Dissociative multiphoton ionization of NO$_2$ studied by time-resolved imaging

André T. J. B. Eppink and Benjamin J. Whitakera
School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom

Eric Gloaguen and Benoît Soep
Laboratoire Francis Perrin, CEA/DRECAM Service des Photons, Atomes et Molécules, C.E.N. Saclay, 91191 Gif-sur-Yvette Cedex, France

A. Marcela Coroiu and David H. Parker
Department of Laser Physics, University of Nijmegen, 6500 GL Nijmegen, The Netherlands

(Received 22 March 2004; accepted 29 July 2004)

We have studied dissociative multiphoton ionization of NO$_2$ by time-resolved velocity map imaging in a two-color pump-probe experiment using the 400 and 266 nm harmonics of a regeneratively amplified titanium-sapphire laser. We observe that most of the ion signal appears as NO$^+$ with \sim0.28 eV peak kinetic energy. Approximately 600 fs period oscillations indicative of wave packet motion are also observed in the NO$^+$ decay. We attribute the signal to two competitive mechanisms. The first involving three-photon 400 nm absorption followed by dissociative ionization of the pumped state by a subsequent 266 nm photon. The second involving one-photon 400 nm absorption to the $^1\tilde{B}_2$ state of NO$_2$ followed by two-photon dissociative ionization at 266 nm. This interpretation is derived from the observation that the total NO$^+$ ion signal exhibits biexponential decay, $0.72 \exp(-t/90 \pm 10) + 0.28 \exp(-t/4000 \pm 400)$, where t is the 266 nm delay in femtoseconds. The fast decay of the majority of the NO$^+$ signal suggests a direct dissociation via the bending mode of the pumped state. © 2004 American Institute of Physics.

[DOI: 10.1063/1.1795654]

I. INTRODUCTION

Femtosecond time-resolved imaging spectroscopy is emerging as a practical and versatile technique with which to study nonadiabatic processes in polyatomic molecules.1 The time-resolved photoelectron kinetic energy spectrum2 and its concomitant angular distribution3 are sensitive probes of internal conversion,4 vibrationally mediated spin-orbit coupling (intersystem crossing),5 intracluster reaction dynamics,6 dissociative ionization,8 reaction mechanism,9 and other non Born-Oppenheimer dynamics.10 Measurements of the time evolution of the photoion signal are in general less sensitive to the details of the electronic dynamics because the photoionization cross section is not so affected by vibronic coupling as the energy of the ejected electron, but nonetheless important information can be gleaned from such measurements.11

For many years, NO$_2$ has served as a benchmark polyatomic molecule for studies into unimolecular reaction dynamics, intramolecular vibrational redistribution, and vibronic coupling because of its rich and complex behavior despite its apparent simplicity as a triatomic molecule. There is an extensive literature, too vast to review here, concerning frequency domain studies of the dynamics of NO$_2$. Developments in short pulse lasers have also prompted a number of groups to revisit the dynamics of this intriguing molecule in the time domain in recent years. In particular, Wittig and co-workers$^{12–14}$ and Troë and co-workers15,16 have measured the energy dependence of the unimolecular rate coefficients close to the dissociation threshold. These measurements are a sensitive test of statistical theories which predict a microcanonical unimolecular rate constant given by

\[
k(E) = \frac{N^2(E - E_0)}{h \rho(E)},
\]

where E_0 is the reaction threshold, $N^2(E - E_0)$ is the number of open channels at the transition state, and $h \rho(E)$ is the density of coupled molecular states at the energy E.

