Search for pair production of doubly-charged Higgs bosons
in the $H^+H^- \rightarrow \mu^+\mu^-\mu^-\mu^-$ final state at D0

We report the results of a search for pair production of doubly-charged Higgs bosons via $p\bar{p} \rightarrow H^{++}H^{--}X \rightarrow \mu^+\mu^-\mu^+\mu^- X$ at $\sqrt{s} = 1.96$ TeV. We use a dataset corresponding to an integrated luminosity of 1.1 fb$^{-1}$ collected from 2002 to 2006 by the D0 detector at the Fermilab Tevatron Collider. In the absence of an excess above the standard model background, lower mass limits of $M(H^{\pm\pm}_L) > 150$ GeV/c2 and $M(H^{\pm\pm}_R) > 127$ GeV/c2 at 95% C.L. are set, respectively, for left-handed and right-handed doubly-charged Higgs bosons assuming a 100% branching ratio into muons.

(Dated: March 11, 2008)
In the standard model (SM) of electroweak interactions, elementary fermions and bosons acquire mass via a weak isospin scalar doublet. This mechanism results in the existence of an additional particle, the Higgs boson, which has not yet been observed. Extensions of the Higgs sector involving higher isospin multiplets predict the existence of doubly-charged Higgs bosons which can be relatively light and hence accessible at current experimental facilities. Doubly-charged Higgs bosons appear in many scenarios such as left-right symmetric models \[1\], Higgs triplet models \[2\], and Little Higgs models \[3\]. At the Fermilab Tevatron Collider, the two main production mechanisms are pair production via \(p\bar{p} \rightarrow Z/\gamma^* X \rightarrow H^{++}H^{--}X \) and single production via \(WW \) fusion, \(p\bar{p} \rightarrow W^\pm W^\pm X \rightarrow H^{\pm\pm}X \). However, higher isospin Higgs multiplets are generally severely constrained by \(\rho \equiv m_W^2/(\cos \theta_W m_Z)^2 = 1 \) at tree level. The existing phenomenological and theoretical constraints are easily satisfied when the \(W^\pm W^\pm \rightarrow H^{\pm\pm} \) coupling is vanishing \[4\]. If the \(H^{++} \) coupling to \(W \) boson pairs is suppressed, the dominant final states are expected to be like-sign lepton pairs. Left-handed \((H^{\pm\pm}_L) \) and right-handed \((H^{\pm\pm}_R) \) states are distinguished by their coupling to left-handed and right-handed leptons, respectively. The pair production cross section for left-handed doubly-charged Higgs bosons for 100 \(< M(H^{\pm\pm}) < 200 \text{ GeV}/c^2 \) is about a factor two larger than that for the right-handed states due to different couplings to the intermediate \(Z \) boson \[5\]. Previous searches for \(H^{\pm\pm} \) have been performed by the LEP collaborations \[6\] in \(e^+e^- \) collisions and by the D0 \[7\] and CDF \[8\] collaborations at the Tevatron \(p\bar{p} \) collider. This Letter presents the results of a direct search for \(p\bar{p} \rightarrow H^{++}H^{--}X \) with \(H^{\pm\pm} \rightarrow \mu^+\mu^- \) by the D0 collaboration with improved sensitivity.

The main D0 detector systems are a central tracking system, a liquid-argon and uranium calorimeter, and a muon detector \[9\]. The central tracking system consists of the silicon microstrip tracker (SMT) and the central fiber tracker (CFT) surrounded by a 2 T solenoidal magnet, with designs optimized for tracking and vertexing capability at pseudorapidity \(|\eta| < 3 \) and \(|\eta| < 2.5 \), respectively. The liquid-argon and uranium calorimeter has a central calorimeter (CC) covering a region up to \(|\eta| \approx 1.1 \) and two end calorimeters (EC) extending the coverage to \(|\eta| \approx 4.2 \), with each housed in a separate cryostat \[10\]. The muon detector has layers of proportional drift tubes and scintillation counters before and after a 1.8 T iron toroid \[11\]. This analysis is based on the Run II data set collected with the D0 detector at the Fermilab Tevatron Collider at \(\sqrt{s} = 1.96 \text{ TeV} \) from April 2002 to February 2006 corresponding to 1.1 fb\(^{-1}\). Events are collected using a suite of dimuon and single muon triggers.

