \(\text{End} 1 \cong \mathbb{F}\) and \(E : C \to \text{Vect}_{\mathbb{F}}\) is a faithful \(\mathbb{F}\)-linear tensor functor. The arrows in Emb are equivalences \(F : C \to C'\) such that \(E' \circ F = E\). Finally, let Mon be the category of pairs \((C, (Q, m, \eta))\), where \(C\) is a semisimple \(\mathbb{F}\)-linear tensor category with duals and \(\text{End} 1 \cong \mathbb{F}\) is a monoid in \(C\) satisfying the assumptions of Proposition 3.2. Here the arrows are equivalences \(F : C \to C'\) such that \(F((Q, m, \eta))\) is isomorphic to \((Q', m', \eta')\) in \(C'\). Then the various constructions considered so far give rise to the equivalences \(\text{Mon} \simeq \text{Emb} \simeq \text{Disc}^{op}\), where \(\text{Disc}^{op}\) is the opposite category of Disc. More precisely, every circle in the triangle with corners Mon, Emb, Disc^{op} obtained as composition of these functors is naturally isomorphic to the identity functor.

2. The preceding theorem remains valid if one replaces tensor \(\ast\)-categories with conjugates by semisimple \(\mathbb{F}\)-linear tensor categories with duals, and discrete AQG by regular multiplier Hopf algebras with left invariant functionals. The arguments are essentially unchanged, provided one appeals to the version of the generalized Tannaka theorem stated in [21, Section 5.4]. □

3.3 Dimension Functions vs. Absorbing Objects

3.13 Definition A dimension function on a C*-tensor category \(\mathcal{C}\) with conjugates is a map \(n : \text{Obj}\mathcal{C} \to \mathbb{R}_+\) such that \(n(X \oplus Y) = n(X) + n(Y)\) and \(n(X \otimes Y) = n(X)n(Y)\) and \(n(X^*) = n(X)\).

3.14 Remark Note that a dimension function automatically satisfies \(n(1) = 1\). Every C*-tensor category \(\mathcal{C}\) with conjugates comes with a distinguished dimension function, the intrinsic dimension, cf. [17]. The representation categories associated with \(q\)-deformations of simple Lie groups show that the intrinsic dimension need not be integer valued, cf. [22]. On the other hand, an embedding functor \(E : \mathcal{C} \to \mathcal{H}\) gives rise to an integer valued dimension function by \(n(X) = \dim E(X)\). This also shows that one and the same category can have a dimension function which is integer valued and one which is not. We remark further that C*-tensor categories having only finitely many irreducible objects admit only one dimension function, namely the intrinsic one, as can be shown using Perron-Frobenius theory. Furthermore, every embedding functor must preserve dimensions whenever \(\mathcal{C}\) is amenable, which in particular holds when \(\mathcal{C}\) admits a unitary braiding, cf. [17]. Thus if the intrinsic dimension of \(\mathcal{C}\) is not integer valued and \(\mathcal{C}\) is finite or has a unitary braiding, an embedding functor cannot exist. □

Assuming the existence of an integer valued dimension function we arrive at the following partial converse of Proposition 3.2.

3.15 Proposition Let \(\mathcal{C}\) be a semisimple \(\mathbb{F}\)-linear tensor category with two-sided duals and integer valued dimension function \(n\). Let \(n_i = n(X_i)\) for \(i \in \mathcal{I}_C\) and consider the direct sum

\[Q = \bigoplus_{i \in \mathcal{I}_C} n_i X_i\]

in \(\hat{\mathcal{C}}\). Then \(Q \otimes X \cong X \otimes Q \cong n(X)Q\) for all \(X \in \mathcal{C}\).