Of course, time resolution comes at the expense of energy resolution. Wittig and co-workers employed pump-probe photofragment excitation (PHOFEX) spectroscopy, in which they monitored the appearance of the NO product by laser induced fluorescence (LIF). Close to threshold the temporal resolution of a picosecond (10–25 ps) experiment is adequate to resolve the dissociation rate, 0.02×10^{12} s$^{-1}$, whilst at the same time giving reasonable energy resolution (\sim2–3 cm$^{-1}$) but by 25 cm$^{-1}$ of excess energy the rate rises to over 0.13×10^{12} s$^{-1}$ which is at the limit of the resolution of a 10 ps pulse. In other experiments using a femtosecond laser Ionov et al.12 were able to measure $k(E)$ up to about 800 cm$^{-1}$ of excess energy where the rate is 1.3×10^{12} s$^{-1}$ but at the cost of energy resolution (40–70 cm$^{-1}$). Troë and co-workers adopted a slightly different approach and observed the depletion of the dissociating NO$_2$ by monitoring the LIF signal from the $^1\tilde{E}_g(3d)$ and $^1\tilde{A}^2\Sigma_u^+(3p)$ Rydberg transitions.17

aAuthor to whom correspondence should be addressed. Electronic mail: b.j.whitaker@chemistry.leeds.ac.uk
FIG. 1. The four lowest lying electronic states of NO₂ are strongly coupled by vibronic interactions. The pairs of states labeled 2A₁, 2B₁, and 2A₂, 2B₂ are components of a Renner-Teller pair correlating to 3Π, and 1Γ, states in linear geometry. In the near UV the dominant absorption occurs for transitions from the 2A₁ ground state to the 2B₂ state. For wavelengths below 397.9 nm this leads to dissociation on the ground state surface via the path indicated in the figure in which the excited molecule initially relaxes towards the minimum of the 2B₁ state, inducing motion that tightens the bond angle. At a bond angle of about 114° the 2B₂ adiabat crosses through the ground state. Close to this point the Born-Oppenheimer approximation is not valid and the electronic character of the excited state is mixed with that of the ground state. A wave packet created by a short pump pulse can then cross to the 2A₁ state where it continues to evolve along the O-NO stretching coordinate, eventually leading to dissociation into NO(X 2Π) and O(3P).

states in a femtosecond pump-probe experiment. By varying the temperature of the sample but keeping the photolysis wavelength fixed the effect of rotational excitation on the decay rate, k(E, J), was also measured in these experiments. The results of both the Wittig and Troë groups are in broad agreement and both are consistent with the predictions from statistical unimolecular rate theory. However, structure is apparent in the detailed energy dependence of k(E, J) and on a microscopic level the dissociation appears to be governed by specific resonance states whose widths show fluctuations around average values which are related to the specific rate constants from statistical theories.²⁷

The complexity observed in the detailed energy dependence of the unimolecular rate constants is also manifest in the near UV absorption spectrum of NO₂ both above and below the first dissociation threshold of 25 128.57 ± 0.05 cm⁻¹ and is due to the vibronic coupling between the four lowest electronic states of molecule (see Fig. 1). Around this excitation energy the absorption cross section is dominated by transitions from the 2A₁ ground state to the 2B₂ state with little contribution to the 2B₁, 2A₂ states. However, the 2B₂ state is embedded within the 2A₁ electronic ground state and is strongly coupled to it due to a conical intersection between the two potential energy surfaces (PESs). Excitation above the conical intersection therefore leads to rapid internal conversion and an extremely complicated absorption spectrum.²⁸ Above the dissociation limit to NO(2Π) + O(3P) on the 2A₁ surface the situation leads to equally rich dynamics, manifest, for example, in the observation of “Ericson fluctuations” in the PHOFEX spectra and in the photofragment anisotropy parameter.²²²²

The nuclear dynamics leading to dissociation is now generally agreed to involve a decrease in bending angle as the molecule moves from the Franck-Condon region of the 2B₂ state immediately accessed by the photolysis photon towards the conical intersection with the 2A₁ state. Once the electronic character reverts to the 2A₁ state the nuclear dynamics follow a stretching motion along the O-NO coordinate. Support for this model comes from ab initio calculations. One such recent calculation locates the 2A₁/2B₂ conical intersection at R = 131.1 pm and α = 113.6° at an energy T = 1.210 eV above the ground state minimum (R = 118.7 pm and α = 133.8°).²³ This model is also supported by observations of the NO product state and angular distributions as observed by ion imaging or velocity mapping,²⁴ for example, and in the time domain by the elegant photoelectron-photon coincidence imaging experiments of Davies et al.²⁵²⁶