In the previous D0 analysis \[7\], two like-sign muons were required in the final state. In this analysis, we require a third muon, which increases the sensitivity by decreasing backgrounds. We follow five steps to select events. In the first step (S1), events are required to have at least two muons. Each muon must have a transverse momentum \(p_T > 15 \text{ GeV}/c \) and \(|\eta| < 2.0 \). Muons are selected using patterns of hits in the wire chambers and scintillators in the muon system. Each muon must be matched to a track in the central tracker with at least five hits in the CFT layers and at least two hits in the SMT layers. Muons from cosmic rays are removed by using a timing information on the hits in the scintillator layers.

In the second step (S2), isolation criteria based on the calorimeter and tracking information are applied to remove the background from multijet production with muons originating from in-flight decay of pions or kaons, or from semi-leptonic decays of \(B \) or \(D \) mesons. The sum of the transverse energies of the calorimeter cells in an annulus of radius \(0.1 < \mathcal{R} < 0.4 \), where \(\mathcal{R} = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} \) and \(\phi \) is the azimuthal angle, around the muon direction is required to be less than 2.5 GeV. A similar condition is defined for the scalar sum of the \(p_T \) of all tracks, excluding the muon in a cone of radius \(R = 0.5 \) centered around the muon, which must be less than 2.5 GeV/c.

Selection S3 reduces the remaining \(Z \rightarrow \mu^+\mu^- \) and multijet backgrounds. The azimuthal angle \(\Delta \phi \) between at least one pair of muons is required to be less than 2.5 radians, since the two muons from \(Z \) boson decays are mostly back-to-back. This requirement also rejects a fraction of the multijet background with nearly back-to-back muons.

Selection S4 requires at least two muons to be of like sign. The final selection (S5) requires a third muon, satisfying the S1 selection and the isolation selection criteria S2 but without the minimum hit requirement on the central track.

The dominant background in this analysis arises from electroweak processes where real high \(p_T \) muons are created from \(W \) or \(Z \) boson decays as well as non-isolated muons originating from jets. The SM backgrounds and signal processes are generated with \textsc{pythia} \[12\] and normalized using the theoretical cross section. The \(Z/\gamma^* \rightarrow \ell^+\ell^- \) cross section is calculated at next-to-next-to-leading order (NNLO) \[13\]. The \(t\bar{t} \) cross section is calculated at NNLO \[14\] and the \(WW, ZZ \) and \(WZ \) cross sections are calculated with \textsc{mcfm} \[15\] at next-to-leading order (NLO). All samples are processed through the D0 detector simulation based on \textsc{geant} \[16\] and the same reconstruction software as for the data. The muon reconstruction and isolation efficiencies differ between Monte Carlo and data.
observed events after each selection step. The statistical and systematical uncertainties are combined in the table.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Preselection</th>
<th>Isolation</th>
<th>$\Delta \phi < 2.5$</th>
<th>Like sign</th>
<th>Third muon</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z/\gamma^* \rightarrow \mu^+\mu^-$</td>
<td>69181 ± 4642</td>
<td>58264 ± 3910</td>
<td>4936 ± 333</td>
<td>5.3 ± 1.6</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Multijet</td>
<td>4492 ± 120</td>
<td>194 ± 18</td>
<td>18 ± 2</td>
<td>6.3 ± 0.8</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow \tau^+\tau^-$</td>
<td>328 ± 25</td>
<td>269 ± 21</td>
<td>20 ± 3</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>tau</td>
<td>38 ± 3</td>
<td>20 ± 1</td>
<td>14 ± 1</td>
<td>0.03 ± 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>WW</td>
<td>40 ± 3</td>
<td>34 ± 2</td>
<td>20 ± 1</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>WZ</td>
<td>19 ± 1</td>
<td>16 ± 1</td>
<td>11 ± 1</td>
<td>2.95 ± 0.20</td>
<td>1.62 ± 0.11</td>
</tr>
<tr>
<td>ZZ</td>
<td>10 ± 1</td>
<td>9 ± 1</td>
<td>5 ± 1</td>
<td>0.63 ± 0.05</td>
<td>0.47 ± 0.03</td>
</tr>
<tr>
<td>Total background</td>
<td>74108 ± 4644</td>
<td>58806 ± 3910</td>
<td>5024 ± 333</td>
<td>15.2 ± 1.8</td>
<td>2.3 ± 0.2</td>
</tr>
<tr>
<td>Signal</td>
<td>20.5 ± 2.7</td>
<td>18.5 ± 2.4</td>
<td>16.3 ± 2.1</td>
<td>11.6 ± 1.5</td>
<td>10.1 ± 1.3</td>
</tr>
<tr>
<td>Data</td>
<td>72974</td>
<td>58763</td>
<td>4558</td>
<td>16</td>
<td>3</td>
</tr>
</tbody>
</table>