Conversely, assume \(Q \in \hat{\mathcal{C}}\) is a direct sum of irreducible objects of \(\mathcal{C}\) and that \(Q \otimes X \cong n(X)Q\) with \(n(X) \in \mathbb{N}\) for \(X \in \mathcal{C}\). Then

\[Q \cong N \bigoplus_{i \in \mathcal{I}_C} n_i X_i,\]

where \(N = \dim \text{Hom}(1, Q)\). If \(N < \infty\) then \(n : \text{Obj}\mathcal{C} \to \mathbb{N}\) is additive and multiplicative. If \(\mathcal{I}_C\) is a finite set then \(n(X) = d(X)\) for all \(X \in \mathcal{C}\); thus in this case an absorbing object exists iff all intrinsic dimensions are integers.

Proof. By \(\bigoplus_{i \in \mathcal{I}_C} n_i X_i\) we mean the filtered inductive limit over partial finite direct sums, which defines an object of \(\hat{\mathcal{C}}\) unique up to isomorphism. Let \(j \in \mathcal{I}_C\). We compute

\[Q \otimes X_j \cong \bigoplus_{i \in \mathcal{I}_C} n_i X_i \otimes X_j \cong \bigoplus_{i \in \mathcal{I}_C} n_i \bigoplus_{k \in \mathcal{I}_C} N_{ij}^k X_k \cong \bigoplus_{k \in \mathcal{I}_C} \left(\sum_{i \in \mathcal{I}_C} N_{ij}^k n_i \right) X_k.\]
Using standard properties of the coefficients, cf. e.g. [21], we calculate
\[\sum_{i \in I_C} N^i_j n^i_j = \sum_{i \in I_C} N^i_j n^i_j = n_j \alpha_{ij}, \]
and therefore \(Q \otimes X_j \cong n_j \bigoplus_{k \in I_C} n_k X_k \cong n_j Q \). For a reducible object \(X \) the claim now follows by semisimplicity. The argument for \(X \otimes Q \) is similar.

As to the converse, for irreducible \(X \in \mathcal{C} \) we compute
\[
\dim \text{Hom}(X, Q) = \dim \text{Hom}(1, Q \otimes X) = \dim \text{Hom}(1, Q \otimes 1^{\otimes n(X)}) = n(X) \dim \text{Hom}(1, Q) = n(X)N.
\]
Since \(Q \) is a direct sum of irreducibles in \(\mathcal{C} \), we thus have
\[
Q \cong \bigoplus_{i \in I_C} n_i X_i,
\]
and the claim follows. Assume now that \(N < \infty \). Then we find
\[
n(X \otimes Y)N = \dim \text{Hom}(X \otimes Y, Q) = \dim \text{Hom}(Y \otimes X, Q) = \dim \text{Hom}(Y, Q \otimes X) = n(X) \dim \text{Hom}(Y, Q) = n(Y)n(X)N
\]
and thus \(n(X)n(Y) = n(X \otimes Y) \) for \(X, Y \in \mathcal{C} \).

If \(\mathcal{C} \) is finite, it is well known that the intrinsic dimension function is the only additive and multiplicative function on \(\text{Obj} \mathcal{C} \).

3.16 Remark 1. Note that an additive and multiplicative function on \(\text{Obj} \mathcal{C} \) determines and is determined by a function \(n' : I_C \to \mathbb{N} \) which satisfies \(\sum_{k \in I_C} N^i_k n^i_k = n'_i n'_j \) for all \(i, j \in I_C \).

2. It is important to note that the existence of an integer valued dimension function does not obviously imply the existence of a monoid structure on the absorbing object \(Q \). By our earlier constructions, an embedding functor gives rise to a quantum group, and therefore to the regular monoid in \(\mathcal{C} \). (One can also construct the latter directly from the embedding functor, but we refrain from giving the details.) Since any dimension function \(n \) satisfies \(n(1) = 1 \), we have \(\dim \text{Hom}(1, Q) = 1 \), thus there exists a morphism \(\eta : 1 \to Q \) that is unique up to a scalar. But the main issue clearly is constructing an associative morphism \(m : Q \otimes Q \to Q \) such that \((Q, m, \eta) \) is a monoid. This is a difficult cohomological problem.

3. Another approach for constructing an absorbing monoid might be to generalize Deligne’s proof to the braided case. However, as our earlier mentioned counter examples show, assuming just the existence of a braiding does not suffice.

References

