The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/60578

Please be advised that this information was generated on 2019-01-28 and may be subject to change.
A NEW CHARACTERIZATION OF THE UNIT BALL OF H^2

R. A. KORTRAM

(Communicated by Juha M. Heinonen)

ABSTRACT. We derive a new expression for the norm of H^2 functions; we present some well-known results in a different setting.

INTRODUCTION

In 1915, Pick [3] proved the following result.

Theorem 1. Let g be an analytic function on the unit disc Δ in the complex plane. Then $|g(z)| \leq 1$ for all $z \in \Delta$ if and only if for all $n \in \mathbb{N}$, for all sequences z_1, z_2, \ldots, z_n in Δ and for all sequences $\lambda_1, \lambda_2, \ldots, \lambda_n$ we have

$$
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1 - g(z_k) \overline{g(z_l)}}{1 - z_k \overline{z_l}} \lambda_k \lambda_l \geq 0.
$$

Ahlfors [1], page 3, gives an elegant proof of this characterization of the unit ball of H^∞.

In this note we shall present a characterization of the unit ball of H^2. Our main tool will be an explicit solution of the “minimal interpolation problem” for H^2 (see [2], page 141). As a byproduct we obtain a new proof of Pick’s theorem.

DESCRIPTION OF THE MAIN RESULT

Let z_1, z_2, \ldots, z_n be a sequence in Δ, and let b be the Blaschke product generated by the sequence

$$
b(z) = \prod_{j=1}^{n} \frac{z - z_j}{1 - \overline{z_j} z}.
$$

We shall prove that the following conditions are equivalent for continuous functions f on Δ:

1) f lies in the unit ball of H^2.
2) For every $n \in \mathbb{N}$ and for every sequence z_1, z_2, \ldots, z_n of mutually distinct points in Δ we have

$$
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k) f(z_l)}{1 - z_k \overline{z_l}} \cdot \frac{1}{b'(z_k) b'(z_l)} \leq 1.
$$

Received by the editors August 13, 2002.
2000 Mathematics Subject Classification. Primary 30D55.
For mutually distinct points z_1, z_2, \ldots, z_n in Δ and for w_1, w_2, \ldots, w_n in \mathbb{C} we define
\[
\Lambda = \{ f \in H^2 : f(z_j) = w_j, \ j = 1, 2, \ldots, n \}.
\]
Λ is not empty; it contains the Lagrange interpolation polynomial
\[
\lambda(z) = l(z) \sum_{k=1}^{n} \frac{w_k}{(z - z_k)l'(z_k)},
\]
where $l(z) = \prod_{j=1}^{n} (z - z_j)$.

In the context of H^p spaces it is more natural to work with the Blaschke interpolation function
\[
\beta(z) = b(z) \sum_{k=1}^{n} \frac{1 - \overline{z}_k z}{z - z_k} \frac{w_k}{b'(z_k)(1 - |z_k|^2)},
\]
with $b(z)$ defined as in (2). Of course $\beta \in \Lambda$. However, for our purposes we are better off with
\[
\varphi(z) = b(z) \sum_{k=1}^{n} \frac{w_k}{(z - z_k)b'(z_k)},
\]
$\varphi \in \Lambda$, and φ is analytic on some neighbourhood of $\overline{\Delta}$. Λ is a hyperplane in H^2.

With φ and b defined as in (4) and (2) we have
\[
\Lambda = \{ \varphi + gb; \ g \in H^2 \}.
\]

Theorem 2. φ is the unique solution of the “minimal interpolation problem”, i.e., for every $f \in \Lambda \backslash \{ \varphi \}$ we have $\|f\|_2 > \|\varphi\|_2$.

Proof. It suffices to show that $\varphi \perp (f - \varphi)$ for every $f \in \Lambda$ (since under those circumstances $\|f\|_2 = \|\varphi\|_2 + \|f - \varphi\|_2$).