Importantly for the discussion that follows, the experiments of Davies et al., which were carried out at a single wavelength of 375 nm for both pump and probe pulses (width 100 fs, intensity ~10¹⁵ W cm⁻²), identified a dissociative multiphoton ionization (DMI) pathway due to a three-photon excitation of NO₂ to a repulsive potential correlating with NO(C 2Π) + O(3P) followed by single-photon ionization of NO to form Σ + ground state NO⁺. This finding was not in accord with earlier work of Singhal et al.²⁹ who had investigated the multiphoton ionization and dissociation pathways of NO₂ in a single pulse. These experiments also employed 375 nm light but with shorter 50 fs pulses and an estimated intensity of up to 5×10¹³ W cm⁻², and had concluded that the observed NO⁺ signal was due to one-photon excitation of the 2B₂ state of NO₂ followed by electronic predissociation on the ground state PES and subsequent three-photon ionization of NO(X 2Π). Some signal from N⁺ and O⁺ was also observed and attributed to dissociation of the NO molecule.

In order to investigate the effects of laser field intensity on the multiphoton dissociation dynamics of NO₂ in more detail López-Martens, Schmidt, and Roberts employed two-color fluorescence depletion spectroscopy using a 400 nm pump and 800 nm probe. Dissociative production of NO in the 2Σ⁺ state was monitored through the depletion of the 2Σ⁺ → X 2Π fluorescence induced by the 800 nm probe. For 400 nm pump intensities between ~3×10¹² and 2×10¹³ W cm⁻² these authors concluded that the dominant dissociation pathway involved three-photon absorption of 400 nm light to a highly excited state of NO₃ (situated ~9.3 eV above the ground state minimum). This state was estimated to dissociate to NO(A 2Σ⁺, v = 0, 1, and 2) + O(3P) on a time scale no longer than 600 fs. Thus the primary dissociation mechanism is similar to that proposed by Davies et al.²⁷ although a different intermediate electronic state of NO₂ must be involved since three-photon 400 nm excitation has insufficient energy to reach the NO(C 2Π) + O(3P) as-
yielding a typical intensity of 5 nm diameter spot.

The pump beams, pump and probe, are recombined in the vacuum chamber at a small angle and independently focused onto the imaging plane. This configuration has also been chosen to allow a Wiley-McLaren time-of-flight mass spectrometer to be placed opposite the imager. The TOF allows convenient optimization of the pump-probe conditions and survey spectra of the various photoions.

Since the electric fields in a velocity map imaging spectrometer can be adjusted to magnify the velocity map to practically any size, the pixel-to-velocity calibration factor for any given set of focusing voltages of the spectrometer needs to be measured. For this purpose, we use photoelectron images from xenon at 10⁻⁶ Torr obtained by three-photon 266 nm ionization. This results in Xe⁺ 2P₃/₂ and 2P₁/₂ ions with an energy separation of 1.31 eV.

The images from the microchannel plate (MCP)/phosphor detector are collected in time step multiples of 0.67 fs using a charge-coupled device camera (LaVision), in which mass resolution is achieved by gating the voltage applied to the MCPs. The images are stored and processed (e.g., averaged) using the Davis software package (LaVision) at each delay step. Each raw image is then inverted by the Hankel method or by simulation using a sum of Gaussians.

The supersonic beam has already been described in a previous paper. For the current experiments a 2% NO₂/5% O₂/helium gas mixture was expanded through a pulsed nozzle, 300 µm in diameter. O₂ was added to the gas mixture in order to displace the NO₂/NO equilibrium towards NO₂. The backing pressure was maintained at a relatively low value of 1.2 bar in order to minimize the production of N₂O₄ and higher clusters. However, from the known equilibrium constant (0.15) for N₂O₄=2NO₂ at 25 °C the N₂O₄ concentration still comprises 50% of the sample. This does not affect measurements with the 400 nm pump since the absorption of NO₂ dominates at this wavelength. The opposite is true at 266 nm where N₂O₄ absorbs weakly, while NO₂ is transparent.

