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Abstract 
A compositional verijkation method for multi-agent 
systems is presented and applied to a multi-agent system 
for one-to-many nggotiation in the domain of load 
balancing of electricii'y use. Advantages of the method ae 
that the complexity qf the verification process is managed 
by compositionality, and that parts of the proofs can be 
reused in relation to reuse of components. 

1. Introduction 
When designing muliti-agent systems, it is often difficult 
to guarantee that the specification of a system actually 
fulfils the needs, i.e., whether it satisfies the design 
requirements. Especially for critical applications, for 
example in real-time domains, there is a need to prove that 
the designed system has certain properties under certain 
conditions (assumptions). While developing a proof of 
such properties, the assumptions that define the bounds 
within which the system will function properly, are 
generated. For nontrivial examples, verification can be a 
very complex process, both in the conceptual and 
computational sense. For these reasons, a recent trend in 
the literature on verification is to exploit compositionality 
and abstraction to structure the process of verification; cf. 

The development of structured modelling frameworks 
and principled design methods tuned to the specific area of 
multi-agent systems is currently underway; e.g., [51, PI, 
[ 131. Mature multi-agent system design methods should 
include a verification approach. For example, in [9] 
verification is addressed using a temporal belief logic. In 
the approach presented below, a compositional verification 
method for multi-agent systems (cf. [12]) is used for 
formal analysis of a multi-agent system for one-to-many 
negotiation, in particular for load balancing of electricity 
use; see [4]. In short, the properties of the whole system 
are established by derivation from assumptions that 
themselves are properties of agents, which in turn may be 
derived from assumptions on sub-components of agents, 

[ll, v11, [121. 

and so on. The properties are formalised in terms of 
temporal semantics. The multi-agent system described and 
verified in this paper has been designed using the 
compositional development method for multi-agent 
systems DESIRE; cf. [ 5 ] .  

2. Compositional Verification 
The purpose of verification is to prove that, under a certain 
set of conditions (assumed properties), a system will 
adhere to a certain set of desired properties, for exaniple the 
design requirements. In the compositional verification 
approach presented in this paper, this is done by a 
mathematical proof (i.e., a proof in the form 
mathematicians are accustomed to do) that the 
specification of the system together with the assumed 
properties implies the properties that it needs to fulfil. 

2.1. The Compositional Verification Method 

A compositional multi-agent system can be viewed at 
different levels of process abstraction. Viewed from the top 
level, denoted by LO, the complete system is one 
component s; internal information and processes are 
hidden. At the next, lower level of abstraction, the system 
component s can be viewed as a composition of agents 
and the world. Each agent is composed of its sub- 
components, and so on. The compositional verification 
method takes this compositional structure into account. 
Verification of a composed component is done using: 

properties of the sub-components it embeds, 
0 the way in which the component is composed of its 

sub-components (the composition relation), 
environmental properties of the component (depending 
on the rest of the system, including the world) 

Given the specification of the comDosition relation. the 
assumptions 
properly are 
properties to 
implies that 

under which the cbmponent functions 
the environmental properties and the 

be proven for its sub-components. This 
properties at different levels of process 
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abstraction are involved in the verification process. The 
primitive components (those that are not composed of 
other components) can be verified using more traditional 
verification methods. Often the properties involved are not 
given at the start: to find them is one of the aims of the 
verification process. 

The verification proofs that connect properties of one 
process abstraction level with properties of the other level 
are compositional in the following manner: any proof 
relating level i to level i+l can be combined with any 
proof relating level i-1 to level i, as long as the same 
properties at level i are involved. This means, for 
example, that the whole compositional structure beneath 
level i can be replaced by a completely different design as 
long as the same properties at level i are achieved. After 
such a modification only the proof for the new component 
has to be provided. In this sense the verification method 
supports reuse of verification proofs. The compositional 
verification method can be formulated as follows: 

A. Verifying one Level Against the Other 
For each qbstraction level the following procedure for 
verification is followed: 
1. Determine which properties are of interest (for the 

higher level). 
2. Determine which assumed properties (at the lower 

level) are needed to guarantee the properties of the 
higher level, and which environment properties. 

