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A novel automated computerized scheme has been developed for determining a likelihood measure
of malignancy for cancer suspicious regions in the prostate based on dynamic contrast-enhanced
magnetic resonance imaging �MRI� �DCE-MRI� images. Our database consisted of 34 consecutive
patients with histologically proven adenocarcinoma in the peripheral zone of the prostate. Both
carcinoma and non-malignant tissue were annotated in consensus on MR images by a radiologist
and a researcher using whole mount step-section histopathology as standard of reference. The
annotations were used as regions of interest �ROIs�. A feature set comprising pharmacokinetic
parameters and a T1 estimate was extracted from the ROIs to train a support vector machine as
classifier. The output of the classifier was used as a measure of likelihood of malignancy. Diagnostic
performance of the scheme was evaluated using the area under the ROC curve. The diagnostic
accuracy obtained for differentiating prostate cancer from non-malignant disorders in the peripheral
zone was 0.83 �0.75–0.92�. This suggests that it is feasible to develop a computer aided diagnosis
system capable of characterizing prostate cancer in the peripheral zone based on
DCE-MRI. © 2008 American Association of Physicists in Medicine. �DOI: 10.1118/1.2836419�
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I. INTRODUCTION

It is estimated that one out of ten male cancer deaths in 2007
will be caused by prostate cancer �PCa�. Furthermore, with a
total of 218,890 cases, PCa is the most common non-
cutaneous cancer in the United States.1 PCa incidence rates
continue to increase, although at a slower rate than those
reported for the early 1990s and before. This trend may be
attributable to increased screening through prostate-specific
antigen �PSA� testing as well as the aging of the population.
The definitive diagnosis of PCa is most often established
through transrectal ultrasound �TRUS�-guided sextant bi-
opsy.

For men diagnosed with prostate cancer, a number of
treatment options exist, with differing side effects. The thera-
peutic options are mostly determined using nomograms of
which the Partin tables are most commonly used.2 The Partin
tables estimate the chance of organ-confined disease, capsu-
lar penetration, seminal vesicle invasion and lymph node me-
tastasis, based on the result of digital rectal examination,
biopsy Gleason score and PSA value.3 However, these clini-
cal assessments are not accurate in determining the local
stage. Elevated PSA levels can be observed in non-malignant
disorders such as prostatitis or benign prostatic hyperplasia
�BPH�. The limitations of sextant biopsy are increasingly
recognized, which has provoked interest in multimodal mag-
netic resonance imaging �MRI� as an alternative method of
tumor evaluation.4 Accurate staging is important for a proper
disease management. Curative therapy is only effective in

cases of organ confined �surgical candidate� PCa, whereas
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androgen therapy and/or radiotherapy is more effective in
advanced disease. Accurate localization is important for
evaluation of the tumor location and the distance to the neu-
rovascular bundle and prostate capsule, to determine if a
nerve sparing operation is possible, or assist the planning of
intensity-modulated radiotherapy.5–7

MRI localization can reduce the number of repeat biop-
sies, improve the staging performance and guide surgery or
radiotherapy. T2-weighted MRI using a pelvic phased-array
coil can visualize the prostate including the surrounding
anatomy and depict tumor suspicious areas of low signal
intensity within a high-intensity peripheral zone. An en-
dorectal coil improves the spatial resolution, resulting in bet-
ter anatomical visualization which may result in an improved
diagnostic accuracy of the localization and staging of
PCa.4,8–10 However, in addition to PCa, the differential diag-
nosis of a low signal intensity area includes post-biopsy
hemorrhage, prostatitis, BPH, effect of hormonal or radiation
treatment, fibrosis, calcifications, smooth muscle hyperplasia
and fibromuscular hyperplasia.11

Dynamic contrast-enhanced MRI �DCE-MRI� can be used
as an additional tool to visualize PCa �neo-� vascularity and
interstitial space. Due to the high vascularity, increased cap-
illary permeability as well as interstitial hypertension in tu-
mors, DCE-MRI shows better distinction between malignant
lesions and normal tissue compared to conventional MRI
alone.12–19 Fütterer et al.10 showed that using T2-w images in

combination with DCE-MRI for localizing PCa, equal or
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greater than 0.5 cm3, resulted in an accuracy of 81%–91%
whereas using T2-w MR images alone resulted in a localiz-
ing accuracy of 68%.

Post-biopsy hemorrhage, prostatitis and BPH can all
mimic PCa enhancement patterns, thus comprising the speci-
ficity of the technique. Another major obstacle to the appli-
cation of MRI analysis in the routine clinical practice of
prostate imaging is the variability of interpretation criteria
and absence of interpretation guidelines.4 Our study aims to
increase the objectivity and reproducibility of prostate MRI
interpretation by developing a computer aided diagnosis
�CAD� system.

