A NEW CHARACTERIZATION OF THE UNIT BALL OF H^2

R. A. KORTRAM

(Communicated by Juha M. Heinonen)

ABSTRACT. We derive a new expression for the norm of H^2 functions; we present some well-known results in a different setting.

INTRODUCTION

In 1915, Pick [3] proved the following result.

Theorem 1. Let g be an analytic function on the unit disc Δ in the complex plane. Then $|g(z)| \leq 1$ for all $z \in \Delta$ if and only if for all $n \in \mathbb{N}$, for all sequences z_1, z_2, \ldots, z_n in Δ and for all sequences $\lambda_1, \lambda_2, \ldots, \lambda_n$ we have

\[\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1 - g(z_k) \overline{g(z_l)}}{1 - z_k \overline{z_l}} \lambda_k \overline{\lambda_l} \geq 0. \]

Ahlfors [1], page 3, gives an elegant proof of this characterization of the unit ball of H^∞.

In this note we shall present a characterization of the unit ball of H^2. Our main tool will be an explicit solution of the “minimal interpolation problem” for H^2 (see [2], page 141). As a byproduct we obtain a new proof of Pick’s theorem.

DESCRIPTION OF THE MAIN RESULT

Let z_1, z_2, \ldots, z_n be a sequence in Δ, and let b be the Blaschke product generated by the sequence

\[b(z) = \prod_{j=1}^{n} \frac{z - z_j}{1 - \overline{z_j} z}. \]

We shall prove that the following conditions are equivalent for continuous functions f on Δ:

1) f lies in the unit ball of H^2.

2) For every $n \in \mathbb{N}$ and for every sequence z_1, z_2, \ldots, z_n of mutually distinct points in Δ we have

\[\sum_{k=1}^{n} \sum_{l=1}^{n} f(z_k) \overline{f(z_l)} \cdot \frac{1}{1 - z_k \overline{z_l}} \cdot \frac{1}{b'(z_k) \overline{b'(z_l)}} \leq 1. \]
Preliminaries

For mutually distinct points z_1, z_2, \ldots, z_n in Δ and for w_1, w_2, \ldots, w_n in \mathbb{C} we define

$$\Lambda = \{ f \in H^2 : f(z_j) = w_j, \ j = 1, 2, \ldots, n \}.$$

Λ is not empty; it contains the Lagrange interpolation polynomial

$$\lambda(z) = l(z) \sum_{k=1}^{n} \frac{w_k}{(z - z_k)l'(z_k)},$$

where $l(z) = \prod_{j=1}^{n} (z - z_j)$.

In the context of H^p spaces it is more natural to work with the Blaschke interpolation function

$$\beta(z) = b(z) \sum_{k=1}^{n} \frac{1 - \overline{z}_k z}{z - z_k} \frac{w_k}{b'(z_k)(1 - |z_k|^2)},$$

with $b(z)$ defined as in (2). Of course $\beta \in \Lambda$. However, for our purposes we are better off with

$$\varphi(z) = b(z) \sum_{k=1}^{n} \frac{w_k}{(z - z_k)b'(z_k)},$$

$\varphi \in \Lambda$, and φ is analytic on some neighbourhood of $\overline{\Delta}$. Λ is a hyperplane in H^2.

With φ and b defined as in (4) and (2) we have

$$\Lambda = \{ \varphi + bg ; g \in H^2 \}.$$

Theorem 2. φ is the unique solution of the “minimal interpolation problem”, i.e., for every $f \in \Lambda \setminus \{ \varphi \}$ we have $\|f\|_2 > \|\varphi\|_2$.

Proof. It suffices to show that $\varphi \perp (f - \varphi)$ for every $f \in \Lambda$ (since under those circumstances $\|f\|^2 = \|\varphi\|^2 + \|f - \varphi\|^2$).

From the decomposition $f = \varphi + bg$ we have

$$\langle f - \varphi, \varphi \rangle = \langle bg, \varphi \rangle = \frac{1}{2\pi} \int_0^{2\pi} b(e^{it})g(e^{it})\overline{\varphi(e^{it})} dt$$

$$= \frac{1}{2\pi} \int_0^{2\pi} b(e^{it})g(e^{it})\overline{b(e^{it})b'(e^{it})} \sum_{k=1}^{n} \overline{w_k} \int_{e^{-it} = z_k} \frac{g(z)}{1 - \overline{z_k}z} dz dt.$$

Note that $\|b(e^{it})\|^2 = 1$. Thus,

$$\langle f - \varphi, \varphi \rangle = \sum_{k=1}^{n} \frac{\overline{w_k}}{2\pi b'(z_k)} \int_0^{2\pi} g(e^{it}) \frac{e^{it}}{1 - e^{it}z_k} dt$$

$$= \sum_{k=1}^{n} \frac{\overline{w_k}}{b'(z_k)} \frac{1}{2\pi i} \int_{\Gamma} \frac{g(z)}{1 - \overline{z}_k z} dz = 0,$$

because the integrand is analytic on Δ.