3. Prove the properties of the higher level on the basis of 
these assumed properties, and the environment 
properties. 

B. Verifying a Primitive Component 
For primitive components, verification techniques can be 
used that are especially tuned to the type of component; 
both for primitive knowledge-based components and non- 
knowledge-based components (such as databases or 
optimisation algorithms) techniques (and tools) can be 
found in the literature. 

C. The Overall Verification Process 
To verify the entire system 
1. Determine the properties that are desurd for the whole 

system. 
2. Apply A iteratively. In the iteration the desired 

properties of each abstraction level L~ are the assumed 
properties for the higher level. 

3. Verify the primitive components according to B. 

Notes: 
The results of verification are two-fold: 
(1) Properties at the different abstraction levels. 
(2) The logical relations between the properties of 
adjacent abstraction levels. 
process and information hiding limits the complexity 
of the verification per abstraction level. 
a requirement to apply the compositional verification 
method described above is the availability of an 
explicit specification of how the system description at 
an abstraction level L~ is composed from the 
descriptions at the lower abstraction level ~ i + ~ ;  the 
compositional development method for multi-agent 
systems DESIRE fblfils this requirement. 
in principle different procedures can be followed (e.g., 
top-down, bottom-up or mixed). 

2.2. Semantics behind Compositional Verification 

Verification is always relative to semantics of the system 
descriptions to be verified. For the compositional 
verification method, these semantics are based on 
compositional information states which evolve over time. 
In this subsection a brief overview of these assumed 
semantics is given. 

An information state M of a component D is an 
assignment of truth values {true, false, unknown} to the set of 
ground atoms that play a role within D. The compositional 
structure of D is reflected in the structure of the 
information state. A more detailed formal definition can be 
found in [6]. The set of all possible information states of 
D is denoted by IS(D). 

A trace fi of a component D is a sequence of 
information states (M$ E N in Is(D). The set of all traces 
(i.e., I S ( D ) ~ )  is denoted by Traces(D). Given a trace of 
component D, the information state of the input interface 
of component c at time point t of the component D is 
denoted by s t a t e D ( N ,  t, input(C)), where c is either D or a 
sub-component of D. Analogously, state[)@( , t, output(c)) 
denotes the information state of the output interface of 
component c at time point t of the component D. 

3. One-to-many Negotiat ion Processes  

In this section the application domain is briefly sketched, 
and the one-to-many negotiation process devised within 
this domain is presented. 

3.1. Load Balancing of Electricity Use 

The purpose of load management of electricity use is to 
smoothen peak load by managing a more appropriate 
distribution of the electricity use among consumers. 
Flexible pricing schemes can be an effective means to 
influence consumer behaviour: cf. [ 101. The assumption 
behind the model presented in this paper is that, to acquire 
a more even distribution of electricity usage in time, 
consumer behaviour can be influenced by financial gain. 
Consumers are autonomous in the process of negotiation: 
each individual consumer determines which price/risk 
he/she is willing to take and when. As consumers are all 
individuals with their own characteristics and needs 
(partially defined by the type of equipment they use within 
their homes), that vary over time, models of consumers 
used to design systems to support the consumer, need to 
be adaptive and flexible (cf. [2]). Utility companies 
negotiate price in a one-to-many negotiation process with 
each and every individual separately, unaware of the 
specific models behind such systems for individuals. In the 
model discussed in this paper the negotiation process is 
modelled for one utility company and a number of 
consumers, each with their own respective agent to 
support them in the negotiation process: one Utility 
Agent and a number of Customer Agents. 

3.2. Modelling the Negotiation Process 

In [14], [15] a number of mechanisms for negotiation are 
described. A protocol with well-defined properties, called 
the monotonic concession protocol, is described during a 
negotiation process all proposed deals must be equally or 
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more acceptable to the counter party than all previous 
deals proposed. The strength of this protocol is that the 
negotiation process always converges. The monotonic 
concession protocol has been applied to the load 
management problem, to obtain a model for the one-to- 
many negotiation process between one Utility Agent and a 
(in principle large) number of Customer Agents. 