The proposed method enables an objective automated
quantification and classification of features to discriminate
between benign and malignant lesions, and may improve the
tumor localization accuracy of the radiologist. In addition to
objective analysis, computerized analysis can take full ad-
vantage of information across slices in three-dimensional
�3D� multi-feature data sets which is difficult to assess visu-
ally from individual images. CAD has been successfully pur-
sued in other diagnostic areas such as mammography,20,21

computed tomography �CT� chest22 as well as breast
MRI.23,24 In the field of the prostate, Chan et al.25 con-
structed a summary statistical map of the peripheral zone
based on the utility of multichannel statistical classifiers by
combining textural and anatomical features in PCa areas
from T2-w images, diffusion weighted images, proton den-
sity maps, and T2 maps. Madabhushi et al.26 generated simi-
lar statistical maps based on T2-w images using histological
maps as ground truth and showed the additional value of
combining features. However, to our knowledge, there have
been no reported studies about similar work on PCa using
DCE-MRI.

The purpose of this study was to investigate the feasibility
of a CAD system capable of objectively discriminating PCa
from non-malignant disorders located in the peripheral zone
of the prostate. Localizing PCa in the central gland of the
prostate is considered difficult because this area is often af-
fected by BPH, which can have areas of low signal intensity
on T2-w images and shows enhancement patterns in DCE-
MRI similar to that of PCa. Nevertheless, 65%–74% of the
prostate tumor nodules are located in the peripheral zone and
central gland tumors are often less aggressive.10 The focus of
this study is therefore on the peripheral zone of the prostate.

II. METHODS

The proposed CAD method is based on a typical CAD
setup illustrated in Fig. 1 and works as follows: A prostate
MRI exam is visualized as described in Sec. II A. While

FIG. 1. Dataflow diagram of the implemented CAD system. The user define
calculate the likelihood of malignancy in the region of interest.
interpreting the images, the radiologist can delineate a lesion
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as a region of interest �ROI� in the images, using a method
discussed in Sec. II B. From here the characterization of the
ROI is fully automated. The CAD system extracts a relevant
feature set from the ROI as explained in Sec. II C. The ex-
tracted set of features is presented to a trained classifier
which calculates the malignancy likelihood for the lesion as
described in Sec. II D. Finally, the calculated likelihood is
presented to the radiologist to assist in his or her diagnosis.
The CAD system was implemented in an open source pro-
gramming environment, The Visualization ToolKit using the
Tool Command Language and C++.

II.A. Volume visualization

The CAD program can visualize multimodal MR volumes
Ik, where k=1. . .K and K is the number of image volumes.
The set of K volumes comprises all the volumes acquired in
a MR study plus derived volumes from the acquired vol-
umes. Examples of acquired volumes are T2-w images and
T1-w images. Additionally, descriptive parameter maps de-
rived from DCE T1-w images by means of pharmacokinetic
modeling are computed �see Appendix for a description on
pharmacokinetic modeling�.10 In each view all available vol-
umes can be rendered either as background or as transparent
color coded overlays. The cursor is positionable in one of the
views with the mouse after which the CAD system will in-
stantly update the location in all views. Although the MR
data are obtained in slices, the CAD system visualizes the
data as 3D volumes taking all directions into account. Figure
2 demonstrates the CAD system with a dedicated prostate
hanging protocol as it is used in our clinic for localizing PCa.

II.B. Lesion segmentation

A 3D drawing tool has been implemented which allows
the user to easily delineate a suspicious lesion in 3D. At the
request of the user a 3D sphere shaped ROI is added at the
position of the cursor and visualized in all views. It is adjust-
able in size to fully delineate the suspicious area. The in-
tended use is to adjust the sphere to be large enough to fully
include the lesion’s size, as to reduce inter-observer variabil-
ity �see Sec. II C�.

Let a ROI Sr define a set of N Cartesian voxel locations xi

in the MR coordinate system

Sr = �x1,x2, . . . ,xN� . �1�

Let Vr,k represent a set of scalar values in image volume Ik,
identified by Sr

Vr,k = �Ik�xi��xi � Sr� . �2�

The assumption is that all image volumes I1 , I2 , . . . , Ik are

gion of interest from which features are extracted. The features are used to
s a re
registered to each other in the MR coordinate system and, as
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a result, a lesion segmentation in Ik will segment the same
lesion area in Ik+1, regardless of the image resolution or
orientation.

