NMR investigation of atomic ordering in Al$_x$Ga$_{1-x}$As thin films

C. Degen, M. Tomaselli, and B. H. Meier
Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland

M. M. A. J. Voncken and A. P. M. Kentgens
NSRIM Center, University of Nijmegen, 6525 ED Nijmegen, The Netherlands
(Received 8 December 2003; published 11 May 2004)

Nuclear magnetic resonance is used to study the local cation ordering in thin films of Al$_x$Ga$_{1-x}$As ($0<x<0.5$) grown by metal organic vapor phase epitaxy. A quantitative analysis of the 75As resonance intensities and the quadrupole coupling constants of all nuclei reveal that our data is compatible with the absence of significant ordering.

DOI: 10.1103/PhysRevB.69.193303 PACS number(s): 68.55.Jk

Atomic ordering in ternary semiconductor alloys has been shown to be important because of its influence on the material's electronic structure as well as its relation to electronic transport properties, phase transitions, and thermodynamic stability. The characterization of order in these compounds is crucial in view of a controlled growth of designed semiconductor structures. For Al$_x$Ga$_{1-x}$As qualitative information on long-range order with a modulated composition along specific lattice directions has been found. The fully ordered structures have been proposed as alternating AlAs and GaAs planes along, e.g., (001) (CuAu-type) or (111) (CuPt-type), respectively [see Figs. 1(b), 1(c)]. A clustering of Al (and Ga) has also been suggested. It is clear that both short- and long-range order affect the local symmetry of the atomic sites in the crystal lattice. In this study we employ nuclear magnetic resonance (NMR) to quantify the degree of atomic ordering in Al$_x$Ga$_{1-x}$As ($0<x<0.5$) grown by metal organic vapor phase epitaxy (MOVPE) on a (100) GaAs substrate. The results are compatible with the absence of order for the investigated Al$_x$Ga$_{1-x}$As thin films.

The samples were grown by MOVPE in a horizontal Aixtron 200 reactor at a growth temperature of 923 K and a rate of 1.8 μm/h using trimethyl-gallium and trimethyl-aluminum as group-III precursors and arsine as group-V precursor. Disilane was used as the dopant precursor to obtain n-type doping. Undoped GaAs wafers (2°) with crystal orientation (100), 15° off towards (111) were used as substrates. A typical sample consisted of a 15 nm Si-doped AlAs and a 5 μm undoped Al$_x$Ga$_{1-x}$As overlayer. A growth series with nominal aluminum fractions of $x=0$, 0.3, and 0.5 was produced (Al$_{0.8}$Ga$_{0.2}$As, Al$_{0.67}$Ga$_{0.33}$As, and Al$_{0.5}$Ga$_{0.5}$As). An additional sample with $x=0.5$ (Al$_{0.48}$Ga$_{0.52}$As) was grown on a substrate 2° off towards (110). The stoichiometry, used to identify the samples, was obtained from high-resolution x-ray diffraction rocking curve measurement (HRXRD) immediately after growth. An epitaxial lift-off process was applied to separate the Al$_x$Ga$_{1-x}$As layer from the substrate by selectively etching the intermediate Si-doped AlAs layer with a hydrogen fluoride (HF) solution. The Al$_x$Ga$_{1-x}$As thin films (mg quantities, ~10^{18} spins) were then powderized to typical grain sizes of a few micrometer and transferred to quartz tubes for NMR measurements.
from the bulk stoichiometry is given by

\[x_{\text{Al}} = x \pm \frac{S}{2} \]

where \(x_{\text{Al}} \) and

\[x_{\text{Ga}} = 1 - x \pm \frac{S}{2} \]

where the different sign refers to an enhanced or reduced probability of finding an Al or Ga atom at a certain site. Using this notation, the probability of an

FIG. 2. Single-pulse \(^{75}\text{As}\) spectra of \(\text{Al}_{0.29}\text{Ga}_{0.70}\text{As} \) (540 kHz transients) and \(\text{Al}_{0.49}\text{Ga}_{0.51}\text{As} \) (62 kHz transients). All measurements were performed under ambient conditions. Only the central \((\pm \frac{1}{2} \pm -\frac{1}{2}) \) transition is visible. The ratio of the integrated peak areas \((A_0: A_4)\) is 35:1 and 16:1, respectively. (b) Reference spectra of AlAs and GaAs. The lines are shifted by about \(-1 \text{ kHz}\) and \(+1 \text{ kHz}\) with respect to the \(\text{As[Al]} \) and \(\text{As[Ga]} \) resonances in the mixed samples.