In this model, the Utility Agent always initiates the 
negotiation process, as soon as a coming peak in the 
electricity consumption. is predicted. In the method used 
the Utility Agent constructs a so-called reward table and 
communicates this table to all Customer Agents 
(announcement). A reward table (for a given time interval) 
consists of a list of possible cut-down values, and a r e d  
value assigned to each cut-down value. The cut-down value 
specifies an amount of electricity that can be saved 
(expressed in percentages) and the reward value specifies 
the amount of reward the Customer Agent will receive 
from the Utility Agent if it lowers its electricity 
consumption by the cut-down value. A Customer Agent 
examines and evaluates the rewards for the different cut- 
down values in the reward tables. If the reward value 
offered for the specific cut-down is acceptable to the 
Customer Agent, it informs the Utility Agent (bid) that it 
is prepared to make a cut-down x, which may be zero to 
express that no cut-down is offered. 

As soon as the Customer Agents have responded to the 
announcement of a reward table, the Utility Agent predicts 
the new balance between consumption and production of 
electricity for the stated time interval. The Utility Agent is 
satisfied by the responses if a peak can be avoided if all 
Customer Agents implement their bids. If the Utility 
Agent is not satisfied by the responses communicated by 
the Customer Agents, it announces a new reward table 
(according to the monotonic concession protocol 
mentioned above) to the Customer Agents in which the 
rewardvalues are at least as high, and for some cut-down 
values higher than in the former reward table (determined 
on the basis of, for example, the formulae described in 
Section 4.2 below). The Customer Agents react to this 
new announcement by responding with a new bid or the 
same bid again (in line with the rules of the monotonic 
concession protocol). This process continues until (1) the 
peak is satisfactorily low for the Utility Agent (at most 
the capacity of the utility company), or (2 )  the reward 

values in the new reward table have (almost) reached the 
maximum value the Utility Agent can offer. This value 
has been determined in advance. For more details on this 
negotiation method, see [4]. 

4. 

The prototype Multi-Agent System has been fully 
specified and (automatically) implemented in the DESIRE 
software environment. The top level composition of the 
system consists of a Utility Agent, two Customer Agents, 
and an External World. 

Composit ional  Design of the Sys tem 

4.1. Top Level Composition of the Utility Agent 

The first level composition within the Utility Agent is 
depicted in Figure 1 (taken from the graphical design tool 
within the DESIRE software environment). This picture 
shows part of the graphical interface of the DESIRE 
software environment; in addition, interfaces to the agents 
have been implemented which are specific for this 
prototype (see [4]). 

4.2. Knowledge used within the'utility Agent 

In this prototype system the Utility Agent communicates 
the same announcements to all Customer Agents, in 
compliance with Swedish law. The predicted balance 
between the consumption and the production of electricity, 
is determined by the following formulae (here CA is a 
variable ranging over the set of Customer Agents): 
predicted-use-with-cutdown(CA) = 

predicted-use(CA) 

(1 - cutdown(CA) ). allowed-use(CA) 
if (1 - cutdown(CA) ). allowed-use(CA) z predicted-use(CA) 

otherwise 

predicted-overuse = 

CCA predicted-use-with-cutdown(CA) - normal-use 

predicted-overuselnormal-use 

reward +beta. overuse . (1 - rewardJmax-reward). reward 

overuse = 

new-reward = 

Figure 1 Process composition at the first level within the Utility Agent 
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In the prototype system, the factor beta determines how 
steeply the reward values increase; in the current system it 
has a constant value. The reward value increases more 
when the predicted overuse is higher (in the beginning of 
the negotiation process) and less if the predicted overuse is 
lower. It never exceeds the maximal reward, due to the 
logistic factor (1 - rewardlmax-reward). 

5. Verification at the Top Level 
Two important assumptions behind the system are: energy 
use is (statistically) predictable at a global level, and 
consumer behaviour can be influenced by financial gain. 
These assumptions imply that if the financial rewards 
(calculated on the basis of statistical information) offered 
by a Utility Agent are well chosen, Customer Agents will 
respond to such offers and decrease their use. 

The most important properties to prove for the load 
balancing system S as a whole are that (1) the negotiation 
process satisfies the monotonic concession protocol, (2) at 
some point in time the negotiation process will terminate, 
and (3) the agents make rational decisions during the 
negotiation process. These properties are formally defined 
in Section 5.1. An important property for the Utility 
Agent, in particular, is that after the negotiation process 
the predicted overuse has decreased to such an extent that is 
at most the maximal overuse the utility company 
considers acceptable. To prove these properties several 
other properties of the participating agents (and the 
external world) are assumed. These properties of agents and 
the external world are defmed in Section 5.2. Some of the 
proofs of properties are briefly presented in Section 5.3. 
Next, Section 6 shows how these assumed properties can 
be proven from properties assumed for the sub- 
components of the agents. 

