Transitions Driven by a Missing Frequency

Andreas Gürtler¹ and Wim J. van der Zande¹,²

¹FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
²Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands

(Received 18 March 2004; published 5 October 2004)

We demonstrate an intricate combination of strong and weak interactions of a broadband half-cycle pulse with Rydberg atoms. A transition, which is resonant with a frequency that was taken out of the frequency spectrum, can be enhanced. In the experiment, the broadband ultrashort terahertz half-cycle pulse propagates through water vapor, which absorbs on discrete lines in the spectrum, thus removing frequencies from the spectrum. The resulting pulse interacts with a rubidium Rydberg atom, which has a resonant transition with one of the missing frequencies. Under certain conditions, the transition probability is enhanced although the associated frequency was missing in the spectrum.

In many situations where light and matter interact, the interaction is governed by the spectrum of the light and the frequencies of possible transitions of the matter in question. If the intensity of the light becomes very high, multiphoton transitions can become important, ultimately reaching the situation that the electric field of the light suppresses the binding Coulomb forces as happens, e.g., in above-threshold ionization [1,2] or in the interaction of Rydberg atoms with strong half-cycle electric field pulses [3–6]. In another class of light-matter interactions, for example, in stimulated Raman adiabatic passage, the coherent properties of light are employed [7].

In this Letter, we discuss an interesting case which combines all three of these aspects, the interaction of Rydberg atoms with terahertz half-cycle pulses (HCP), which have a spectrum with “gaps” as a result of absorption in water vapor. If a transition in the Rydberg atom is resonant with a gap in the THz pulse spectrum, intuition tells us that this transition is less likely to happen than in the case where the resonant frequency is still in the spectrum. On second thought, the interaction of strong ultrashort half-cycle pulses with Rydberg atoms, which are highly susceptible to electric fields, is almost always strongly driven and poorly described by a single-photon picture. In fact, this interaction is frequently described as a semiclassical “momentum kick” \[\Delta \tilde{p} = e \int \tilde{E}_{\text{HCP}}(t) dt \] to a free electron with charge \(e \) due to the electric field \(\tilde{E}_{\text{HCP}}(t) \) of the half-cycle pulse [3]. The energy lost or gained in the impulsive approximation is then \(\Delta E = \frac{1}{2m} (2 \tilde{p} \cdot \Delta \tilde{p} + \Delta \tilde{p}^2) \), where \(\tilde{p} \) is the initial momentum and \(m \) is the mass of the electron. However, the momentum kick picture does not take into account possible single-photon transitions. In this Letter, we demonstrate that half-cycle pulses, which propagated through laboratory air containing water vapor and are reshaped by absorption and dispersion, efficiently drive single-photon transitions at a missing frequency. We show where this contribution is visible above the strong multiphoton background. We illustrate the single-photon nature of this interaction by measuring the transition frequency and width of a rotational water line in the far infrared.

Figure 1(a) shows the electric field of a pure Gaussian half-cycle pulse with the Fourier transform given in Fig. 1(b). The zero-frequency component of pure half-cycle pulses cannot propagate. Therefore, HCPs develop a long “tail” of opposite polarity during propagation such that in the far field, the integral of the electric field is zero. The effects of this impurity on Rydberg atom excitation have been investigated earlier [4,6,8] and are not the subject of this Letter. THz half-cycle pulses are being used for rotational spectroscopy of molecules in the gas phase [9,10]. The absorption of frequencies and the following free-induction decay of the excited molecules reshape the THz pulse [9]. For low intensities, the reshaping...
ing of the electric field after propagation through a medium which absorbs on discrete lines is well described by linear dispersion theory and can be written as [10]
\[e_{\text{THz}}(z, t) = \int \tilde{e}_{\text{THz}}(\omega) e^{-i(\omega t - k_0 z)} e^{i \Delta k(\omega) z} e^{-\alpha(\omega) z^2/2} d\omega, \]
where \(k = n\omega/c, \Delta k(\omega) \) and \(\alpha(\omega) \) are the frequency-dependent dispersion and power absorption coefficient, respectively. \(e_{\text{THz}}(\omega) \) is the Fourier transform of the electric field of the half-cycle pulse at \(z = 0 \). In the simple single-line absorber model depicted in Fig. 1, \(\Delta k \) and \(\alpha \) are assumed to have Lorentzian dispersion and absorption line shapes. Figure 1(d) shows the predicted frequency spectrum of the half-cycle pulse after propagation through a 40 cm sample of a medium which absorbs on the frequency of the \(\text{H}_2\text{O} \) \((J, K_a, K_c) = (211) \leftrightarrow (202)\) rotational transition at 752 GHz (25.08 cm\(^{-1}\)) [11]. The time-domain pulse shape obtained by an inverse Fourier transform is shown in Fig. 1(c). The shape of the short half cycle is not appreciably changed. Following the short half cycle, there is a low-amplitude oscillatory tail stemming from the free-induction decay of the excited absorber which can extend up to several hundred picoseconds after the 0.65 ps half-cycle pulse. The decay time for the transient is ~75 ps for the 752 GHz line used in Fig. 1. In the following, we refer to pulses like the one shown in Fig. 1(a) as “clean” pulses as opposed to “absorbed” pulses as shown in Fig. 1(c).