It will be convenient to have an explicit expression for $||\varphi||_2^2$:

$$
||\varphi||_2^2 = \frac{1}{2\pi} \int_0^{2\pi} |\varphi(e^{it})|^2 dt = \frac{1}{2\pi} \sum_{k=1}^n \sum_{t=1}^n w_k \overline{w_l} \frac{2\pi}{b'(z_k)b'(z_l)} \int_0^{2\pi} (e^{it} - z_k)(e^{-it} - \overline{z_l}) dt
$$

$$
= \frac{1}{2\pi} \sum_{k=1}^n \sum_{t=1}^n w_k \overline{w_l} \int_0^{2\pi} \frac{dz}{b'(z_k)b'(z_l)}
$$

$$
= \sum_{k=1}^n \sum_{l=1}^n \frac{1}{1 - z_k \overline{z_l}} \cdot \frac{1}{b'(z_k)b'(z_l)}.
$$

There are, of course, many other expressions for $||\varphi||_2$.

Theorem 3.

$$
||\varphi||_2 = \max \left\{ \left\{ \sum_{k=1}^n \frac{w_k f(z_k)}{b'(z_k)} \right\} : f \in H^2, ||f||_2 \leq 1 \right\}.
$$

Proof.

$$
\sum_{k=1}^n \frac{w_k f(z_k)}{b'(z_k)} = \frac{1}{2\pi i} \int_\Gamma \frac{f(z)\varphi(z)}{b(z)} dz;
$$

hence, by Schwarz’s inequality we have

$$
\left| \sum_{k=1}^n \frac{w_k f(z_k)}{b'(z_k)} \right| \leq \frac{1}{2\pi} \int_0^{2\pi} |f(e^{it})| \cdot |\varphi(e^{it})| dt \leq ||f||_2 \cdot ||\varphi||_2 \leq ||\varphi||_2.
$$

Equality holds for the function $f : z \rightarrow \frac{1}{||\varphi||_2} \sum_{k=1}^n \frac{w_k}{(1 - z_k \overline{z_l})b'(z_k)}$.

An immediate result from Theorem 2 is

Corollary. For every sequence z_1, z_2, \ldots, z_n of mutually distinct points of Δ we have

$$
\sum_{k=1}^n \sum_{l=1}^n \frac{1}{1 - z_k \overline{z_l}} \cdot \frac{1}{b'(z_k)b'(z_l)} \leq 1.
$$

Proof. Take $w_1 = w_2 = \ldots = w_n = 1$. Then $1 \in \Lambda$ and since

$$
||1||_2 = 1,
$$

we have

$$
1 \geq ||\varphi||_2^2 = \sum_{k=1}^n \sum_{l=1}^n \frac{1}{1 - z_k \overline{z_l}} \cdot \frac{1}{b'(z_k)b'(z_l)}.
$$

The equality sign certainly occurs if $0 \in \{z_1, z_2, \ldots, z_n\}$:

$$
1 = \varphi(0)^2 \leq \frac{1}{2\pi} \int_0^{2\pi} |\varphi(e^{it})|^2 dt = ||\varphi||_2^2 = \sum_{k=1}^n \sum_{l=1}^n \frac{1}{1 - z_k \overline{z_l}} \cdot \frac{1}{b'(z_k)b'(z_l)}.
$$

If $0 \notin \{z_1, z_2, \ldots, z_n\}$, there is strict inequality.

Because of the uniqueness of φ there can be equality only if

$$
b(z) \sum_{k=1}^n \frac{1}{(z - z_k)b'(z_k)} = 1.
$$
In this identity for rational functions we let \(z \to \infty \). Since \(z_j \neq 0 \), \(\lim_{z \to \infty} b(z) \) has a finite value. Therefore, the left-hand side has limit zero.

Remark. The corollary shows that a function satisfying (1) also satisfies (3).

The fact that \(\varphi \in \Lambda \) has an interesting reformulation. We start with a lemma.

Lemma 1. The partial fraction decomposition of \(\varphi \) is

\[
\varphi(z) = \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k}{(1 - \bar{z}_l z_j)(1 - \bar{z}_l z_k)b'(z_k)b'(z_l)}.
\]

Proof. An elegant way to prove this is to compute both sides of the following identity.