A velocity map ion/electron imaging device based on the design of Eppink and Parker has been used. The electrostatic optics are arranged in our apparatus to image perpendicular to the molecular beam. This configuration does not give the best resolution for the angular distributions of the ion images owing to the velocity spread in the supersonic beam, however, the major contribution to the spread in velocity distributions arises from the femtosecond excitation with ca. 40 meV width. Perpendicular extraction has the advantage of allowing easy visualization of the molecular beam translational cooling and hence its optimization. The perpendicular configuration has also been chosen to allow a Wiley-McLaren time-of-flight mass spectrometer to be placed opposite the imager. The TOF allows convenient optimization of the pump-probe conditions and survey spectra of the various photoions.

Since the electric fields in a velocity map imaging spectrometer can be adjusted to magnify the velocity map to practically any size, the pixel-to-velocity calibration factor for any given set of focusing voltages of the spectrometer needs to be measured. For this purpose, we use photoelectron images from xenon at 10⁻⁶ Torr obtained by three-photon 266 nm ionization. This results in Xe⁺ 2P₃/₂ and 2P₁/₂ ions with an energy separation of 1.31 eV.

The images from the microchannel plate (MCP)/phosphor detector are collected in time step multiples of 0.67 fs using a charge-coupled device camera (LaVision), in which mass resolution is achieved by gating the voltage applied to the MCPs. The images are stored and processed (e.g., averaged) using the Davis software package (LaVision) at each delay step. Each raw image is then inverted by the Hankel method or by simulation using a sum of Gaussians.

III. RESULTS

The pump-probe scheme of the present experiments is illustrated in Fig. 2. The pump pulse, centered at ~400 nm, excites jet-cooled molecules initially in the lowest vibrational and rotational levels of the A2Σ₁ state to zero-order rovibrational levels of the A2B₂ state. The population in the A2B₂ state can be probed by two-photon ionization through a number of Rydberg states [12Σ⁺ₕ(3p)] converging to the X1Σ⁺ state of NO₂⁺ or as in the experiments of Abel et al. by monitoring the fluorescence from these
intermediate states. In our experiments, we detect NO$^+$, NO$_2^+$ and photoelectrons as a function of the pump-probe delay.

Because of the linear momentum conservation of the nuclei upon ionization, the relatively low lying zero-order vibrational levels of the A^2B_2 state will preferentially prepare equally low lying vibrational levels of the ground electronic state of the cation ($^1\Sigma_g^+$) with near maximal available kinetic energy to the photoelectron, whereas the reverse will be true for the relatively high lying vibrational states of the X^2A_1 state, the time evolution of the photoelectron kinetic energy release (KER) spectrum thus provides a potentially sensitive probe of the internal conversion dynamics. The difficulty in the case of NO$_3$ is that the ground state of the cation and the Rydberg “stepping stone” states are all linear whereas the conical intersection between the X^2A_1 / A^2B_2 valence states occurs around $\alpha = 114^\circ$ so the ionization cross section is expected to vary considerably with bending angle.

Figures 3 and 4 show the total ion signals, integrated over all recoil speeds, measured for NO$^+$ and NO$_2^+$, respectively, as a function of the pump (400 nm)-probe (266 nm) delay. The insets show the velocity map ion images for the two species at zero time delay. The striking observation of kinetic energy release in the NO$^+$ signal at time zero immediately suggests that the ionization scheme is more complex than that just outlined, and is one of the main results of this study that needs to be explained. When examined in more detail, Fig. 5, the NO$^+$ signals also exhibit structure indicative of wave packet motion. The data shown in the figure come from three experimental runs taken at different temporal resolution recorded over 2 days. Each experimental run consisted of between 10 and 12 sequences. Each sequence measured the total ion count for the average of four ion images taken at each time step. The points represent the average signal over the whole sequence, and the error bar one standard deviation. Although the oscillations in the total ion signal are small, the statistics are convincing.