5.1 Properties of the System as a Whole 

The properties defined at the level of the entire system are 
based on combinations of properties of the agents. 

S1. Monotonicity of negotiation 
The system S satisfies monotonicity of negotiation if the 
Utility Agent satisfies montonicity of announcements and 
each Customer Agent satisfies monotonicity of bids. This 
is formally defined as the conjunction of the Utility Agent 
announce monotonicity property U7 and for each 
Customer Agent the bid monotonicity property C5 (see 
below). 

S2. Termination of negotiation 
The system S satisfies termination of negotiation (on a 
given time interval) if a time point exists after which no 
announcements or bids (referring to the given time 
interval) are generated by the agents. This is formally 
defined by: for all Customer Agents CA it holds 
VNTraces(S)  3 t Vt'X, CD, R, N 

states(%, t', output(UA)) k announcement(CD, I?, N) 
& states(%, t, output(CA)) f# cutdown(CD, N) 

S3. Rationality of negotiation 
The system S satisfies rationality of negotiation if the 
Utility Agent satisfies announcement rationality and each 
Customer Agent satisfies bid rationality. This is formally 

defmed as the conjunction of the Utility Agent rationality 
property U9 and for each Customer Agent the Customer 
Agent rationality property C4 defined below. 

S4. Required reward limitation 
The system S satisfies required reward limitation if for 
each Customer Agent and each cut-down percentage, the 
required reward of the Customer Agent is at most the 
maximal reward that can be offered by the Utility Agent. 

VCA VCD rrCn(CD) 5 rnrun(CD) 

The above property is an assumption for the whole 
system, used in the proofs. In addition to these properties 
a global successfulness property for the whole negotiation 
process could be defmed. However, as successfulness 
depends on the perspective of a specific agent, the choice 
has been made to defme succesfulness as a property of an 
agent (cf. property U1 below). The successfulness of the 
whole negotiation process could be defined as the 
conjunction of the succesfulness properties for all 
participating agents. 

5.2 Properties of the Agents and the World 

The properties of the Utility Agent, the Customer Agents, 
and the External World are defined in this section. Note 
that each of the properties is presented as a temporal 
statement either about all traces of the system S or about 
all traces of an agent. In the latter case the truth of the 
property does not depend on the environment of the agent. 
Section 5.3 discusses how the variuos properties are 
logically related. 

5.2.1 Properties of the Utility Agent 
U1. Successfulness of negotiation 
The Utility Agent satisfies successfulness of negotiation if 
at some point in time t and for some negotiation round N 
thepredicted overuse is less than or equal to the constant 
max-overuse. 
VmTraces(S)  3t, N 3 U  5 max-overuse 

states(%, t, output(UA)) k predicted-overuse(U, N) 

U2. Negotiation round generation effectiveness 
The Utility Agent satisfies negotiation round generation 
effectiveness if the following holds: if and when predicted 
overuse is higher than the maximal overuse, a next 
negotiation round is initiated. 
VmTraces(UA) Vt , N, U, CD, R 

[ stateUA(%, t, output(UA)) round(N) 
& stateUA(%, t, output(UA)) b predicted-overuse(U, N) 
& U >max-overuse 
& statella(%, t, output(UA)) k announcement(CD, R, N) 
& R rnr,,(CD) ] 

3 3t' > t stateuA(%, t', output(UA)) b round(N+l) 

U3. Negotiation round generation groundedness 
The Utility Agent satisfies negotiation round generation 
groundednes if the following holds: if the predicted overuse 
is at most the maximal overuse, then no new negotiation 
round is initiated. 
VN€Traces(UA) Vt , N, U 

stateUA(K, t', output(UA)) k predicted-overuse(U, N) 
& U 5 max-overuse 

Vt', N'>N stateuA(N, t', output(UA)) k round(") 

52 



U4. Announcement generation effectiveness 
The Utility Agent satisfies announcement generation 
effectivenes if for each initiated negotiation round at least 
one announcement is generated. 
V%Traces(UA) V t , N 