much weaker for the \(\text{As[Al]} \) and \(\text{As[Ga]} \) sites which are tetrahedral within the first coordination sphere. Our interpretation is corroborated by a quantitative study of \(^{75}\)As signal intensities as well as echo experiments \((\text{vide infra})\). The \(^{27}\text{Al} \) \((I = 5/2)\), \(^{69}\text{Ga} \), and \(^{71}\text{Ga} \) \((I = 3/2)\) NMR spectra of these samples were also recorded. All of them showed a single Gaussian peak with a linewidth of 2.7 kHz \((^{27}\text{Al}, ^{69}\text{Ga})\) and 2.9–3.3 kHz \((^{71}\text{Ga})\), respectively. Furthermore, it was verified by comparison with the GaAs reference that the observed resonance line intensities for \(^{69}\text{Ga} \) and \(^{71}\text{Ga} \) contain the signal from all spins in the sample. This absence of broad Ga lines is consistent with the fcc lattice model of Fig. 1(a) which places both Al and Ga in a tetrahedral As cage. Further, the presence of a single Ga resonance implies that chemical-shift effects induced by changes in the second coordination sphere are too small to be resolved in our experiment.

The large chemical-shift difference between \(^{75}\text{As[Al]} \) and \(^{75}\text{As[Ga]} \) enables the extraction of quantitative structural information for the \(\text{Al}_x\text{Ga}_{1-x}\text{As} \) samples. The degree of atomic ordering can be characterized by an order parameter \(S \) defined as

\[S = x_{\text{Al}}^4 + x_{\text{Ga}}^4 - 1, \]

where \(x_{\text{Al}} \) and \(x_{\text{Ga}} \) are the fractions of Al and Ga sites that are occupied by the preferred atom. Conversely, a local deviation from the bulk stoichiometry is given by \(x_{\text{Al}}^4 = x \pm S/2 \) and \(x_{\text{Ga}}^4 = 1 - x \pm S/2 \), where the different sign refers to an enhanced or reduced probability of finding an Al or Ga atom at a certain site. Using this notation, the probability of an

\(^{27}\text{Al} \)	\(83 \pm 7 \)	\(> 0.96 \)	\(16.1 \pm 0.4 \)
\(^{71}\text{Ga} \)	\(310 \pm 10 \)	\(> 0.95 \)	\(0.77 \pm 0.04 \)
\(^{69}\text{Ga} \)	\(520 \pm 20 \)	\(> 0.97 \)	\(0.29 \pm 0.01 \)
\(\text{As[Al]} \)	\(610 \pm 20 \)	\(> 0.97 \)	\(0.16 \pm 0.06 \)
\(\text{As[Al]} \)	\(820 \pm 50 \)	\(> 0.88 \)	\(0.14 \pm 0.08 \)
\(\text{As[Ga]} \)	\(> 9 \text{ MHz} \)		

For spin \(I = 5/2 \), \(\nu_q \approx \frac{1}{27} C_{\text{qee}} \).

\(^{69}\text{Ga}_{0.489}\text{Ga}_{0.511}\text{As} \), solid echo experiment.

\(\text{As[Ga]} \) configuration for different types of ordering (i.e., CuAu, CuPt, or clustering) is then given by

\[p_0^{(\text{CuAu})} = 1/2(1 - x - S/2)(1 - x + S/2)^2 + 1/2(1 - x - S/2)^2 (1 - x + S/2)^2, \]

(2)

\[p_0^{(\text{CuPt})} = 1/2(1 - x - S/2)^2(1 - x + S/2) + 1/2(1 - x + S/2)^2 (1 - x - S/2), \]

(3)

\[p_0^{(\text{clust})} = x^4[1 - (1 - x)^2 + (1 - x)(1 - x + Sx)^4], \]

(4)

and for the \(\text{As[Al]} \) configuration by

\[p_4^{(\text{CuAu})} = 1/2(x + S/2)^2(1 - x + S/2)^2 + 1/2(x - S/2)^2(x + S/2)^2, \]

(5)

\[p_4^{(\text{CuPt})} = 1/2(x + S/2)^2(1 - x + S/2) + 1/2(x - S/2)^2(x + S/2), \]

(6)

\[p_4^{(\text{clust})} = x^4[1 - (1 - x)^2 + (1 - x)(1 - x - Sx)^4], \]

(7)

where the contributions from the Al and Ga rich zones are reflected in the first and second term of each equation (2)–(7), respectively. For \(x > 0.5 \), complete CuAu- or CuPt-type ordering (i.e., \(S = 1 \)) cannot be reached, however, it is possible for clustering, where \(S = 1 \) corresponds to phase separation.