IV. DISCUSSION

Nitrogen dioxide is unusual in that more NO$^+$ ions are produced than NO$_2^+$ at low excitation energy, both by electron-impact ionization and by photoionization, which is
explained by the fact that the neutral is bent while the ion is linear. There was consequently uncertainty as to the ionization potential (IP) of the molecule in the early literature. The NIST Chemistry WebBook database gives the evaluated adiabatic IP as 9.586±0.002 eV. This rather precise value was obtained by Haber et al. in an elegant three-color experiment in which two-photon excitation was used to excite the bent molecule to a linear Rydberg state from which a third photon could be used to ionize the molecule without the Franck-Condon constraints encountered in direct photoionization or electron-impact measurements with values ranging from 10.4 to 11.23 eV.

Davies et al. have studied the time-resolved photoelectron angular distributions during the photodissociation of NO2 in a one-color pump-probe experiment at 375.3 nm. Their data can be interpreted as being due to three-photon excitation to an unspecified electronic state of NO2 which dissociates to NO(C2II) + O(3P). A fourth photon later ionizes NO(C2II) whereafter the photoelectrons and photoions can be imaged in coincidence. The two-color experiments of López-Martens et al. using a 400 nm pump and 800 nm probe can be interpreted in terms of a similar mechanism but now with the pumped state of NO2 dissociating to NO(A2Σ+)+O(3P). The initially excited electronic state of NO2 cannot be the same in the two mechanisms since three photons of 400 nm do not have enough energy to reach the C state of NO, 9.579 eV above the ground state of NO2.

In our experiments, a prompt NO+ signal is observed as a function of the 266 nm delay (Fig. 3). The best fit rise time of the signal is ~57 fs (although since this is of the same order as the cross-correlation time of the two pulses all we can say is that the rise time is on the same time scale as the excitation). The kinetic energy of the NO+ fragment can be obtained by Abel inversion of the ion image shown in the inset to Fig. 3. The ion KER spectrum is shown in Fig. 6. It is quite broad and unstructured and peaks about 280 meV.

If we assume three-photon excitation at 400 nm to a state that dissociates to NO(A2Σ+)+O(3P) according to the mechanism proposed by López-Martens et al. then the maximum expected KER into the NO dissociation product would be 0.166 eV (the total excess energy, including the zero-point vibrational energy in the NO moiety, for this channel is 0.585 eV). One could imagine similar photofragmentation pathways to the NO B2Π state or, possibly, the a4Π state, where the maximum KER in the zeroth vibrational state of the NO channel would be 0.121 eV or 0.421 eV, respectively. However, none of these pathways agrees with the observed KER, and furthermore the a4Π channel is spin forbidden. The immediate absorption of a fourth 266 nm photon from the intermediate state is capable of producing a NO+ fragment with sufficient excess energy to agree with the observations. The excess energy for the process

\[
\text{NO}_2 \xrightarrow{3 \times 400 \text{ nm}} \text{NO}_2^* \xrightarrow{266 \text{ nm}} \text{NO}^+\left(1\Sigma^+, \nu = 0\right) + \text{O}(3P)
\]

is 0.85 eV, which would result in an ionic fragment with up to 0.21 eV of kinetic energy. The discrepancy between this value and the observed KER of 0.28 eV can easily be explained by the considerable energy spread of the four photons, but a difficulty with this interpretation is its oscillatory decay (Fig. 5).