3 r r t V C D 3 1 R  
[ stateuA(m, t, output(UA)) k round(N) 

stateuA(%, t', output(UA)) k announcement(CD, R, N) ] 

US. Announcement uniqueness 
The Utility Agent satisfies announcement uniqueness if 
for each initiated negotiation round at most one 
announcement is generated. 
V w T r a c e s ( U A )  V t , t', N V CD, R, R' 

stateuA(%, t, output(1JA)) k announcement(CD, R, N) 
& stateUA(N, t', output(UA)) k announcement(CD, R', N) 

R = R '  

U6. Announcement generation groundedness 
The Utility Agent satisfies announcement generation 
groundedness if an announcement is only generated for 
initiated negotiation rounds. 
VwTraces (UA)  v t , N V CD, R 

s ta teuA(N,  1, output(UA)) k announcement(CD, R, N) 
S 3 t' <t stateuA(gt,  t', output(UA)) round(N) 

U7. Monotonicity of announcement 
The Utility Agent satisfies monotonicity of announcement 
if for each announcement and each cut-down percentage the 
offered reward is at least the reward for the same cut-down 
percentage offered in the previous announcements. 
v%€Traces(UA) v t, t'. N, N' v CD, R. R' 

s ta teuA(N,  t. output(UA)) 
& stateUA(N, t', output(UA)) k announcement(CD, R', N') 
& NsN'  
S R S R '  

announcement(CD, R, N) 

US. Progress in announcement 
The Utility Agent satisfies progress in announcement if 
for at least one cut-dawn percentage the difference between 
the currently announced reward and the previously 
announced reward is at least the positive constant m 
(announce margin) 
V=Traces(UA) V t, t'. hI 3CD V R, R' 

stateUA(%, 1, output(UA)) 'F announcement(CD, R, N) 
& statell&(, t', output(UA)) k announcement(CD, R', N+1) 
s R + m s R '  

U9. Announcement rationality 
The Utility Agent satisfies announcement rationality if no 
announced reward is higher than the maximal reward plus 
the announce margin 
VwTraces (UA)  V 1, N 'd CD, R 

stateuA(cA, 1, output(UA)) k announcement(CD, R, N) 
R < mrUA (CD) + announce-margin 

U10. Finite termination of negotiation by UA 
The Utility Agent satisfies finite termination of 
negotiation if a time point exists such that UA does not 
negotiate anymore aFter this time point. 
VmTraces(S) 3t Vt'zt, CD, R, N 

states(%, t', output(1JA)) !# announcement(CD, R, N) 

5.2.2 Properties of each Customer Agent 

C1. Bid generation effectiveness 
A Customer Agent CA satisfies bid generation 
effectiveness if for each announced negotiation round at 
least one bid is generated (possibly a bid for reduction 
zero). 
v w T r a c e s ( C A )  V t ,  N 

stateCA(N, t, input(CA)) k round(N) 
*3CD, t'tt stateCA(%, t', output(CA)) k cutdown(CD, N) 

C2. Bid uniqueness 
A Customer Agent CA satisfies bid uniqueness if for each 
negotiation round at most one bid is generated. 
VN€Traces(CA) V t, t', N, CD, CD' 

s ta tecA(N,  t, output(CA)) k cutdown(CD, N) 
& stateCA(N, t', output(CA)) i= cutdown(CD', N) 
J C D  = CD' 

C3. Bid generation groundedness 
A Customer Agent CA satisfies bid generation 
groundedness if a bid is only generated once a negotiation 
round is announced. 
v N T r a c e s ( C A )  V t, N, CD 

s ta tecA(N,  t, output(CA)) k cutdown(CD: N) 
t'st s ta teca tm,  t'. input(CA)) k round(N) 

C4. Bid rationality 
A Customer Agent CA satisfies bid rationality if for each 
bid the required reward for the offered cut-down is at most 
the reward announced in the same round, and the offered 
cut-down is the highest with this property. 
VwTraces (CA)  V t, t', N, CD 

[ stateCA(N, t, output(CA)) k cutdown(CD, N) 
& stateCA(%, t', input(CA)) k announcement(CD, R, N) 

