A NEW CHARACTERIZATION OF THE UNIT BALL OF H^2

R. A. KORTRAM

(Communicated by Juha M. Heinonen)

Abstract. We derive a new expression for the norm of H^2 functions; we present some well-known results in a different setting.

Introduction

In 1915, Pick [3] proved the following result.

Theorem 1. Let g be an analytic function on the unit disc Δ in the complex plane. Then $|g(z)| \leq 1$ for all $z \in \Delta$ if and only if for all $n \in \mathbb{N}$, for all sequences z_1, z_2, \ldots, z_n in Δ and for all sequences $\lambda_1, \lambda_2, \ldots, \lambda_n$ we have

$$\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1 - g(z_k)\overline{g(z_l)}}{1 - z_k \overline{z_l}} \lambda_k \overline{\lambda_l} \geq 0.$$

Ahlfors [1], page 3, gives an elegant proof of this characterization of the unit ball of H^∞.

In this note we shall present a characterization of the unit ball of H^2. Our main tool will be an explicit solution of the “minimal interpolation problem” for H^2 (see [2], page 141). As a byproduct we obtain a new proof of Pick’s theorem.

Description of the main result

Let z_1, z_2, \ldots, z_n be a sequence in Δ, and let b be the Blaschke product generated by the sequence

$$b(z) = \prod_{j=1}^{n} \frac{z - z_j}{1 - \overline{z_j} z}.$$

We shall prove that the following conditions are equivalent for continuous functions f on Δ:

1) f lies in the unit ball of H^2.
2) For every $n \in \mathbb{N}$ and for every sequence z_1, z_2, \ldots, z_n of mutually distinct points in Δ we have

$$\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k)f(z_l)}{1 - z_k \overline{z_l}} \cdot \frac{1}{b'(z_k)b'(z_l)} \leq 1.$$

Received by the editors August 13, 2002.

2000 Mathematics Subject Classification. Primary 30D55.
Preliminaries

For mutually distinct points z_1, z_2, \ldots, z_n in Δ and for w_1, w_2, \ldots, w_n in \mathbb{C} we define

$$\Lambda = \{ f \in H^2 : f(z_j) = w_j, \ j = 1, 2, \ldots, n \}.$$

Λ is not empty; it contains the Lagrange interpolation polynomial

$$\lambda(z) = l(z) \sum_{k=1}^{n} \frac{w_k}{(z - z_k)b'(z_k)},$$

where $l(z) = \prod_{j=1}^{n} (z - z_j)$.

In the context of H^p spaces it is more natural to work with the Blaschke interpolation function

$$\beta(z) = b(z) \sum_{k=1}^{n} \frac{1 - \bar{z}_k z}{z - z_k} \frac{w_k}{b'(z_k)(1 - |z_k|^2)},$$

with $b(z)$ defined as in (2). Of course $\beta \in \Lambda$. However, for our purposes we are better off with

$$\varphi(z) = b(z) \sum_{k=1}^{n} \frac{w_k}{(z - z_k)b'(z_k)},$$

$\varphi \in \Lambda$, and φ is analytic on some neighbourhood of $\overline{\Delta}$. Λ is a hyperplane in H^2.

With φ and b defined as in (4) and (2) we have

$$\Lambda = \{ \varphi + bg ; g \in H^2 \}.$$

Theorem 2. φ is the unique solution of the “minimal interpolation problem”, i.e., for every $f \in \Lambda \setminus \{ \varphi \}$ we have $\|f\|_2 > \|\varphi\|_2$.

Proof. It suffices to show that $\varphi \perp (f - \varphi)$ for every $f \in \Lambda$ (since under those circumstances $\|f\|^2 = \|\varphi\|^2 + \|f - \varphi\|^2$).