López-Martens et al. observe a rise time of order 600 fs for the NO(A2Σ+) signal. This is similar to the 350–500 fs time scale for O-NO bond cleavage observed by Davies and company. These times are more consistent with an indirect dissociation mechanism involving electronic predissociation similar to that observed for the A2B2/\tilde{X}2A1 states. The prompt appearance of the NO+ signal we observe is more consistent with a direct dissociation involving a bending mode of the molecule, where the vibrational frequency varies from 560 cm\(^{-1}\) in the \(\tilde{A}\) state to 750 cm\(^{-1}\) in the \(\tilde{X}\) state and is possibly as fast as 896 cm\(^{-1}\) in the \(\tilde{B}\) state.

A rapid buildup time has also been observed by Assenmacher et al. in the NO+ transient observed in the photo-

FIG. 5. The NO+ ion signal recorded as a function of the delay of a probe pulse centered at 266 nm following excitation of NO2 around 400 nm at higher temporal resolution than Fig. 4. Each point in the figure represents the average of between 10 and 12 independent scans. The different symbols (circles, squares, and triangles) indicate data taken on different experimental runs. Operating conditions were kept as close as possible between one run and another but inevitably there are small differences in the average pulse energy, etc., between runs. The error bars represent one standard deviation. The inset shows an expansion of part of the decay.

FIG. 6. Kinetic energy release (KER) spectrum of NO+ following dissociative multiphoton ionization of NO2 by 400 and 266 nm light. The spectrum shown is obtained by Abel inversion of the velocity map image of the ion recorded at zero delay between the two pulses as described in the text.
dissociation dynamics of HNO₃ following 200 nm excitation of the S₂ state. This signal was unambiguously assigned to ionization of the primary photodissociation product NO₂ by three photons of the 400 nm probe. Although there is some uncertainty as to the electronic state of the NO₂ photofragments, the S₂ ¹A' state of HNO₃ correlates with the A ²B₂ state of NO₂ and it seems highly probable that Assenmacher et al. observed three-photon ionization of the A ²B₂ state via the dissociative ionization channel. Since three photons of 400 nm light are energetically equivalent to two of 266 nm, we could be observing the process:

\[
\text{NO}_2(\tilde{X}^2A_1) \rightarrow \text{NO}_2(\tilde{A}^2B_2),
\]

\[
\text{NO}_2(\tilde{A}^2B_2) \rightarrow \text{NO}_2^+(1^1\Sigma^+) + \text{O}(3P) + 0.043\text{eV.} \tag{4.2}
\]

The buildup time of the NO⁺ signal that we observe is consistent with that observed by Assenmacher et al. (80 ± 20 fs), but the mechanism is inconsistent with the observation of KER in the NO⁺ fragment.

When we examine the decay of the total NO⁺ signal (Fig. 3) we find that the data can be fit by the biexponential function \(0.72 \exp(-t/90 \pm 10) + 0.28 \exp(-t/4000 \pm 400)\) with \(t\) in fs (266 nm delay), which suggests that we are observing competing processes. The faster component is probably due to a three-photon excitation at 400 nm to a state that dissociatively ionizes on the absorption of a fourth 266 nm photon (process 4.1). From the rapid rise time of the signal we conclude that the reaction coordinate for this channel is barrierless and via a bending mode. The slower component, which is only observable for slow NO⁺ ions, may be due to the alternative DMI scheme involving one-photon absorption of 400 nm light of the \(\tilde{A}^2B_2\) state followed by two-photon 266 nm excitation to another highly excited state of NO₂ which auto ionizes to NO⁺(\(1^1\Sigma^+)\) + O(\(3P\)) (process 4.2).

If this interpretation were correct, we would expect the NO⁺ signal at long times to decay on a time scale consistent with the internal conversion rate of NO₂ \(\tilde{A}^2B_2\) to \(\tilde{X}^2A_1\). This is indeed the case. For long 266 nm delays a decay time of 4000±400 fs is entirely consistent with the previous observations of Ionov et al.\(^{12,42}\) and of Abel et al.\(^{15}\) bearing in mind that the 400 nm pump laser in our experiments is broad and excites zero-order levels in the NO₂ \(\tilde{A}^2B_2\) state both above and below the dissociation limit on the \(\tilde{X}^2A_1\) state PES.