& 
[ statecA(%, t, output(CA)) k cutdown(CD, N) 
& stateCA(N, 1, input(CA)) 'F announcement(CD, R, N) 
& stateCA(N. t', input(CA)) k announcement(CD, R'. N) 
8. rrCA(CD') 5 R' ] 
3 CDsCD'  

rrcA(CD)<R ] 

C5. Monotonicity of bids 
A Customer Agent CA satisfies monotonicity of bids if 
each bid is at least as high (a cut-down percentage) as the 
bids for the previous rounds. 
V w T r a c e s ( S )  V t, t', N, N' VCD, C D  

states(%, 1, output(CA)) k cutdown(CD, N) 
& states(%, t', output(CA)) 'F cutdown(CD', N') 
& N S N '  
J C D  5 C D  

C6. Finite termination of negotiation by CA 
A Customer Agent CA satisfies finite termination of 
negotiation by CA if a time point exists such that CA does 
not negotiate anymore after this time point. 
VmTraces (S)  3 t  Vt'zt, CD, N 

states(%, t', output(CA)) !# cutdown(CD, N) 

A successfulness property of a Customer Agent could be 
defined on the basis of some balance between discomfort 
and financial gains. 
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5.2.3 Properties of the External World 
The External World satisfies information provision 
effectiveness if it provides information about the predxted 
use of energy, the maximum energy level allocated to each 
Customer Agent, and the maximal overuse of the Utility 
Agent. The External World satisfies static world if the 
information provided by the external world does not 
change during a negotiation process. 

5.3 Proving Properties 
To structure proofs of properties, the compositional 
structure of the system is followed. For the level of the 
whole system, system properties are proved from agent 
properties, which are defined at one process abstraction 
level lower. 

5.3.1 Proofs of the System Properties 
Property S4 is an assumption on the system, which is 
used in the proofs 6f other properties. The other top level 
properties can be proven from the agent properties in a 
relatively simple manner. For example, by d e f ~ t i o n  
monotonicity of negotiation (Sl) can be proven from the 
properties monotonicity of announcement (U7) and 
monotonicity of bids (C5) for all Customer Agents. Also 
S2 (termination) can be proven directly from U10 and C6, 
and S3 (rationality) immediately follows from U9 and C4. 

5.3.2 Proofs of Agent Properties 
Less trivial relationships can be found between agent 
properties. As an example, the termination property for 
the Utility Agent (U 10) can be proven from the properties 
U1, U3, and U6. The termination property of a Customer 
Agent depends on the Utility Agent, since the Customer 
Agents are reactive: the proof of C6 makes use of C3, and 
the Utility Agent properties U1 and U3, and the 
assumption that the communication between UA and CA 
functions properly (CA should not receive round 
information that was not generated by UA). In the proofs 
of an agent property, also properties of sub-components of 
the agent can be used: the proof can be made at one 
process abstraction level lower. This will be discussed for 
the Utility Agent in Section 6. 

6.  

To illustrate the next level in the compositional 
verification process, in this section it is discussed how 
properties of the Utility Agent can be related to properties 
of components within the Utility Agent. First some of the 
properties of the components Agent Interaction 
Management and Determine Balance are defmed. 

Verification within the Utility Agent 

6.1 Properties of Components within UA 

Properties are deked for the components Agent 
Interaction Management (AIM), Determine Balance (DB), 
Cooperation Management (CM), and Own Process 
Control (OPC) of the Utility Agent (see Figure 1). 

6.1.1 Properties of AIM 
The following two properties express that the component 
Agent Interaction Management (1) distributes the relevant 

information from incoming communication, and (2) 
generates outgoing communication if required. 

AIM1. Cut-down provision effectiveness 
The component Agent Interaction Management satisfies 
cut-down provision effectiveness if AIM is effective in the 
analysis of incoming communication: the cut-down 
information received by AIM of the form 
received(cutdown-from(CD, CA, N)) is interpreted and translated 
into cut-down information required by other components 
of the form offered-bid(cutdown(CD, CA, N)) and made available 
in AIM'S output interface. 
'dN€Traces(AIM) V t, N, CD, CA 
state&(, t, input(AIM)) b received(cutdown-frorn(CD, CA, N)) 
3 3 t'>t s ta teg(N,  t, output(AIM)) k offered-bid(cutdown(CD,CA,N)) 