From the decomposition $f = \varphi + bg$ we have

$$\langle f - \varphi, \varphi \rangle = \langle bg, \varphi \rangle = \frac{1}{2\pi} \int_{0}^{2\pi} b(e^{it})g(e^{it})\overline{\varphi(e^{it})}dt = \frac{1}{2\pi} \int_{0}^{2\pi} b(e^{it})g(e^{it})b(e^{it}) \sum_{k=1}^{n} \frac{\overline{w}_k}{(e^{-it} - \bar{z}_k)b'(z_k)} dt.$$

Note that $|b(e^{it})|^2 = 1$. Thus,

$$\langle f - \varphi, \varphi \rangle = \sum_{k=1}^{n} \frac{\overline{w}_k}{2\pi b'(z_k)} \int_{0}^{2\pi} g(e^{it}) \frac{e^{it}}{1 - e^{it}z_k} dt = \sum_{k=1}^{n} \frac{\overline{w}_k}{b'(z_k)} \cdot \frac{1}{2\pi i} \int_{\gamma} \frac{g(z)}{1 - \overline{z}_k z} dz = 0,$$

because the integrand is analytic on Δ.

It will be convenient to have an explicit expression for \(\| \varphi \|_2^2 \):

\[
\| \varphi \|_2^2 = \frac{1}{2\pi} \int_0^{2\pi} |\varphi(e^{it})|^2 dt = \frac{1}{2\pi} \sum_{k=1}^{n} \sum_{l=1}^{n} w_k \overline{w_l} \int_0^{2\pi} \frac{dt}{\left(e^{it} - z_k \right) \left(e^{-it} - \overline{z_l} \right)}
\]

\[
= \frac{1}{2\pi} \sum_{k=1}^{n} \sum_{l=1}^{n} w_k \overline{w_l} \int_0^{2\pi} \frac{dz}{\left(z - z_k \right) \left(\overline{z} - \overline{z_l} \right)}
\]

\[
= \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1}{\left(1 - \frac{z_k \overline{z_l}}{1 - z_k \overline{z_l}} \right) b'(z_k) b'(z_l)}.
\]

There are, of course, many other expressions for \(\| \varphi \|_2 \).

Theorem 3.

\[
\| \varphi \|_2 = \max \left\{ \left\| \sum_{k=1}^{n} \frac{w_k f(z_k)}{b'(z_k)} \right\| : f \in H^2, \| f \|_2 \leq 1 \right\}.
\]

Proof.

\[
\sum_{k=1}^{n} \frac{w_k f(z_k)}{b'(z_k)} = \frac{1}{2\pi i} \int \frac{f(z) \varphi(z)}{b(z)} dz;
\]

hence, by Schwarz’s inequality we have

\[
\left| \sum_{k=1}^{n} \frac{w_k f(z_k)}{b'(z_k)} \right| \leq \frac{1}{2\pi} \int_0^{2\pi} |f(e^{it})| \cdot |\varphi(e^{it})| dt \leq \| f \|_2 \cdot \| \varphi \|_2 \leq \| \varphi \|_2.
\]

Equality holds for the function \(f : z \rightarrow \frac{1}{\| \varphi \|_2} \sum_{k=1}^{n} \frac{w_k}{(1 - z_k \overline{z}) b'(z_k)} \).

An immediate result from Theorem 2 is

Corollary. For every sequence \(z_1, z_2, \ldots, z_n \) of mutually distinct points of \(\Delta \) we have

\[
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1}{1 - z_k \overline{z_l}} \cdot \frac{1}{b'(z_k) b'(z_l)} \leq 1.
\]

Proof. Take \(w_1 = w_2 = \ldots = w_n = 1 \). Then \(1 \in \Lambda \) and since

\[\| 1 \|_2 = 1, \]

we have

\[1 \geq \| \varphi \|_2^2 = \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1}{1 - z_k \overline{z_l}} \cdot \frac{1}{b'(z_k) b'(z_l)}. \]

The equality sign certainly occurs if \(0 \in \{ z_1, z_2, \ldots, z_n \} \):

\[1 = \varphi(0)^2 \leq \frac{1}{2\pi} \int_0^{2\pi} |\varphi(e^{it})|^2 dt = \| \varphi \|_2^2 = \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1}{1 - z_k \overline{z_l}} \cdot \frac{1}{b'(z_k) b'(z_l)}. \]

If \(0 \notin \{ z_1, z_2, \ldots, z_n \} \), there is strict inequality.

Because of the uniqueness of \(\varphi \) there can be equality only if

\[b(z) \sum_{k=1}^{n} \frac{1}{(z - z_k) b'(z_k)} = 1. \]
In this identity for rational functions we let $z \to \infty$. Since $z_j \neq 0$, $\lim_{z \to \infty} b(z)$ has a finite value. Therefore, the left-hand side has limit zero.