From the decomposition $f = \varphi + bg$ we have
\[
(f - \varphi, \varphi) = (bg, \varphi) = \frac{1}{2\pi} \int_{0}^{2\pi} b(e^{it})g(e^{it})\varphi(e^{it})dt
\]
\[
= \frac{1}{2\pi} \int_{0}^{2\pi} b(e^{it})g(e^{it})b(e^{it}) \sum_{k=1}^{n} \frac{\overline{w}_k}{(e^{-it} - \overline{z}_k)b'(\overline{z}_k)}dt.
\]
Note that $|b(e^{it})|^2 = 1$. Thus,
\[
(f - \varphi, \varphi) = \sum_{k=1}^{n} \frac{\overline{w}_k}{2\pi b'(z_k)} \int_{0}^{2\pi} g(e^{it}) \frac{e^{it}}{1 - e^{it}\overline{z}_k}dt
\]
\[
= \sum_{k=1}^{n} \frac{\overline{w}_k}{b'(z_k)} \cdot \frac{1}{2\pi i} \int_{\Gamma} \frac{g(z)}{1 - \overline{z}_k z}dz = 0,
\]
because the integrand is analytic on Δ.

Preliminaries
It will be convenient to have an explicit expression for $\|\varphi\|_2^2$:

$$
\|\varphi\|_2^2 = \frac{1}{2\pi} \int_0^{2\pi} |\varphi(e^{it})|^2 dt = \frac{1}{2\pi} \sum_{k=1}^n \sum_{l=1}^n w_k \overline{w_l} \int_0^{2\pi} \frac{dt}{(e^{it} - z_k)(e^{-it} - \overline{z_l})} = \frac{1}{2\pi} \sum_{k=1}^n \sum_{l=1}^n w_k \overline{w_l} \int_0^{2\pi} \frac{dz}{b'(z_k)b'(z_l)(1 - z_k \overline{z_l})} = \sum_{k=1}^n \sum_{l=1}^n \frac{1}{1 - z_k \overline{z_l} \frac{b'(z_k)}{b'(z_l)}}.
$$

There are, of course, many other expressions for $\|\varphi\|_2^2$.

Theorem 3.

$$
\|\varphi\|_2 = \max \left\{ \left| \sum_{k=1}^n w_k f(z_k) \right| : f \in H^2, \|f\|_2 \leq 1 \right\}.
$$

Proof.

$$
\sum_{k=1}^n w_k f(z_k) = \frac{1}{2\pi i} \int_{\Gamma} f(z) \varphi(z) b(z) \frac{dz}{b'(z_k)};
$$

hence, by Schwarz’s inequality we have

$$
\left| \sum_{k=1}^n w_k f(z_k) \right| \leq \frac{1}{2\pi} \int_0^{2\pi} |f(e^{it})| \cdot |\varphi(e^{it})| dt \leq \|f\|_2 \cdot \|\varphi\|_2 \leq \|\varphi\|_2.
$$

Equality holds for the function $f : z \rightarrow -\frac{1}{\|\varphi\|_2} \sum_{k=1}^n \frac{w_k}{(1 - z_k \overline{z_l})b'(z_k)}$.

An immediate result from Theorem 2 is

Corollary. For every sequence z_1, z_2, \ldots, z_n of mutually distinct points of Δ we have

$$
\sum_{k=1}^n \sum_{l=1}^n \frac{1}{1 - z_k \overline{z_l}} \frac{1}{b'(z_k)b'(z_l)} \leq 1.
$$

Proof. Take $w_1 = w_2 = \ldots = w_n = 1$. Then $1 \in \Lambda$ and since

$$
\|1\|_2 = 1,
$$

we have

$$
1 \geq \|\varphi\|_2^2 = \sum_{k=1}^n \sum_{l=1}^n \frac{1}{1 - z_k \overline{z_l}} \frac{1}{b'(z_k)b'(z_l)}.
$$

The equality sign certainly occurs if $0 \in \{z_1, z_2, \ldots, z_n\}$:

$$
1 = \varphi(0)^2 \leq \frac{1}{2\pi} \int_0^{2\pi} |\varphi(e^{it})|^2 dt = \|\varphi\|_2^2 = \sum_{k=1}^n \sum_{l=1}^n \frac{1}{1 - z_k \overline{z_l}} \frac{1}{b'(z_k)b'(z_l)}.
$$

If $0 \notin \{z_1, z_2, \ldots, z_n\}$, there is strict inequality.

Because of the uniqueness of φ there can be equality only if

$$
b(z) \sum_{k=1}^n \frac{1}{(z - z_k)b'(z_k)} = 1.
$$
In this identity for rational functions we let $z \to \infty$. Since $z_j \neq 0$, $\lim_{z \to \infty} b(z)$ has a finite value. Therefore, the left-hand side has limit zero.

Remark. The corollary shows that a function satisfying (1) also satisfies (3).

The fact that $\varphi \in \Lambda$ has an interesting reformulation. We start with a lemma.