AIM2. Communication generation effectiveness 
The component Agent Interaction Management satisfies 
communication generation effectiveness if AIM is 
effective in generation of outgoing communication on the 
basis of the analysis of input information received from 
other components of the form next-communication(round(N)), 
nextcommunication(announcement(CD, R,  N)) which is made 
available in statements own-communication(round(N)), and 
own-communication(announcernent(CD, R, N)). 
VN€Traces(AIM) 'd t, N, CD 

stateAlM(%, t, input(AIM)) b next-communication(X) 
3 t'st stateAIM(N, t, output(A1M)) k own-comrnunication(X) 

6.1.2 Properties of Determine Balance 
The following two properties express that the component 
Determine Balance calculates predictions in a reasonable 
manner. 

DB1. Overuse prediction generation effectiveness 
The component Determine Balance satisfies overuse 
prediction generation effectiveness if the predicted overuse 
is determined if and when normal capacity, predicted use 
and cut-downs are known. 
VN€Traces(DB) 'dt , N, C 

stateDB(*, t, input(DB)) b predicted-use(U) 
& stateDB(N, t, input(DB)) C normal-capacity(C) 
& 'd CA 3CD stateDB(N, t, input(DB)) b cutdown-frorn(CD,CA,N) 
& stateDB(N, t, output(DB)) k round(N) 
a 3U', t' > t stateDB(K, t'. output(DB)) k predicted-overuse(U',N) 

DB2. Overuse prediction monotonicity 
The component Determine Balance satisfies overuse 
prediction monotonicity if the following holds: if based on 
received cut-downs CD,, for each Customer Agent CA, a 
predicted overuse U is generated by DB, and based on 
received cut-downs CD',, for each Customer Agent CA, a 
predicted overuse U' is generated by DB, then CD,, 5 CD',, 
for all CA implies U' 5 U. 
VN€Traces(DB) Vt , t', N, N', C, UO, U, U' 

s ta teDB(N,  t, input(DB)) k predicted-use(U0) 
& VCA [ stateDB(N, t, input(DB)) b cutdown-frorn(CD,,, CA, N) 
& s tateDB(N,  t', input(DB)) k cutdownfrom(CD',, CA, N') 
& CD,, 5 CD',, ] 
& stateDp,(K, 1, output(DB)) k predicted-overuse(U, N) 
& s tateDB(N,  t', output(DB)) C predicted-overuse(U', N') 
3 U ' 5 U  

Note that in this property the monotonicity is not meant 
over time, but for the functional relation between input 
and output of DB. 
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DB3. Overuse prediction decrease effectiveness 
The component Determine Balance satisfies overuse 
prediction decreae eSfectiveness if the following holds: 
cut-down values exist such that, if the Utility Agent 
receives them, the predicted overuse will be at most the 
maximal overuse. Formally, a collection of numbers CD,, 
for each Customer Agent CA exists such that: 
VN€Traces(DB) Vt , N 

VCA stateDB(N, t, input(DB)) b cutdown-from(CD, CA, N) 

state&(, t', output(Df3)) k= predicted-overuse(U, N) 
3 t'>t, U s max-overuse 

6.1.3 Properties of Cooperation Management 
Cooperation Management fulfills a number of properties, 
for example on pxoperly generation announcements: 
announcement generation effectiveness, announcement 
uniqueness, and announcement generation groundedness. 
These are defined similarly to the corresponding properties 
of the Utility Agent. In this paper only the property that 
guarantees that new rounds are initiated is explicitly stated. 

CM1. Round generation effectiveness 
The component Determine Balance satisfies round 
generation effectiveness if CM determines the value of the 
next round and makes this information available to other 
components in its output interface. 
VN€Traces(CM) V t , N 

stateCM(N, t, input(CM)) C round(N) 
3 t'>t statecM(s. ,  t'. output(DB)) C round(N+l) 

6.1.4 Properties of Own Process Control 
One of the properties of the component Own Process 
Control guarantees that decisions about continuation of a 
negotiation process are made: 

OPC1. New announce decision effectiveness 
If the predicted overuse is still more than the maximum 
overuse, then a new announcement is warranted. 
VNETraces(0PC) V t , N, U 

s ta teopcm,  t, input(0PC)) C current-negotiation-state( 

& stateopg(x .  t, input(0PC)) C current-negotiation-state(round(N)) 
& U > ma-overuse 

predicted-overuse(U, N)) 

3 t'rt, stateopC(m,  t', output(0PC)) C new-announce 

6.2 Proofs within the Utility Agent 

To verify the UA property U2 (negotiation round 
generation effectiveness), a number of properties of sub- 
components, are of importance, and also the interaction 
between the components through the information links 
(the arrows in Figure 1) should function properly. The 
following gives a brief sketch of the proof of the UA 
properly negotiation round generation effectiveness. 