Another important background comes from multijet production, mainly bb events decaying semi-leptonically into muons that appear isolated. The multijet background is derived from the data sample with non-isolated muons obtained by inverting the isolation requirements for both muons after the selection S1. The efficiency of the isolation requirement is assumed to be identical for multijet events with like-sign and opposite-sign muon pairs. It is also assumed that all like-sign events after subtracting SM backgrounds are multijet events. The SM backgrounds are subtracted in the following samples used for the multijet background determination. The total number of multijet events before the isolation requirement (4492 ± 120) is then given by the number of non-isolated events for all charge combinations multiplied by the ratio of the total number of events to the number of non-isolated events in the like-sign sample. The number of multijet events after the isolation requirement (194 ± 18) is obtained by multiplying this number with the isolation efficiency (4.3 ± 0.5)% given by the ratio of isolated to all like-sign multijet events.

A second instrumental background arises from $Z/\gamma^* \rightarrow \mu^+\mu^-$ events in which the charge of one of the muons is misidentified. The first source of charge misidentification is due to fewer CFT layers at large η and a consequent increase in the charge misidentification probability. The second source affects very high p_T tracks for which the uncertainty on the measured curvature can cause charge misidentification. The charge misidentification rate is obtained by dividing the number of like-sign events (S1, S2 and S4) by the number of events without the like-sign requirement (S1 and S2) in the dimuon invariant mass region above 70 GeV/c^2, after subtracting the SM sources of background except $Z/\gamma^* \rightarrow \mu^+\mu^-$ events from the data. This mass requirement removes most multijet background events in the low mass range. From these ratios, we determine the average probability for charge misidentification in data and MC to be $P_{\text{data}} = (6.2 \pm 1.1) \times 10^{-4}$ and $P_{\text{MC}} = (3.1 \pm 0.4) \times 10^{-4}$, respectively, assuming the multijet background is negligible. The uncertainties are statistical. Since the charge misidentification rate in MC is underestimated, the ratio of P_{data} to P_{MC} is taken as a correction equal to 2.0 ± 0.4. This ratio is applied to the $Z/\gamma^* \rightarrow \mu^+\mu^-$ MC sample when estimating the like-sign contribution.

The distributions of dimuon invariant mass and $\Delta \phi$ after the selection S1 are shown in Fig. 1 (a) and (b). The data are compared with the sum of the background contributions. For those events with more than one pair of muons fulfilling the selection criteria, the dimuon invariant mass and $\Delta \phi$ are calculated only for the pair with the highest individual momenta. The numbers of remaining events after each selection are shown in Table II. There is good agreement between data and the sum of the backgrounds. Figure 1 (c) and (d) show the