Remark. The corollary shows that a function satisfying (1) also satisfies (3).

The fact that $\varphi \in \Lambda$ has an interesting reformulation. We start with a lemma.

Lemma 1. The partial fraction decomposition of φ is

\[
\varphi(z) = \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k}{(1 - \bar{z}_lz)(1 - \bar{z}_lz_k)b'(z_k)b'(z_l)}.
\]

Proof. An elegant way to prove this is to compute both sides of the following identity.

For $z \in \Delta$ we have

\[
\frac{1}{2\pi i} \int_{\Gamma} \frac{\varphi(\zeta)}{\zeta - z} \, d\zeta = \frac{1}{2\pi i} \int_{\Gamma} \frac{\varphi(\zeta)}{1 - \zeta \bar{z}} \, d\zeta.
\]

The left-hand side is equal to

\[
\frac{1}{2\pi i} \int_{\Gamma} \varphi(\zeta) \frac{d\zeta}{\zeta - z} = \varphi(z),
\]

while the right-hand side is equal to the complex conjugate of

\[
\frac{1}{2\pi i} \int_{\Gamma} \varphi(\zeta) \frac{d\zeta}{1 - \zeta \bar{z}}.
\]

This is equivalent to the assertion that the matrices

\[B = (\beta_{ik}) \quad \text{and} \quad \bar{B} = (\bar{\beta}_{ik}) \]

where

\[
\beta_{ik} = \frac{1}{(1 - \bar{z}_i z_k)b'(z_k)}
\]

are inverses of each other, i.e., B and \bar{B} are unitary.
Proof of the main result

Theorem 4. Let f be a continuous function on the unit disc in the complex plane. Then the following conditions are equivalent:

1. f is analytic and f lies in the unit ball of H^2.
2. For every $n \in \mathbb{N}$ and for every sequence z_1, z_2, \ldots, z_n of mutually distinct points in Δ we have

\[
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k)f(z_l)}{1 - z_k z_l} \cdot \frac{1}{b'(z_k)b'(z_l)} \leq 1.
\]

Proof. We split up the proof into two lemmas.

Lemma 2. Let f belong to the unit ball of H^2, and let a sequence of mutually distinct points z_1, z_2, \ldots, z_n in Δ be given. Then (3) holds.

Proof. Define $w_j = f(z_j)$. f lies in the hyperplane Λ and the element φ of Λ with minimal norm satisfies

\[\|\varphi\|_2 \leq \|f\|_2 \leq 1.\]

Use of the explicit expression for $\|\varphi\|_2$ leads to (3).

Lemma 3. Let f be continuous and assume that f satisfies (3). Then f is analytic and f lies in the unit ball of H^2.

Proof. We apply (3) for the case $n = 1$; an easy computation shows that

\[|f(z)| \leq \frac{1}{\sqrt{1 - |z|^2}},\]

for every choice of $z \in \Delta$.

Let $0 < r < \rho < 1$, and let z_1, z_2, z_3, \ldots be an enumeration of the rational points of Δ_ρ. For every n there is a function φ_n with

\[\varphi_n(z_j) = f(z_j), \quad j = 1, 2, \ldots, n,\]

and

\[\|\varphi_n\|_2^2 = \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k)f(z_l)}{1 - z_k z_l} \cdot \frac{1}{b'(z_k)b'(z_l)} \leq 1.\]

Thus, φ_n lies in the unit ball of H^2, and so by Lemma 2, we have for every sequence $\zeta_1, \zeta_2, \ldots, \zeta_n$ in Δ

\[\sum_{k=1}^{m} \sum_{l=1}^{m} \frac{\varphi_n(\zeta_k)\varphi_n(\zeta_l)}{1 - \zeta_k \zeta_l} \cdot \frac{1}{b'(z_k)b'(z_l)} \leq 1.\]