II.C. Feature extraction

A reduced feature set Fr is calculated from the scalar val-
ues of the available volumes �Vr,k�. Each feature in the fea-
ture vector Fr= �f1 , f2 , . . . , fL�, with L the number of features,
is a first-order statistic of the scalar values of volume Ik. One
of these statistics is the 25% or 75% percentile. These per-
centiles are especially suited for volumes that show an het-
erogeneous pattern, e.g., the derived volume Ktrans.27–29 This
heterogeneity is most common for tumor and differs from
normal tissue and benign lesions.30,31 The 25% or 75% per-
centile will differ more from the average value when
hotspots are present and will give an estimate of the value in
that hotspot, as demonstrated in Fig. 3. This heterogeneity is
also recognized by the pathologist �at macro scale�. They
base a histological grade on the Gleason system, in which the
dominant and secondary glandular histological patterns are
determined. By segmenting the whole lesion and using per-
centiles to extract the hotspot, variability among users is re-

32

FIG. 2. The CAD program using a dedicated prostate hanging protocol, with
parameter maps �latewash and Ktrans� as foreground. The three views at the bo
duced. Stoutjesdijk et al. showed that manual selection of
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the hotspots is the major source of variation in the interpre-
tation of the DCE characteristics of breast MRI lesions.
Thus, annotating the whole enhancing region instead of just
the hotspot and automatically extracting the features sensi-
tive to hotspots within the region, makes the technique more
reproducible. An additional advantage of using percentiles is
that it is less sensitive to extreme values.

To do so, Vr,k is summarized into a single scalar value
fr,k,p by calculating its percentile p

Hr,k�fr,k,p� = p , �3�

where Hr,k is the cumulative density histogram of the scalar
values in Vr,k.

II.D. Classification

The final step of the CAD program is to combine the
computed features and to estimate the likelihood of malig-
nancy of the region of interest. The malignancy likelihood lr

is calculated using a trained classifier �

lr = ��Fr;T� , �4�

where T is a training set of feature vectors and truth states.

three views on top axial T2-w images as background and pharmacokinetic
show the sagittal and coronal view as well as the pre-contrast T1-w volume.
in the
Classification was performed using support vector machine
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�SVM� analysis on the feature set �provided by the statistical
package R33�.34,35 SVMs are currently widely used in similar
problems as they can act as a general purpose non-linear
classifier. SVMs have been shown to perform well on vari-
ous datasets of limited size. SVMs map input vectors to a
higher dimensional space where a maximal separating hyper-
plane is constructed by means of a kernel function. For this
study the radial basis function kernel K�u ,v�=exp�−�* �u
−v�2� with parameter �=1 /5 �5 equals the number of fea-
tures used� was chosen and the cost of constraints violation
�or “C” constant of the regularization term in the Lagrange
formulation� was set to 1.36,37 When the classifier has calcu-
lated lr, the user is prompted with the estimate of the likeli-
hood of malignancy as shown in the example in Fig. 7�c�.

III. FEATURE DESCRIPTION

The following features were extracted from Sr:

FIG. 3. A prostate cancer case to demonstrate the rationale for using percent
a wide spectrum of heterogeneity in their dynamic enhancement patterns a
prostate with a transparent Ktrans color-coded overlay. The bi-lateral enhanc
histogram distribution of the malignant lesion is shown, located in the right
corresponding histopathology slice shown in subfigure 3�b�. The 75% pe
distribution of a suspicious enhancing normal peripheral zone region �dotte
50% T1Static: The T1Static parameter is the pre-contrast
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static value of the T1 estimate of the longitudinal relaxation
rate in ms. T1-weighted signals are not ideally suitable for
use in quantitative assessment of contrast media concentra-
tion. We therefore use dynamic T1 mapping with snapshot
FLASH sequences as a direct approach to quantification, as
described in Hittmair et al.38 If a post-biopsy hemorrhage is
present, it is clearly visible as a high-intensity area on a T1-w
image. The biopsy hemorrhage is often visible as a large
homogeneous area, hence the median is used to capture this.

75% Ve: In the extravascular, extracellular space �EES� of
normal tissue, pressure is near atmospheric �25 mm Hg� val-
ues, whereas in tumors it may reach 50 mm Hg or even
more. The interstitial hypertension may be due to increased
vascular permeability in combination with a lack of lym-
phatic drainage due to the absence of functional lymphatic
vessels within the tumor itself. This results in an increase of
the EES. The EES is therefore considered a very descriptive

39

Although both regions do not differ much in their median, the tumor shows
as more high values. Subfigure 3�a� shows a transverse T2-w view of the
t in the peripheral zone are both suggestive of cancer. In subfigure 3�c� a
heral zone �solid box� and correlated to tumor 1 with Gleason 4�4 in the
ile is 0.36. Note the wide spectrum. Subfigure 3�d� shows a histogram
�. The 75% percentile is 0.23. Note the narrow spectrum.
iles.
nd h
emen
perip
rcent
parameter defined as percentage per unit volume of tissue.
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Interstitial leakage space at tumor hotspots can be three to
five times larger than normal tissue, hence the upper quartile
is used to capture these hotspots.