For \(z \in \Delta \) we have

\[
\frac{1}{2\pi i} \int_{\Gamma} \frac{\varphi(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{\Gamma} \frac{\varphi(\zeta)}{1 - \zeta z} \frac{d\zeta}{\zeta}.
\]

The left-hand side is equal to

\[
\frac{1}{2\pi i} \int_{\Gamma} \varphi(\zeta) d\zeta = \varphi(z),
\]

while the right-hand side is equal to the complex conjugate of

\[
\frac{1}{2\pi i} \int_{\Gamma} \frac{b(\zeta)}{\zeta - z} \sum_{k=1}^{n} \frac{\bar{w}_k}{(\zeta - z_k)b'(z_k)} \frac{1}{1 - \zeta z} \frac{d\zeta}{\zeta},
\]

i.e., to the complex conjugate of

\[
\frac{1}{2\pi i} \int_{\Gamma} \frac{b(\zeta)}{\zeta - z} \sum_{k=1}^{n} \frac{\bar{w}_k}{(1 - \bar{z}_k \zeta)b'(z_k)} \frac{1}{1 - \bar{z}_k \zeta} \frac{d\zeta}{\zeta}.
\]

Calculation of the residues at the points \(z_1, z_2, \ldots, z_n \) lead to (5).

The condition \(\varphi \in \Lambda \) implies that \(\varphi(z_j) = w_j, \ j = 1, \ldots, n \), i.e.,

\[
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k}{(1 - \bar{z}_l z_j)(1 - \bar{z}_l z_k)b'(z_k)b'(z_l)} = w_j.
\]

This is equivalent to the assertion that the matrices

\[
B = (\beta_{jk})
\]

and its conjugate \(\overline{B} = (\overline{\beta}_{jk}) \) where

\[
\beta_{jk} = \frac{1}{(1 - \bar{z}_j z_k)b'(z_k)}
\]

are inverses of each other, i.e., \(B \) and \(\overline{B} \) are unitary.
Proof of the main result

Theorem 4. Let \(f \) be a continuous function on the unit disc in the complex plane. Then the following conditions are equivalent:

1. \(f \) is analytic and \(f \) lies in the unit ball of \(H^2 \).
2. For every \(n \in \mathbb{N} \) and for every sequence \(z_1, z_2, \ldots, z_n \) of mutually distinct points in \(\Delta \) we have
 \[
 \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k)\overline{f(z_l)}}{1 - z_k \overline{z_l}} \cdot \frac{1}{b'(z_k)b'(z_l)} \leq 1.
 \]

Proof. We split up the proof into two lemmas.

Lemma 2. Let \(f \) belong to the unit ball of \(H^2 \), and let a sequence of mutually distinct points \(z_1, z_2, \ldots, z_n \) in \(\Delta \) be given. Then (3) holds.

Proof. Define \(w_j = f(z_j) \). \(f \) lies in the hyperplane \(\Lambda \) and the element \(\varphi \) of \(\Lambda \) with minimal norm satisfies
\[
\|\varphi\|_2 \leq \|f\|_2 \leq 1.
\]
Use of the explicit expression for \(\|\varphi\|_2 \) leads to (3).

Lemma 3. Let \(f \) be continuous and assume that \(f \) satisfies (3). Then \(f \) is analytic and \(f \) lies in the unit ball of \(H^2 \).

Proof. We apply (3) for the case \(n = 1 \); an easy computation shows that
\[
|f(z)| \leq \frac{1}{\sqrt{1 - |z|^2}}
\]
for every choice of \(z \in \Delta \).

Let \(0 < r < \rho < 1 \), and let \(z_1, z_2, z_3, \ldots \) be an enumeration of the rational points of \(\overline{\Delta}_\rho \). For every \(n \) there is a function \(\varphi_n \) with
\[
\varphi_n(z_j) = f(z_j), \quad j = 1, 2, \ldots, n,
\]
and
\[
\|\varphi_n\|_2^2 = \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k)f(z_l)}{1 - z_k \overline{z_l}} \cdot \frac{1}{b'(z_k)b'(z_l)} \leq 1.
\]
Thus, \(\varphi_n \) lies in the unit ball of \(H^2 \), and so by Lemma 2, we have for every sequence \(\zeta_1, \zeta_2, \ldots, \zeta_n \) in \(\Delta \)
\[
\sum_{k=1}^{m} \sum_{l=1}^{m} \frac{\varphi_n(\zeta_k)\overline{\varphi_n(\zeta_l)}}{1 - \zeta_k \overline{\zeta_l}} \cdot \frac{1}{b'(z_k)b'(z_l)} \leq 1.
\]
It follows from (6) that
\[
|\varphi_n(\zeta)| \leq \frac{1}{\sqrt{1 - |\zeta|^2}},
\]
hence the sequence \(\varphi_1, \varphi_2, \ldots \) is uniformly bounded on \(\overline{\Delta}_\rho \). Therefore, it contains a locally uniformly convergent subsequence \(\varphi_{n_j} \). At the points \(z_1, z_2, \ldots \) the subsequence converges to \(f \). By the continuity of \(f \) and the fact that \(\{z_1, z_2, \ldots\} \) is dense in \(\Delta_\rho \), we see that
\[
\lim_{n_j \to \infty} \varphi_{n_j} = f.
\]
This shows that \(f \) is analytic on \(\Delta_p \) for all \(p < 1 \). Because of uniform convergence on \(\Gamma_r \), we have
\[
\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^2 dt = \lim_{n_j \to \infty} \frac{1}{2\pi} \int_0^{2\pi} |\varphi_{n_j}(re^{it})|^2 dt \leq 1.
\]
Thus, \(f \in H^2 \) and \(\|f\|_2 \leq 1 \).