It follows from (6) that

\[|\varphi_n(\zeta)| \leq \frac{1}{\sqrt{1 - |\zeta|^2}},\]

hence the sequence $\varphi_1, \varphi_2, \ldots$ is uniformly bounded on Δ_ρ. Therefore, it contains a locally uniformly convergent subsequence φ_{n_j}. At the points z_1, z_2, \ldots the subsequence converges to f. By the continuity of f and the fact that $\{z_1, z_2, \ldots\}$ is dense in Δ_ρ, we see that

\[\lim_{n_j \to \infty} \varphi_{n_j} = f.\]
This shows that f is analytic on Δ_ρ for all $\rho < 1$. Because of uniform convergence on Γ, we have
\[
\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^2 dt = \lim_{n_j \to \infty} \frac{1}{2\pi} \int_0^{2\pi} |\varphi_{n_j}(re^{it})|^2 dt \leq 1.
\]
Thus, $f \in H^2$ and $\|f\|_2 \leq 1$. Lemma 2 and Lemma 3 together constitute a proof of the theorem.

Corollary. For $f \in H^2$ we define
\[
\nu(f) = \sup \left\{ \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k)f(z_l)}{1 - z_kz_l} \cdot \frac{1}{b'(z_k)b'(z_l)} \right\}
\]
for z_1, z_2, \ldots, z_n mutually distinct points of Δ.

Then $\nu(f) = \|f\|_2^2$.

Proof. Assume that $\nu(f) = 1$. Then by Lemma 3 $\|f\|^2 \leq 1$. If $\|f\|^2 < \lambda^2 < 1$ for some λ, then we have $\|f\| < 1$ but $\nu\left(\frac{1}{\lambda}f\right) > 1$ which is impossible by Lemma 2.

In a similar way we can show that $\|f\|^2 = 1$ implies that $\nu(f) = 1$. By the homogeneity of ν and $\|\cdot\|_2^2$ it follows that for all $f \in H^2$: $\nu(f) = \|f\|_2^2$.

Pick’s theorem

As an application of our results we shall give a proof of Pick’s theorem. Let g belong to the unit ball of H^∞, and let z_1, z_2, \ldots, z_n be a sequence of mutually distinct points in Δ. Let w_1, w_2, \ldots, w_n be an arbitrary sequence of complex numbers. We consider the hyperplanes Λ and Λ_g where
\[
\Lambda_g = \{ f \in H^2 : f(z_j) = w_j g(z_j), j = 1, 2, \ldots, n \}.
\]
Of course, if $f \in \Delta$, then $g \cdot f \in \Delta_g$, and by Theorem 2 applied to Λ_g we have
\[
\|g f\|_2^2 \geq \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k g(z_k)w_l g(z_l)}{1 - z_kz_l} \cdot \frac{1}{b'(z_k)b'(z_l)}.
\]
Let φ be, as before, the element of Λ with smallest norm. From $\|g\|_\infty \leq 1$ we obtain
\[
\|g \varphi\|_2 \leq \|\varphi\|_2.
\]
Combining these steps leads to
\[
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k \overline{w_l}}{1 - z_kz_l} \cdot \frac{1}{b'(z_k)b'(z_l)} \geq \|\varphi\|_2^2 \geq \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k \overline{w_l} g(z_k)g(z_l)}{1 - z_kz_l} \cdot \frac{1}{b'(z_k)b'(z_l)},
\]
i.e.,
\[
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1 - g(z_k)g(z_l)}{1 - z_kz_l} \cdot \frac{w_k \overline{w_l}}{b'(z_k)b'(z_l)} \geq 0,
\]
and
\[
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1}{1 - z_kz_l} \cdot \frac{w_k \overline{w_l}}{b'(z_k)b'(z_l)} \geq 0.
\]
and since the sequence w_1, w_2, \ldots, w_n is arbitrary, we have for all choices of $\lambda_1, \lambda_2, \ldots, \lambda_n$,

$$
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1 - g(z_k)g(z_l)}{1 - z_k \overline{z_l}} \cdot \lambda_k \overline{\lambda_l} \geq 0.
$$

By the choice $n = 1$, $\lambda_1 = 1$ we see that the converse is trivial.

References

DEPARTMENT OF MATHEMATICS, CATHOLIC UNIVERSITY, TOERNOOIVELD, 6525 ED NIJMEGEN, THE NETHERLANDS

E-mail address: kortram@math.kun.nl