75% kep & Ktrans: The transfer constant �Ktrans� and rate
constant �kep� both have units 1 /min, where Ktrans relates to
permeability surface area. The permeability �or leakiness�
surface area refers to the ability of tracer molecules to pass
through interendothelial fenestrae and junctions into the in-
terstitial compartment. High permeability of the vasculature
is a characteristic of pathological blood vessels in inflamed
tissues and tumors. In case of a tumor, both Ktrans and kep

often show focal enhancement.30 The upper quartile captures
the presence of hotspots.

25% late wash: The late wash parameter quantifies the
slope of the curve after the first wash-in phase. Although it
does not directly correlate to physiological parameters, the
presence of washout is highly indicative of PCa,13 and there-
fore used in our clinic as a diagnostic parameter. When cap-
illary permeability is very high, the backflow of contrast me-
dium is also rapid, resulting in a negative late wash
following the shape of the plasma concentrations. Because
late wash enhancement is often heterogenous, the 25th per-
centile is used to capture this.

The described pharmacokinetic features were extracted
because quantification of kinetic parameters has the advan-
tage of being biologically meaningful and help to establish
objective criteria for classifying lesions,40 see the Appendix
for a description of how the kinetic features are derived from
the raw T1-w images. The feature selection is based on clini-
cal experience; previous work10 has shown that these fea-
tures are the most descriptive and are therefore preferred in
our clinic. Furthermore, preselecting only five features pre-
vents the classifier from being distracted by either poor per-
forming or irrelevant features �peaking phenomenon�.35

IV. TRAINING AND EVALUATION

IV.A. Dataset

The study set consisted of 34 consecutive patients that
were selected in a previous study of Fütterer et al.10 These

TABLE I. Parameters for MR Imaging

Modality
Imaging
ordera

TR
�ms�

TE
�ms�

No.
of

echoes

No. of
signals

acquired

Flip
angle
�dgr�

T2-w
spin-echo

1 3500 132 15 2 180

Intermediate-w
fast 3D
gradient-echo

2 800 1.6 1 1 8

Dynamic
T1-w fast 3D
gradient-echo

3 34 1.6 1 1 14

aOne of each sequence was performed before contrast agent administration.
echo and five dynamic T1-weighted high-resolution 3D gradient-echo Mr Im
patients had biopsy-proven PCa and underwent DCE-MR
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imaging at 1.5 T, complementary to the routine staging MR
imaging examination of the prostate. Patients were included
�between April 1, 2002, and June 1, 2004� in the study only
if they were candidates for radical retropubic prostatectomy
within six weeks after MR imaging. The study of Fütterer
et al. was approved by the institutional review board, and
informed consent was obtained from all patients prior to MR
imaging. After imaging, all patients underwent radical retro-
pubic prostatectomy. Exclusion criteria were: Previous hor-
monal therapy, lymph nodes positive for metastases at frozen
section analysis, contra-indications to MR imaging �e.g., car-
diac pacemakers, intracranial clips�, contra-indications to en-
dorectal coil insertion �e.g., anorectal surgery, inflammatory
bowel disease�. The mean prostate specific antigen level was
8 ng /ml �range, 3.2–23.6 ng /ml�, mean Gleason score was
6.1 �range, 5–8�. MRI was performed on average three
weeks after transrectal ultrasonographically guided sextant
biopsy of the prostate.

IV.B. MR acquisition

Images were acquired with a 1.5 T whole body MR scan-
ner �Sonata, Siemens Medical Solutions, Erlangen, Ger-
many�. A pelvic phased-array coil as well as a balloon-
mounted disposable endorectal surface coil �MedRad®,
Pittsburgh, PA� was inserted and inflated with approximately
80 cm3 of air, were used for signal receiving. The machine
body coil was used for rf transmitting. An amount of 1 mg of
glucagon �Glucagon®, Novo Nordisk, Bagsvaerd, Denmark�
was administered directly before the MRI scan to all pa-
tients, to reduce peristaltic bowel movement during the ex-
amination.

The protocol for acquisition consisted first of a localizer
and two fast gradient spin-echo measurements for patient
and coil positioning. Thereafter high-spatial-resolution T2-
weighted fast spin-echo imaging in the axial, sagittal and
coronal planes, covering the prostate and seminal vesicles,
was performed. The frequency encoding direction was an-
teroposterior to increase the acquisition speed.