Quantitative information on the order parameter \(S \) is inferred from the ratio of the \(^{75}\text{As[Al]} \) and \(^{75}\text{As[Ga]} \) line intensities \((p_0/p_4) \) (Ref. 9) obtained from the spectra shown in Fig. 2(a) as well as from absolute \(^{75}\text{As} \) line intensities obtained by comparison with a GaAs reference sample yielding \((p_0 + p_4) \). The measurement of \((p_0 + p_4) \) was performed by a quantitative analysis of the \(^{75}\text{As} \) signal from different \(\text{Al}_x\text{Ga}_{1-x}\text{As} \) samples. The single pulse (4.4 \(\mu \text{s} \) duration, 37 kHz rf-field strength) spectra were normalized by a scaling factor taking the effective nutation of the two \(^{75}\text{As} \) resonances into account for the given rf-field strength. The nutation and possible contributions of the satellite transitions to the signal were calculated using the experimental quadrupole coupling constants of \(\text{Al}_{0.489}\text{Ga}_{0.511}\text{As} \) (see Table I).10

\[\text{Al}_{0.297}\text{Ga}_{0.703}\text{As} \) and \(\text{Al}_{0.508}\text{Ga}_{0.492}\text{As} \) are
the absence of any significant ordering. Upper limits for the NMR spectra. However, for S(CuPt) only strong ordering can be excluded. It is evident that clustering and CuAu ordering have a strong influence on both \(\frac{p_0}{p_4} \) and \(\frac{p_0 + p_4}{2} \) and can therefore be well characterized by NMR, while a CuPt-ordered structure requires at least \(S > 0.4 \) to show significant changes in the NMR spectra.

If no ordering is present, the aluminum fraction \(x \) can be inferred from \(\frac{p_0}{p_4} \), yielding \(x = 0.29 \pm 0.01 \) (\(\text{Al}_{0.29} \text{Ga}_{0.70} \)As), \(0.47 \pm 0.01 \) (\(\text{Al}_{0.48} \text{Ga}_{0.51} \)As), and \(0.47 \pm 0.02 \) (\(\text{Al}_{0.50} \text{Ga}_{0.49} \)As). We attribute the deviations at higher \(x \) to a partial relaxation of the thin film material where HRXRD measurements tend to overestimate the aluminum fraction.

Additional structural information about the \(\text{Al}_x \text{Ga}_{1-x} \)As thin-film samples is obtained by an analysis of the nuclear quadrupole parameters. The measurements were performed on \(\text{Al}_{0.48} \text{Ga}_{0.51} \)As. For all nuclei, the coupling constant \(C_{\text{qcc}} = e^2 q Q I / h \) and asymmetry parameter \(\eta = \frac{V_{xx} - V_{yy}}{V_{zz}} \) (Ref. 12) were measured by nutation NMR. A series of representative nutation spectra for \(^{71}\text{Ga} \) is given in Fig. 4(a). Special attention was paid to \(B_1 \) inhomogeneities for rf-field strengths up to 350 kHz (16-turn, 1.3 mm diameter solenoid rf coil). From the scaling behavior of the nutation linewidth vs rf-field strength we estimate the variations in the latter to be less than 7\%. Resonance offsets were avoided as far as possible, and included in the simulations if necessary. Recycle delays were set to \(5T_1 \). The results are summarized in Table I. Four spectra at different rf-field strengths were recorded for each nucleus and fitted individually, providing independent values for \(C_{\text{qcc}} \) and \(\eta \). The average value and standard deviation is reported for \(C_{\text{qcc}} \), while a lower bound is given for \(\eta \).

Since the quadrupole coupling is induced by the electric-field gradient (EFG) caused by a mixed occupation of the cation sites the \(C_{\text{qcc}} \) values are best categorized according to the different coordination spheres. First-shell effects are only shown in Figs. 3(a) and 3(b). The results are compatible with the absence of any significant ordering. Upper limits for \(S(\text{CuAu}) \) and \(S(\text{CuPt}) \) are \(\sim 0.15 \) using the \(\frac{p_0}{p_4} \) criterion, or 0.20 and 0.30, respectively, using the \(\frac{p_0 + p_4}{2} \) criterion. However, for \(S(\text{CuPt}) \) only strong ordering can be excluded. It is evident that clustering and CuAu ordering have a strong influence on both \(\frac{p_0}{p_4} \) and \(\frac{p_0 + p_4}{2} \) and can therefore be well characterized by NMR, while a CuPt-ordered structure requires at least \(S > 0.4 \) to show significant changes in the NMR spectra.

If no ordering is present, the aluminum fraction \(x \) can be inferred from \(\frac{p_0}{p_4} \), yielding \(x = 0.29 \pm 0.01 \) (\(\text{Al}_{0.29} \text{Ga}_{0.70} \)As), \(0.47 \pm 0.01 \) (\(\text{Al}_{0.48} \text{Ga}_{0.51} \)As), and \(0.47 \pm 0.02 \) (\(\text{Al}_{0.50} \text{Ga}_{0.49} \)As). We attribute the deviations at higher \(x \) to a partial relaxation of the thin film material where HRXRD measurements tend to overestimate the aluminum fraction.