Lemma 1. The partial fraction decomposition of φ is

$$\varphi(z) = \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k}{(1-z_l)(1-z_l z_k) b'(z_k) b'(z_l)}.$$

Proof. An elegant way to prove this is to compute both sides of the following identity.

For $z \in \Delta$ we have

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{\varphi(\zeta)}{1-\zeta z} \frac{d\zeta}{\zeta} = \frac{1}{2\pi i} \int_{\Gamma} \frac{\varphi(\zeta)}{1-\zeta z} \frac{d\zeta}{\zeta}.$$

The left-hand side is equal to

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{\varphi(\zeta)}{1-\zeta z} \frac{d\zeta}{\zeta} = \varphi(z),$$

while the right-hand side is equal to the complex conjugate of

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{b(\zeta)}{b(\zeta)} \sum_{k=1}^{n} \frac{\bar{w}_k}{(1-\zeta z_k) b'(z_k) 1-\zeta z_k} \cdot \frac{1}{1-\zeta z_k} \frac{d\zeta}{\zeta},$$

i.e., to the complex conjugate of

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{b(\zeta)}{b(\zeta)} \sum_{k=1}^{n} \frac{\bar{w}_k}{(1-\zeta z_k) b'(z_k) 1-\zeta z_k} \cdot \frac{d\zeta}{\zeta}.$$

Calculation of the residues at the points z_1, z_2, \ldots, z_n lead to (5).

The condition $\varphi \in \Lambda$ implies that $\varphi(z_j) = w_j$, $j = 1, \ldots, n$, i.e.,

$$\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k}{(1-z_l)(1-z_l z_k) b'(z_k) b'(z_l)} = w_j.$$

This is equivalent to the assertion that the matrices

$$B = (\beta_{ik})$$

and its conjugate $\overline{B} = (\overline{\beta}_{ik})$ where

$$\beta_{ik} = \frac{1}{(1-z_i z_k) b'(z_k)}$$

are inverses of each other, i.e., B and \overline{B} are unitary.
Theorem 4. Let f be a continuous function on the unit disc in the complex plane. Then the following conditions are equivalent:

1. f is analytic and f lies in the unit ball of H^2.
2. For every $n \in \mathbb{N}$ and for every sequence z_1, z_2, \ldots, z_n of mutually distinct points in Δ we have

$$\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k)f(z_l)}{1 - z_kz_l} \cdot \frac{1}{b'(z_k)b'(z_l)} \leq 1.$$

Proof. We split up the proof into two lemmas.

Lemma 2. Let f belong to the unit ball of H^2, and let a sequence of mutually distinct points z_1, z_2, \ldots, z_n in Δ be given. Then (3) holds.

Proof. Define $w_j = f(z_j)$. f lies in the hyperplane Λ and the element φ of Λ with minimal norm satisfies

$$\|\varphi\|_2 \leq \|f\|_2 \leq 1.$$

Use of the explicit expression for $\|\varphi\|_2$ leads to (3).

Lemma 3. Let f be continuous and assume that f satisfies (3). Then f is analytic and f lies in the unit ball of H^2.

Proof. We apply (3) for the case $n = 1$; an easy computation shows that

$$|f(z)| \leq \frac{1}{\sqrt{1 - |z|^2}}$$

for every choice of $z \in \Delta$.

Let $0 < r < \rho < 1$, and let z_1, z_2, z_3, \ldots be an enumeration of the rational points of Δ_ρ. For every n there is a function φ_n with

$$\varphi_n(z_j) = f(z_j), \quad j = 1, 2, \ldots, n,$$

and

$$\|\varphi_n\|_2^2 = \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k)f(z_l)}{1 - z_kz_l} \cdot \frac{1}{b'(z_k)b'(z_l)} \leq 1.$$

Thus, φ_n lies in the unit ball of H^2, and so by Lemma 2, we have for every sequence $\zeta_1, \zeta_2, \ldots, \zeta_n$ in Δ

$$\sum_{k=1}^{m} \sum_{l=1}^{m} \frac{\varphi_n(\zeta_k)\varphi_n(\zeta_l)}{1 - \zeta_k\zeta_l} \cdot \frac{1}{b'(z_k)b'(z_l)} \leq 1.$$