Third, 3D T1-weighted spoiled gradient echo images were

ion
ness
m� Matrix

No.
of sections

Field
of

view
�mm�

Phase-encoding
direction

Dyn
volume

sampling
time �s�

240�512 11-22 280 Row NA

256�77�10 NA 280 Column NA

256�77�10 NA 280 Column 2

r contrast agent administration, 74 dynamic T1-weighted fast 3D gradient-
g sequences were performed.
Sect
thick

�m

4

4

4

Afte
agin
acquired before and during an intravenous bolus injection of
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paramagnetic gadolinium chelate �0.1 mmol /kg, gadopen-
tetate, Magnevist®; Schering, Berlin, Germany� using a
power injector �Spectris, Medrad®, Pittsburgh, PA� with an
injection rate of 2.5 ml /s followed by a 15 ml saline flush.
At these settings a 3D volume with ten partitions, covering
the whole prostate, was acquired every 2 s for 120 s. Before
contrast injection the same axial 3D T1-weighted gradient
echo sequence was used to obtain proton density images and
identical positioning to allow calculation of gadolinium che-
late concentration curves.38 See Table I for the precise speci-
fication of the acquisitions. Within three weeks of biopsy,
there can be postbiopsy artifacts on MRI. This cannot be
avoided as we feel it is unethical to unnecessarily delay a
scheduled prostatectomy. The optimal timing of post-biopsy
MR Imaging of the prostate has been researched by Ikonen
et al.41 and White et al.42 They advise deferring MR imaging
for at least three weeks after biopsy.

IV.C. ROI annotation

IV.C.1. Histopathological analysis

All patients underwent radical retropubic prostatectomy.
The prostatectomy specimens were fixed overnight �10%
neutral-buffered formaldehyde� and coated with India ink.
Axial whole mount step sections were made at 4 mm inter-
vals in a plane parallel to the axial T2-w images and rou-
tinely embedded in paraffin. Tissue sections of 5 �m were
prepared and stained with haematoxylin and eosin. An expe-
rienced pathologist �C.H.V.D.K.� who was blinded to the im-
aging results, established malignancy from microscopy. Re-
gions of malignancy were outlined on digital macroscopic
whole-mount images from a charge coupled device camera.
Figure 7�d� shows an example of an histopathological map.

IV.C.2. Annotation in the MRI data

The whole-mount step-section histology tumor maps were
used as ground truth for training and evaluating the perfor-
mance of the CAD system. The morphology of the central
gland, peripheral zone, cysts, calcifications, and urethra were
used as landmarks to find the corresponding MRI slice.

Aligning MR slices to whole-mount step sections is con-
sidered difficult,43 it is subjective and the section thickness
used in the MR imaging sequences can be different. To over-
come these problems a method was developed that semiau-
tomatically matches MR slices to the step sections of histo-
pathology. The method has the following setup: One of the
views is set to a 3D rendering mode for volumes. In this
mode the volume is rendered in three planes in all directions.
The planes can be manipulated to move through the volume
slices. In this 3D view a default 3D ellipsoid is rendered as a
transparent surface. The goal is to fit the prostate roughly by
interactively resizing and translating the ellipsoid. The cross
sections of the ellipsoid are simultaneously displayed in the
two-dimensional views for a more accurate result. The final
ellipsoid is then divided in the same number of slices as the
prostatectomy specimen was cut. By doing this, the speci-
men images are aligned to the T2-w images. See Fig. 4 for a

demonstration.
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The anatomy of the prostate is best imaged on T2-w im-
ages which were therefore used for correlating the histo-
pathological map. The features used for this experiment,
however, were extracted from T1-w images. Because the pa-
tient may have moved and no registration is applied to cor-
rect for patient movement, the pre-contrast T1-w images
were semitransparently overlaid on the T2-w images, to al-
low for visual inspection and comparison for anatomic mis-
match due to patient related movements. If a mismatch was
evident, it was compensated for by correcting the annotation
on the pre-contrast T1-w images, thereby avoiding the anno-
tation of periprostatic vasculature and urethra.

A region of interest �ROI� was placed to cover the whole
lesion volume based on histopathology. After a thorough in-
spection of the segmentation, the ROI was saved to disk
along with a classification label N, NS or M. The definitions
of the labels are given in Table II.

For all saved ROIs Sr with one of the assigned labels N,
NS or M, information was summarized by collecting the fea-
tures fr,Ktrans,75, fr,Kep,75, fr,Ve,75, fr,Washout,25 and fr,T1Static,50, as
described in Section III, into the feature vector Fr

Fr = �fr,Ktrans,75, fr,Kep,75, fr,Ve,75, fr,Washout,25, fr,T1Static,50� .