The round number itself is determined by CM; to 
guarantee this, CM needs to satisfy the property of round 
generation effectiveness (CM1). This round value is 
transferred to the component AIM. The component AIM 
must fulfil the property of communication generation 
effectiveness (AIM2) to enable this value to be placed in 
the Utility Agent's output interface, once the relevant link 
has been activated. Activation of the link to the Utility 
Agent's output interface depends (via task control) on 
whether the component OPC derives the need for a new 

announcement. To guarantee this, the property new 
announce decision effectiveness (OPC l), is needed. 

Based on the properties mentioned, the proof runs as 
follows. Whenever the component AIM has received all 
the cut-downs for the current round, the link bids from AIM to 
DB is activated (via task control). Because of the property 
BD 1 (overuse prediction generution effectiveness), this 
component then derives the current predicted overuse 
(assuming predicted use, normal capacity and round are 
known). It can be assumed that the overuse for this round 
is above max-overuse (otherwise the conditions for U2 are 
not satisfied). The component OPC is then activated (by 
task control) and, given property OPCl (new announce 
decision effectiveness) this component will derive the 
atom new-announce. Then Cooperation Management is 
activated and given property CM 1, this component will 
derive a new round. Given property AIM2, this new round 
information will be available on the output interface of 
AIM; the link outgoing communications transfers the desired 
result: round(N+l) at the output of UA. This proves Utility 
Agent property U2. 

7. Discussion 
To come to clearer understanding of strengths and 
weaknesses of a compositional approach to verification it 
is important to address real world problems where size 
andlor complexity are characteristic. The load balancing 
problem of electricity use, as addressed in this paper, 
belongs to the class of real world problems. This paper 
focuses on one-to-many negotiation between a Utility 
Agent and its Customer Agents, using a (monotonic) 
negotiation strategy based on announcing reward tables. 

The compositional verification method used in this 
paper is part of the compositional development method for 
multi-agent systems DESIRE, based on compositionality 
of processes and knowledge at different levels of 
abstraction, but can also be useful to other compositional 
approaches. Two main advantages of a compositional 
approach to modelling are the transparent structure of the 
design and support for reuse of components and generic 
models. The compositional verification method extends 
these main advantages to (1) the complexity of the 
verification process is managed by compositionality, and 
(2) the proofs of properties of components that are reused 
can be reused. 

The first advantage entails that both conceptually and 
computationally the complexity of the verification process 
can be handled by compositionality at different levels of 
abstraction. The second advantage entails: if a modified 
component satisfies the same properties as the one it 
replaces, the proof of the properties at the higher levels of 
abstraction can be reused to show that the new system has 
the same properties as the original system. This increases 
the value for a documented library of reusable generic and 
instantiated components. 

Also due to the compositional nature of the 
verification method, a distributed approach to verification 
is facilitated: several persons can work on the verification 
of the same system at the same time. It is only necessary 
to know or to agree on the properties of these sub- 
components with interfaces in common. 

A main Werence in comparison to [9] is that our 
approach exploits compositionality. An advantage of their 
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approach is that it uses a temporal belief logic. A first 
step to  extend our approach a compositional variant of 
temporal logic can be found in [7]. A main difference to 
the work described in [3] and [8] is that in our approach 
compositionality of the verification is addressed; in the 
work as ref& only domain assumptions are taken into 
account, and no hierarchical relations between properties 
are defined. 

A future continuation of this work will address both 
the embedding o f  verification proofs in a suitable proof 
system for temporal logic (for some first results, see [7]), 
and the development o f  tools for verification. At  the 
moment only tools exist for the verification of primitive 
components; no tools for the verification of composed 
components exist yet. To support the handwork of 
verification it would be useful to have tools t o  assist in 
the creation of the proof. This could be done by 
formalising the proofs of a verification process in a 
suitable proof system. 
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