It follows from (6) that

$$|\varphi_n(\zeta)| \leq \frac{1}{\sqrt{1 - |\zeta|^2}},$$

hence the sequence $\varphi_1, \varphi_2, \ldots$ is uniformly bounded on Δ_ρ. Therefore, it contains a locally uniformly convergent subsequence φ_{n_j}. At the points z_1, z_2, \ldots the subsequence converges to f. By the continuity of f and the fact that $\{z_1, z_2, \ldots\}$ is dense in Δ_ρ, we see that

$$\lim_{n_j \to \infty} \varphi_{n_j} = f.$$
This shows that \(f \) is analytic on \(\Delta_p \) for all \(p < 1 \). Because of uniform convergence on \(\Gamma_r \), we have

\[
\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^2 dt = \lim_{n_j \to \infty} \frac{1}{2\pi} \int_0^{2\pi} |\varphi_{n_j}(re^{it})|^2 dt \leq 1.
\]

Thus, \(f \in H^2 \) and \(\|f\|_2 \leq 1 \).

Lemma 2 and Lemma 3 together constitute a proof of the theorem.

Corollary. For \(f \in H^2 \) we define

\[
\nu(f) = \sup \left\{ \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k)f(z_l)}{1 - z_k \bar{z}_l} \cdot \frac{1}{b'(z_k)b'(z_l)} : z_1, z_2, \ldots, z_n \text{ mutually distinct points of } \Delta \right\}.
\]

Then \(\nu(f) = \|f\|_2^2 \).

Proof. Assume that \(\nu(f) = 1 \). Then by Lemma 3 \(\|f\|_2^2 \leq 1 \). If \(\|f\|_2^2 < \lambda^2 < 1 \) for some \(\lambda \), then we have \(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^2 dt < \lambda^2 < 1 \) which is impossible by Lemma 2.

In a similar way we can show that \(\|f\|_2^2 = 1 \) implies that \(\nu(f) = 1 \). By the homogeneity of \(\nu \) and \(\| \cdot \|_2 \) it follows that for all \(f \in H^2 \): \(\nu(f) = \|f\|_2^2 \).

Pick’s Theorem

As an application of our results we shall give a proof of Pick’s theorem.

Let \(g \) belong to the unit ball of \(H^\infty \), and let \(z_1, z_2, \ldots, z_n \) be a sequence of mutually distinct points in \(\Delta \). Let \(w_1, w_2, \ldots, w_n \) be an arbitrary sequence of complex numbers. We consider the hyperplanes \(A \) and \(A_g \) where

\[
A_g = \{ f \in H^2 : f(z_j) = w_jg(z_j), j = 1, 2, \ldots, n \}.
\]

Of course, if \(f \in A \), then \(g \cdot f \in A_g \), and by Theorem 2 applied to \(A_g \) we have

\[
\|gf\|_2^2 \geq \sum_{k=1}^{n} \sum_{l=1}^{n} w_kg(z_k)w_lg(z_l) \cdot \frac{1}{1 - z_k \bar{z}_l} \cdot \frac{1}{b'(z_k)b'(z_l)}.
\]

Let \(\varphi \) be, as before, the element of \(A \) with smallest norm. From \(\|g\|_\infty \leq 1 \) we obtain

\[
\|g\varphi\|_2 \leq \|\varphi\|_2.
\]

Combining these steps leads to

\[
\sum_{k=1}^{n} \sum_{l=1}^{n} w_k \bar{w}_l \cdot \frac{1}{1 - z_k \bar{z}_l} \cdot \frac{1}{b'(z_k)b'(z_l)} \geq \|\varphi\|_2^2 \geq \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k \bar{w}_l g(z_k)g(z_l)}{1 - z_k \bar{z}_l} \cdot \frac{1}{b'(z_k)b'(z_l)},
\]

i.e.,

\[
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1 - g(z_k)g(z_l)}{1 - z_k \bar{z}_l} \cdot \frac{w_k \bar{w}_l}{b'(z_k)b'(z_l)} \geq 0.
\]
and since the sequence w_1, w_2, \ldots, w_n is arbitrary, we have for all choices of $\lambda_1, \lambda_2, \ldots, \lambda_n$,

$$
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1 - g(z_k)g(z_l)}{1 - z_k \overline{z_l}} \cdot \lambda_k \overline{\lambda_l} \geq 0.
$$

By the choice $n = 1$, $\lambda_1 = 1$ we see that the converse is trivial.

References

Department of Mathematics, Catholic University, Toernooiveld, 6525 ED Nijmegen, The Netherlands

E-mail address: kortram@math.kun.nl