�5�

IV.D. ROC analysis

The discriminating performance of the CAD system was
estimated by means of the area under the receiver operator
characteristics �ROCs� curve �AUC�. Let �= �l1 , l2 , . . . lm� be
the vector of calculated malignancy likelihoods for m ROIs
with the trained classifier �. The ROIs are split into two
groups � and �. Let ��= �j �qj �Q�� and ��= �j �qj �Q�� be
the corresponding vectors of indices, where Q� and Q� are
disjoint and subsets of Q �see Table II� for a definition of the
labels�. The AUC for the classification performance between
two subsets of ROIs identified by �� and �� is given by44

AUC����
=

� j���
� j����

	�lj,lj��


��

��

, �6�

FIG. 4. Example of a prostate segmentation to obtain an objective and more
accurate correspondence with histopathology. The left view shows a cross
section at transverse view of the prostate, the ellipse indicates the surface
bounds in the T2-w image. The middle �sagittal� view represents the number
of transverse slices in which the prostatectomy specimen was cut �nine
slices�. The right view shows the 3D deformable surface which can be
positioned, scaled and stretched manually to fit the prostate roughly.
with kernel function
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	�lj,lj�� = 	1 if lj � lj�
1
2 if lj = lj�

0 if lj � lj�

, �7�

and 
��
and 
��

the number of ROIs in �� and ��,
respectively.

For this experiment two separate classifiers were trained
and evaluated for its discriminating performance. The first
classifier 
oc was trained to discriminate regions of type
�N ,NS� from �M�. This reflects localization, hence the sub-
script loc. The discriminating performance of 
oc is denoted
as AUCloc and is computed using Eq. �6� by setting Q� to
�N ,NS� and Q� to �M�. The second classifier �dif was evalu-
ated in a more clinical perspective, where the radiologist
typically is only interested in the differentiation between ab-
normal enhancing areas �NS� and PCa �M�. The classifica-
tion performance is denoted as AUCdif where Q� to �NS� and
Q� to �M�.

Prospective performance of the lesion analysis was esti-
mated by means of leave-one-patient-out �LOPO� cross vali-
dation. LOPO avoids training and testing on the same data,
estimating the likelihoods of ROIs in that left-out case, and
repeating the procedure until each case has been tested indi-
vidually. Our study was a diagnostic assessment with patient-
clustered data, and, thus, the bootstrap resampling approach
with 10,000 iterations was used for estimating the bootstrap
mean AUCs and 95% confidence intervals proposed by
Rutter.44 When a patient case is drawn, the entire set of Sr for
that case enters that bootstrap sample. In doing so, bootstrap-
ping mimics the underlying probability mechanism that gave
rise to the observed data. Statistical analyses were performed
with the package R.33

V. RESULTS

Of the 34 patient studies, four were excluded because of
insufficient dynamic data caused by patient movement or
coil artifacts. In total 39 M regions were annoted in the pe-
ripheral zone. The number of NS regions annotated in the
peripheral zone was 21. The number annotated N regions

TABLE II. The three classification types of Q that we

N �normal�

M �malignant�

NS �non-malignant suspicious enhancing�

aReference 45.
was 30.
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When looking at the scatterplots of Fig. 5 a noticeable
clustering of features is seen. The scatterplots demonstrate
that the feature values are usable to characterize lesions as
M, NS or N. It can be observed that the N regions are com-
pact and well clustered. Although the regions of type NS and
M show a larger spread, they are still clustered and can thus
be differentiated. Furthermore, the NS regions appear to be
more clustered than the M regions.

The localization performance of the discrimination be-
tween �N ,NS� and �M� is demonstrated in the ROC curve
shown in Fig. 6�a�. The figure shows that the diagnostic ac-
curacy �AUCloc� was 0.92 �95% confidence intervals0.87–
0.97��. In Fig. 6�b� the discriminating performance between
�NS� �M� regions is demonstrated. The diagnostic accuracy
�AUCdif� in this case was 0.83 �95% confidence intervals
0.75–0.92��. The ROC curves show that the performances
are statistically better than chance.

Figure 7 presents a true-positive case as well as a true-
negative case: In both the transverse and coronal views of the
prostate, a bilateral enhancement is seen in the peripheral
zone when overlaying several parametric maps on the T2-w
images. Because of the enhancement, both sides are suspi-
cious for cancer. The CAD system, however, calculated a
likelihood of malignancy of 80% for the annotated region
that was identified as PCa by histophathology. In the other
region, the CAD system calculated a likelihood of 20% of
being malignant. Additionally, histopathology confirmed that
there was no evidence for tumor at the specific location.

VI. DISCUSSION

This study showed that it is feasible to develop a CAD
system capable of discriminating PCa from the normal pe-
ripheral zone and non-malignant disorders with a diagnostic
accuracy of 0.92 �0.87–0.97�. It was also shown that it is
possible to develop a more clinically relevant CAD system,
where the radiologist typically is only interested in abnormal
enhancing areas. For the discrimination of solely non-
malignant suspicious enhancing �NS� areas from PCa in the
peripheral zone, a diagnostic accuracy of 0.83 �0.75–0.92�
was obtained. This CAD system thus has the potential of
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The proposed CAD method has some similarity with the
study of Fütterer et al.10 In their study, it was shown that
when using T2-w images and DCE-MRI in localizing PCa,
radiologists achieved an overall accuracy of 0.92, when dis-
criminating PCa pre-assigned regions from normal periph-
eral zone and non-malignant disorder pre-assigned regions.
Although the focus of this study was the normal peripheral
zone of the prostate, similar regions were used for the char-
acterization by the CAD system. Furthermore, the same pa-
tient database was used. Our CAD method, on the contrary,
was trained with primarily pharmacokinetic features,
whereas the radiologist used the T2-w images as an addi-
tional feature of region characterization.