Interestingly when examined at higher resolution the decay of the NO⁺ signal exhibits oscillations (Fig. 5). The Fourier transform of the decay trace reveals a dominant contribution to the oscillations with a period of about 600 fs corresponding to an energy level spacing of 55 cm⁻¹. If our interpretation of the origin of the NO⁺ transient is correct, this is the first direct measurement of the energy level density of the coupled levels in the mixed \(\tilde{X}^2A_1/\tilde{A}^2B_2\) state of NO₂ close to the conical intersection. The resonance structure close to the threshold has recently been calculated by Abel et al.\(^{17}\) and has been proposed as the explanation for the step structure observed in the energy dependence of the unimolecular rate constants by Wittig and co-workers.\(^{12,14,42}\) Our observation of an average energy level spacing of 55 cm⁻¹ is consistent with this emerging picture of the dissociation dynamics. However, other explanations for the wave packet motion cannot be ruled out. For example, despite our contention that the dissociation of the initially pumped electronic state of NO₂ in process 1.2 is direct, we might be observing competition with an electronic predissociation via a conical intersection similar to that known to occur between the ground and first excited electronic states.

Finally, we turn to the interpretation of the NO₂⁺ data shown in Fig. 4. The inset shows the ion image obtained at time zero. There is some evidence of a N₂O₄ or cluster contribution to the signal since some ions are observed with kinetic energy, but this is a small contribution to the total signal. We have, however, already observed that the photionization of NO₂ is unusual in that close to threshold more NO⁺ is observed than NO₂⁺ because of the geometry change upon ionization and the linear nature of the Rydberg states. As mentioned in Sec. II, NO₂ does not absorb light at 266 nm, therefore the long lived signal at negative 266 nm delays, i.e., 266 nm pumping, pertains to N₂O₄ and corresponds to ionization by three 400 nm photons. This accounts for the weak signal and the dissociation of N₂O₄: the IP of N₂O₄ is 10.8±0.2 eV, although the vertical value is higher at around 11.5 eV, and one photon of 266 nm light plus two of 400 nm yields 10.8 eV. Thus the absorption of a further photon of 400 nm light will provide more than enough energy to dissociate N₂O₄⁺ to form energetic NO₂⁺.

The majority of the NO₂⁺ ions have zero kinetic energy as expected for a signal from the monomer. We cannot attribute the majority of the observed NO₂⁺ signal to a mechanism involving one photon 400 nm pumping of the \(2^2B_2\) state followed by two-photon ionization via the \(1^3\Pi_g(3\Delta)\) and \(1^2\Sigma_g^+\) (\(3P\)) Rydberg states, because the decay (54±40 fs) of the signal for long 266 nm delay is far faster than the decay of the UV fluorescence measured by Abel et al.\(^{15}\) However the decay of the NO₂⁺ signal is comparable to the rise time of the NO⁺ signal we measure. This observation fits with our proposed NO⁺ production mechanism and suggests that most of the NO₂ population is lost through a dissociative ionization route, such as (4.1), rather than by internal conversion to the \(\tilde{X}^2A_1\) state followed by dissociation. There is, however, a noticeable plateau to the long time decay of the NO₂⁺ signal that persists for several picoseconds. This is most likely due to NO₂ \(\tilde{A}^2B_2\) molecules pumped to levels below the dissociation threshold. However, our signal-to-noise ratio is not yet good enough to detect recurrences in this signal which would be expected as population oscillates between the coupled electronic states. The growth in the NO₂⁺ signal is consistent with 400 nm pumping of the NO₂ \(\tilde{A}^2B_2\) state followed by two-photon ionization, but the interpretation is clouded by the potential interference from the presence of N₂O₄ in the sample.