Lemma 2 and Lemma 3 together constitute a proof of the theorem.

Corollary. For \(f \in H^2 \) we define
\[
\nu(f) = \sup \left\{ \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{f(z_k)f(z_l)}{1 - z_k \bar{z}_l} \cdot \frac{1}{b'(z_k)b'(z_l)} ; z_1, z_2, \ldots, z_n \text{ mutually distinct points of } \Delta \right\}.
\]

Then \(\nu(f) = \|f\|_2^2 \).

Proof. Assume that \(\nu(f) = 1 \). Then by Lemma 3 \(\|f\|_2^2 \leq 1 \). If \(\|f\|_2^2 < \lambda^2 < 1 \) for some \(\lambda \), then we have \(\|\frac{1}{2} f\| < 1 \) but \(\nu\left(\frac{1}{2} f\right) > 1 \) which is impossible by Lemma 2.

In a similar way we can show that \(\|f\|_2 = 1 \) implies that \(\nu(f) = 1 \). By the homogeneity of \(\nu \) and \(\| \cdot \|_2 \) it follows that for all \(f \in H^2 \) : \(\nu(f) = \|f\|_2^2 \).

Pick’s Theorem

As an application of our results we shall give a proof of Pick’s theorem.

Let \(g \) belong to the unit ball of \(H^\infty \), and let \(z_1, z_2, \ldots, z_n \) be a sequence of mutually distinct points in \(\Delta \). Let \(w_1, w_2, \ldots, w_n \) be an arbitrary sequence of complex numbers. We consider the hyperplanes \(\Lambda \) and \(\Lambda_g \) where
\[
\Lambda_g = \{ f \in H^2 : f(z_j) = w_jg(z_j), j = 1, 2, \ldots, n \}.
\]

Of course, if \(f \in \Delta \), then \(g \cdot f \in \Delta_g \), and by Theorem 2 applied to \(\Lambda_g \) we have
\[
\|g \cdot f\|_2^2 \geq \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k g(z_k) w_l g(z_l)}{1 - z_k \bar{z}_l} \cdot \frac{1}{b'(z_k)b'(z_l)}.
\]

Let \(\varphi \) be, as before, the element of \(\Lambda \) with smallest \(L^2 \)-norm. From \(\|g\|_\infty \leq 1 \) we obtain
\[
\|g \varphi\|_2 \leq \|\varphi\|_2.
\]

Combining these steps leads to
\[
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k \bar{w}_l}{1 - z_k \bar{z}_l} \cdot \frac{1}{b'(z_k)b'(z_l)} = \|\varphi\|_2^2 \geq \|g \varphi\|_2^2 \geq \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{w_k \bar{w}_l g(z_k) g(z_l)}{1 - z_k \bar{z}_l} \cdot \frac{1}{b'(z_k)b'(z_l)},
\]
i.e., to
\[
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1 - g(z_k)g(z_l)}{1 - z_k \bar{z}_l} \cdot \frac{w_k \bar{w}_l}{b'(z_k)b'(z_l)} \geq 0,
\]
and since the sequence \(w_1, w_2, \ldots, w_n\) is arbitrary, we have for all choices of \(\lambda_1, \lambda_2, \ldots, \lambda_n\),
\[
\sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1 - g(z_k)\overline{g(z_l)}}{1 - z_k\overline{z_l}} \cdot \lambda_k \overline{\lambda_l} \geq 0.
\]
By the choice \(n = 1, \lambda_1 = 1\) we see that the converse is trivial.

References

Department of Mathematics, Catholic University, Toernooiveld, 6525 ED Nijmegen, The Netherlands
E-mail address: kortram@math.kun.nl