The results of this study demonstrate for the first time in
an objective manner that including DCE-MRI can discrimi-
nate PCa from NS areas in the peripheral zone. This is sup-
ported by former studies where human observers concluded
the same.12–19,46,47

The developed CAD system is capable of displaying mul-
*

FIG. 5. Pairwise scatterplots of four kinetic parameters and T1 parameter fo
and squares as NS regions. The ellipses summarize the three clusters by fittin
deviation radius. A noticeable clustering of features is seen.
timodal MR images including DWI, T2 -w images, derived
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spectral maps from spectroscopic data, etc. Although the
CAD program is developed in such a manner that it can
include features from all available images as relevant infor-
mation to train the classifier, only the pharmacokinetic and
T1 estimate data was used. To further include features from
the additional modalities, registration techniques are essen-
tial to compensate for patient movements. It can be expected
that by extracting the additional features, the discriminating
performance of the CAD system will further improve. Sev-
eral studies indicated that combining multimodal MR images
increased the localization accuracy.4,10

Histological correlation with MR images is recognized to
be an imperfect gold standard for a number of reasons. These
include: Errors in registering the location of the imaging sec-
tions with histological slice specimens, inaccuracies resulting
from tissue shrinkage secondary to fixation and errors due to
partial volume averaging effects.14,43,48 In most studies the
number of slices is simply counted taking the shrinkage into
account and using the morphology of the central gland, pe-

whole database with triangles representing N regions, spheres as M regions
ivariate normal distribution and displaying the outline at two times standard
r the
g a b
ripheral zone, cysts, calcifications, and urethra as landmarks
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to find the corresponding MRI slice. In this study great effort
was put into the histopathology and MRI correspondence for
an objective annotation of the ground truth. Therefore a 3D
deformable surface was created to semiautomatically seg-
ment the prostate and divide it in the same number of slice
sections of the histopathology tumor maps. The method en-
sures that the user is only guided by the histopathology tu-
mor maps, precontrast T1-w and T2-w images for placement
of the ROIs. No DCE-MRI parametric maps were used as
guidance in ROI placement, since this could introduce bias
in CAD performance estimates. To further reduce user-
variability, the whole lesion was annotated instead of just the
hotspot as suggested by Stoutjesdijk et al.32

Kiessling et al.49 evaluated the accuracy of descriptive
and physiological parameters calculated from signal
intensity-time curves using T1-weighted DCE-MRI to differ-

FIG. 6. ROC curves showing the discriminating performance of the CAD
system of the two separate trained classifiers �loc and �dif. The dotted curves
are part of the bootstrapping approach and represent the 95% confidence
intervals of the solid-line ROC curve. Subfigure 6�a� shows the discriminat-
ing performance between regions of type N and NS versus M. Subfigure 6�b�
shows the discriminating performance between regions of type NS versus
M.
entiate prostate cancers from the peripheral gland. Although
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they did not create a CAD system capable of calculating a
malignancy likelihood, they did evaluate the discriminating
performance of the kinetic parameters. Their best performing
parameter, early degree of enhancement, achieved an AUC
of 0.81. This result can be compared to our localizing clas-
sifier AUCloc of 0.92. The difference in performance can be
attributed to the method that was chosen to calculate the
pharmacokinetic parameters. Kiessling used the method pro-
posed by Brix et al.50 where a fixed arterial input function for
every patient is assumed �fixed calibration�, whereas in this
study the reference tissue model �per patient calibration� was
used �see the Appendix�.

In a previous study51 we showed that a per patient cali-
bration indeed has a positive effect on the discriminating
performance of PK parameters over a fixed calibration.

Chan et al.25 describe the only in-vivo CAD system that
provides an estimated malignancy likelihood by combining
information from T2-weighted, T2-mapping, and line scan
diffusion images. They achieved a diagnostic performance of
0.84. This can be compared to our AUCloc of 0.92. The lower
performance is likely attributed to the lack of DCE-MRI fea-
tures. Moreover, we have also researched and demonstrated
the ability of our method to discriminate suspicious enhanc-
ing benign regions from malignant regions. The latter is of
even greater importance in actual clinical conditions.

The current study has a number of limitations. The CAD
system is not fully automated, since the user needs to iden-
tify normal peripheral zone for calibration with the reference
tissue method �see the Appendix�. As a result, the healthy
tissue needs to be annotated in advance, which could result
in the annotation of PCa, which makes the CAD system not
clinical usable. An automated calibration technique makes
the CAD system fully automated and is being researched.
The effect of user-variability in annotating the ground truth
on the performance has not been researched.