V. CONCLUSIONS

We have studied dissociative multiphoton ionization (DMI) of NO₂ by time-resolved velocity map imaging in a
two-color pump-probe experiment using the 400 and 266 nm harmonics of Saclay femtosecond laser facility (SLIC). We observe that most of the ion signals appear as \(\text{NO}^+ \) following DMI. As a function of 266 nm delay, the total \(\text{NO}^+ \) ion signals exhibit biexponential decay.

\[
0.72 \exp(-t/90 \pm 10) + 0.28 \exp(-t/4000 \pm 400)
\]

with \(t \) in fs, and \(\sim 600 \) fs period oscillations due to wave packet motion are also observed.

Close to the cross correlation of the two pulses the \(\text{NO}^+ \) ions are observed to have \(\sim 280 \) meV peak kinetic energy. This value is consistent with, but not exactly in accord with, the three-photon dissociation mechanism

\[
\text{NO}_2 \rightarrow \text{NO}(A^{2 \Sigma^+}) + O(3P)
\]

which has previously been proposed by López-Martens et al.\(^ {30}\) These earlier investigations had observed the process by pump-probe depletion spectroscopy of the \(\text{NO} \) \(A^{2 \Sigma^+} \) state with a subsequent 800 nm pulse. In our experiments the resulting \(\text{NO} \) \(A^{2 \Sigma^+} \) molecules could be ionized by a subsequent 266 nm pulse, but with only \(\sim 167 \) meV of kinetic energy in the \(\nu = 0 \) channel. Our observation of a rapid rise time to the \(\text{NO}^+ \) signal coupled with the 280 meV kinetic energy release suggests that a different mechanism is operating in which a component of the photoions arises from a dissociative multiphoton ionization channel involving the absorption of a fourth 266 nm photon from the bending mode of the pumped state when the NO moiety is still essentially bound to the O atom.

Some \(\text{NO}_2^+ \) signal is also observed with low kinetic energy release. These ions could be produced by the alternative mechanism

\[
\text{NO}_2(\tilde{X}^2A_1) \rightarrow \text{NO}_2(\tilde{A}^2B_2)
\]

\[
2 \times 266 \text{ nm} \rightarrow \text{NO}_2^+ \rightarrow \text{NO}^+(1\Sigma^+) + O(3P) + e^-
\]

with a total excess energy of 43 meV. Some support for the possibility of this channel comes from our observation of a small number of \(\text{NO}_2^+ \) ions at very long 266 nm delays which suggests that at least some \(\text{NO}_2 \) (\(\tilde{A}^2B_2 \)) population is created in our experiments.

Oscillations indicative of wave packet motion are observed in the \(\text{NO}^+ \) decay. These may measure the average energy level spacing between the resonant levels of the \(\tilde{A}^2B_2 / \tilde{X}^2A_1 \) states close to their conical intersection, but alternative explanations cannot be ruled out. For example, although our data suggest that the intermediate state pumped by three photons of 400 nm light dissociates directly it is possible that there is competition with an indirect route to \(\text{NO}(A^{2 \Sigma^+}) + O(3P) \). Such a mechanism would be consistent with the observations of López-Martens et al.\(^ {30}\) who observed an approximately 600 fs rise time in the \(\text{NO}(A^{2 \Sigma^+}) \) signal.

Further work is ongoing in our laboratories to improve the energy resolution of the photoelectron imaging spectrometer used in these experiments. This will allow us to characterize better the intermediate states involved in the DMI process.

ACKNOWLEDGMENTS

The authors are grateful to Shaijal Patel for assistance in the data processing of the \(\text{NO}^+ \) kinetic energy release spectrum. A. T.J.B.E. is grateful to the European Union for a post-doctoral fellowship funded through the PICNIC HPRN-CT-2002-00183 network. B.J.W. and D.H.P. are also grateful to the European Union for support to access the SLIC/LASERNET ultrafast laser facility at CEA, Saclay. D.H.P. and A.M.C. thank the Dutch National Science Foundation NWO-CW and the van Gogh program VG-66-136 for support.

The angular resolution of the photoelectron images is unaffected in this configuration.