<table>
<thead>
<tr>
<th>Selection</th>
<th>Preselection</th>
<th>Isolation</th>
<th>$\Delta \phi < 2.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Like-sign) S1 & S4</td>
<td>84 ± 24</td>
<td>42 ± 12</td>
<td>5.3 ± 1.6</td>
</tr>
<tr>
<td>Multijet</td>
<td>1620 ± 34</td>
<td>70 ± 5</td>
<td>6.3 ± 0.8</td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow \tau^+\tau^-$</td>
<td>3.2 ± 1.3</td>
<td>0.2 ± 0.3</td>
<td>< 0.01</td>
</tr>
<tr>
<td>tau</td>
<td>6.6 ± 0.5</td>
<td>< 0.1</td>
<td>< 0.1</td>
</tr>
<tr>
<td>WW</td>
<td>0.08 ± 0.02</td>
<td>0.04 ± 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>WZ</td>
<td>5.14 ± 0.35</td>
<td>4.25 ± 0.29</td>
<td>2.95 ± 0.20</td>
</tr>
<tr>
<td>ZZ</td>
<td>1.12 ± 0.08</td>
<td>0.90 ± 0.06</td>
<td>0.63 ± 0.05</td>
</tr>
<tr>
<td>Total background</td>
<td>1720 ± 41</td>
<td>117 ± 13</td>
<td>15.2 ± 1.8</td>
</tr>
<tr>
<td>Data</td>
<td>1678</td>
<td>96</td>
<td>16</td>
</tr>
</tbody>
</table>
data are well understood. This demonstrates that the like-sign backgrounds.

Events/20 GeV/c

Events/0.1 rad

Events/20 GeV/c

Events/0.2 rad

Events/0.1 rad

Events/20 GeV/c

Events/0.2 rad

Events/10 GeV/c

Fig. 1 (e) and (f).

dimuon invariant mass and \(\Delta \phi \) distributions after the S1 and S4 requirements. The excess of events at 150 GeV/c\(^2\) has a significance of less than 2.6\(\sigma \). Table II gives the individual like-sign backgrounds after the various selection stages. This demonstrates that the like-sign backgrounds are well understood.

After all five selection criteria, three data events remain, in good agreement with the SM background expectation of 2.3 \(\pm \) 0.2 events. Total signal efficiencies are 32\%–34\% and are nearly independent of mass. The dimuon invariant mass and \(\Delta \phi \) distributions for these events are compared to the sum of the backgrounds in Fig. II (e) and (f).

Since no excess is observed, we use the dimuon invariant mass distribution in Fig. II (e) to compute upper limits on the production cross section times branching fraction as a function of \(M(H^{\pm \pm}) \) using the CL\(_S\) method \[18\] as implemented in the mclimit program \[19\]. The expected rate for the signal as a function of \(M(H^{\pm \pm}) \) is determined by the next-to-leading order (NLO) cross section \[8\] and measured luminosity, corrected for the signal efficiency.

A number of systematic uncertainties on signal and background are taken into account in the limit calculation. The uncertainties on the correction of the muon identification are 2\% and 6\% for backgrounds and signal, respectively. The uncertainty on the isolation efficiency for the multijet background is 12\%. The 20\% uncertainty on the correction for charge misidentification is included. The uncertainty on the luminosity for signal is estimated to be 6.1\% \[20\]. The uncertainty on the normalization using NNLO MC SM background production cross sections is taken to be 5\%. The PDF uncertainties on the cross section for backgrounds are taken to be 4\% \[21\].

The cross section limit as a function of \(M(H^{\pm \pm}) \) is shown in Fig. 2 together with the theoretical cross section for left- and right-handed doubly charged Higgs bosons. At the 95\% C.L., lower mass limits of 150 GeV/c\(^2\) for left-handed and 127 GeV/c\(^2\) for right-handed doubly-charged Higgs bosons are obtained. This significantly extends the previous mass limit \[8\] for a doubly-charged Higgs boson decaying into muons. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS-IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNFq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation.
[a] Visitor from Augustana College, Sioux Falls, SD, USA.
[b] Visitor from The University of Liverpool, Liverpool, UK.
[c] Visitor from ICN-UNAM, Mexico City, Mexico.
[d] Visitor from IF Physikalisches Institut, Georg-August-University, Göttingen, Germany.
[e] Visitor from Helsinki Institute of Physics, Helsinki, Finland.
[f] Visitor from Universität Zürich, Zürich, Switzerland.
[g] Deceased.

[10] The pseudorapidity is defined as $\eta = -\ln \left(\tan \left(\frac{\theta}{2} \right) \right)$ as a function of the polar angle θ.