In conclusion, this study demonstrated the possibility of
developing a CAD system capable of objectively discrimi-
nating malignant lesions from NS areas located in the normal
peripheral zone of the prostate with an accuracy of 0.83
�95% confidence intervals0.75–0.92��.
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APPENDIX: DCE-MRI POSTPROCESSING AND
PHARMACOKINETIC MODELING

All MRI data were transferred to an independent worksta-
tion with in-house build software. Each MR signal
enhancement-time curve was first fitted to a general expo-
nential signal enhancement model as described previously.12

This reduces a curve to a five parameter model: Baseline
�s0�; start of signal enhancement �t0�, which defines the onset
of the exponential curve; time-to-peak ���, the exponential
constant; peak enhancement �sp�, the signal amplitude at
which the exponential curve levels off; and late wash, de-

fined as the slope of the late part of the exponential curve.
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The reduced signal enhancement-time curve was converted
to a reduced tracer concentration �mmol/ml�-time curve38 ef-
fectively converting sp to Cgd,p. We have implemented the
method38 such that in an intermediate step the T1 estimates
are computed. The T1Static parameter is the baseline T1 es-
timate �s0� prior to contrast enhancement.

Analysis of DCE-MRI data is usually based on the indi-
cator dilution theory and requires knowledge of the concen-
tration of the contrast agent in the blood plasma. Without any
calibration, inter-patient plasma profile variability causes

FIG. 7. Example of two regions in the peripheral zone of the prostate that ar
parameters, suggesting that both sides are suspicious of prostate cancer. For
classifier with a diagnostic accuracy �AUCloc� of 0.92. Subfigure 7�a� show
bilateral enhancement of the peripheral zone, which makes both sides suspic
Ktrans color overlay map. This parameter also shows a bi-lateral enhancem
predicted likelihoods of the annotated regions in the left and right peripheral
likelihoods for all N and NS regions from the database used for training the c
likelihoods for all M regions from the database used for training the class
smoother based on local linear fits, in which local cross-validation is used
malignancy for the regions. The dotted line corresponds with the region in th
solid line corresponds with the region in the right of the peripheral zone �
adenocarcinoma in the left peripheral zone �subfigure 7�d��. The tumor was
fluctuations in PK estimates, which are not related to the

Medical Physics, Vol. 35, No. 3, March 2008
tissue condition. When using a power injector the most likely
cause of plasma curve differences is the patient itself, e.g.,
differences in body weight �total distributional volume�,
heart rate, vascular condition. Removing the plasma shape
can be regarded as a form of patient calibration. Among the
wide variety of techniques for estimating plasma profiles, we
have chosen for the reference tissue method and experienced
robust results with the technique.52 The reference tissue
method assumes that a tissue area within the patient is avail-
able with a known tissue model based on literature

52,53

cult to differentiate. A bi-lateral enhancement is seen with pharmacokinetic
regions the CAD system calculated the likelihoods of malignancy using the
ransverse T2-w image of the prostate with Ve color overlay map. Note the
for cancer. Subfigure 7�b� shows a coronal T2-w image of the prostate with
uggesting the presence of tumor at both sides. In subfigure 7�c� the CAD
are shown. The green area summarizes the distribution of all the calculated

fier. The red area summarizes the smoothed distribution of all the calculated
The areas are smoothed using a two-dimensional nonlinear variable span
timate the optimal span. The black lines are the calculated likelihoods of
of the peripheral zone �with a predicted malignancy likelihood of 80%�. The
a predicted malignancy likelihood of 20%�. Histopathology confirmed the
d as T2b and with a Gleason score of 3�3.
e diffi
both
s a t
ious
ent, s
zone
lassi
ifier.
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e left
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values. By doing a deconvolution the actual tissue im-
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pulse response can be determined. Deconvolution of the
plasma profile and estimation of pharmacokinetic parameters
conforms to the theoretical derivations54 but is implemented
in the reduced signal space as shown in the following
equation:

Ve =
Cgd,ptissue

Cgd,pplasma

, �A1�

kep =
1

�tissue − �plasma
, �A2�

Ktrans = Ve . kep, �A3�

where Ve is an estimate of the extracellular volume �%�,
Ktrans the volume transfer constant �1/min�, and kep the rate
constant �1/min� between extracellular extravascular and
plasma space. The subscript “tissue” stands for a measure-
ment in the tissue under investigation and subscript “plasma”
for the reference tissue plasma estimates based on literature
values.53 The reference tissue was determined by selecting
manually a set of voxels in the healthy �normal� peripheral
zone using whole mount section histopathology as guidance.
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