Additional structural information about the \(\text{Al}_x \text{Ga}_{1-x} \)As thin-film samples is obtained by an analysis of the nuclear quadrupole parameters. The measurements were performed on \(\text{Al}_{0.48} \text{Ga}_{0.51} \)As. For all nuclei, the coupling constant \(C_{\text{qcc}} = e^2 q Q I / h \) and asymmetry parameter \(\eta = \frac{V_{xx} - V_{yy}}{V_{zz}} \) (Ref. 12) were measured by nutation NMR. A series of representative nutation spectra for \(^{71}\text{Ga} \) is given in Fig. 4(a). Special attention was paid to \(B_1 \) inhomogeneities for rf-field strengths up to 350 kHz (16-turn, 1.3 mm diameter solenoid rf coil). From the scaling behavior of the nutation linewidth vs rf-field strength we estimate the variations in the latter to be less than 7\%. Resonance offsets were avoided as far as possible, and included in the simulations if necessary. Recycle delays were set to \(5T_1 \). The results are summarized in Table I. Four spectra at different rf-field strengths were recorded for each nucleus and fitted individually, providing independent values for \(C_{\text{qcc}} \) and \(\eta \). The average value and standard deviation is reported for \(C_{\text{qcc}} \), while a lower bound is given for \(\eta \).

Since the quadrupole coupling is induced by the electric-field gradient (EFG) caused by a mixed occupation of the cation sites the \(C_{\text{qcc}} \) values are best categorized according to the different coordination spheres. First-shell effects are only
observed for 75As in the mixed As$_n$[Al$_x$Ga$_{4-n}$] ($n = 1, 2, 3$) configuration. Their presence is witnessed in solid echo spectra shown in Fig. 4(b). The sharp echo peak in the experimental signal is much more intense than the calculated intensity assuming only the two As$_n$[Al$_4$] and As$_n$[Ga$_4$] resonances (and their satellite transitions) to be present. This indicates that the major contribution to the sharp echo peak originates from the strongly broadened $n = 1, 2, 3$ central transitions. A similar experiment performed under identical conditions for 69Ga (with a slightly smaller quadrupole coupling constant) shows a much lower intensity for the sharp echo feature which is in this case produced by the satellite transitions only, as was confirmed by simulations (not shown). A lower bound of the C_{qcc} can be estimated from the echo width of $\Delta \tau \approx 2.2 \mu$s implying a linewidth for the central transition of at least $\Delta v = 0.883/\Delta \tau = 400$ kHz. Using the approximation $\Delta v > \Delta v < \Delta v = 2v_0 > 9$ MHz. It has to be remarked that the echo width is rather limited by the rf pulse strength ($v_1 \sim 230$ kHz) than the intrinsic linewidth of the As$_n$[Al$_n$Ga$_{4-n}$] ($n = 1, 2, 3$) resonances.

For the sites with a symmetric first coordination sphere, the dominant influence on the quadrupole interaction stems from the second (Al$_n$Ga as central atom) or third (central As) nearest neighbors. In a disordered structure, many arrangements of Al and Ga atoms are possible, all of them poten-

tially leading to a different coupling strength. It has been demonstrated that a close to Gaussian distribution of coupling constants and an asymmetry parameter distribution dominated by values > 0.5 can be expected for related dis-

ordered systems, with a vanishing probability of symmetric

couplings configurations in the second coordination as opposed

to a strongly ordered structure where a dominant fraction with $C_{qcc} = 0$ would be expected.

*Electronic address: beme@ethz.ch

1Electronic address: arno.kentgens@nmr.kun.nl

A.J. Heinrich, M. Wenderoth, K.J. Engel, T.C.G. Reusche, K. Sau-

When calculating p_0/p_1 from A_1/A_0 [Fig. 2(a)] a small correction of ~ 10% due to the different quadrupole couplings of As$_n$[Al$_4$] and As$_n$[Ga$_4$] applies (Ref. 10).

10The signal intensity $A_{1,k}^n$ of nucleus j in sample k with configuration n is proportional to $(m^k M^k p^n_{1,j} x^j_{1,k})$, where $p^n_{1,j}$ is the configurational probability as introduced in the text, m^k the mass, M^k the molecular weight, and $x^{j}_{1,k}$ the stoichiometric fraction of the respective sample and nucleus. The scaling factor $x^j_{1,k}$ accounts for nutation and different signal contributions of satellite and central transition.

G. Cyzeks, J. Fink, F. Götz, H. Schmidt, J.M.D. Coey, J.-P. Re-