The experiment is performed in a vacuum chamber (10\(^{-7}\) mbar). We excite rubidium atoms from a resistively heated oven into the 25D Rydberg state in a two-photon transition using a nanosecond dye laser. The excitation takes place between two capacitor plates which can be biased by a voltage to produce an electric field in the interaction region. The upper plate contains a hole covered by a grid. After interaction with the THz half-cycle pulses, which are produced in a biased large-aperture GaAs antenna illuminated by 800 nm, 100 fs pulses from a regeneratively amplified Ti:sapphire laser system [12], the Rydberg population is probed by state-selective field ionization (SFI). To that end, a slow voltage ramp is applied to the lower capacitor plate. The field at which a state ionizes is a measure for the state’s principal quantum number \(n \) [13]. The SFI field also pushes the ionized electrons towards a microchannel plate detector (MCP). The time of flight at which the electrons arrive gives the ionization field and, with it, the state distribution. The MCP signal is digitized by a fast digital oscilloscope and the traces are stored on a computer for further processing.

Before entering the vacuum chamber, the THz beam traverses a 40 cm tube which can be filled with air containing water vapor or flooded with dry nitrogen. To measure a line profile as shown in Fig. 2(a), the SFI traces are taken after exposing the Rydberg atoms to the THz beam which propagated through the tube containing water vapor. Then the static electric field is increased and the next trace is taken. As a background measure-

ment, the field scan is then repeated with the THz beam blocked. Then the water vapor tube is flooded with dry nitrogen and the measurement is repeated. The absorption data are then the difference in upper state population for the water vapor and nitrogen data, respectively.

Rydberg atoms, atoms in a highly excited electronic state, typically have multiple transitions in the bandwidth of a THz pulse. Transitions between Rydberg states can be tuned by means of Stark tuning [14]. The principle is depicted in Fig. 2(b). The figure shows the energy of rubidium Rydberg states around the 25D state as a function of an external electric field calculated using experimental quantum defects [15,16]. Fine structure was not included in the calculation and for the \(P \) states, the \(P_{1/2} \) quantum defects were used. The \(D_{3/2} \) and \(D_{5/2} \) states are practically degenerate at these values of \(n \). The energy of a Rydberg state in an external electric field depends on the value of the field. Figure 2(c) shows the energy difference between the 25D and the 28P state. Clearly, this energy difference can be tuned by changing the electric field. At a field of 61 V/cm [marked by an arrow in Fig. 2(b)], the

![FIG. 2. (a) Measured 28P state population as a function of external electric field after exposure of an initially excited 25D state to THz pulses which propagated through air containing water vapor (dashed line) and dry nitrogen (solid line). (b) Calculated rubidium energy levels around the 25D state as a function of electric field. The arrow denotes the field where the 25D-28P transition frequency equals 752 GHz. The quantum defects of \(P \) and \(D \) states are 2.65 and 1.35, respectively. (c) Energy difference between the Rb 25D and 28P states as a function of field.](image-url)
transition energy is equal to that of an absorption line of
gaseous water at 25.085 cm\(^{-1}\) (\(\sim 752\) GHz). Figure 2(a)
shows the experimental population in the 28P state as a
function of static electric field after an initially excited
25D state was exposed to a HCP that propagated through
40 cm of laboratory air containing water vapor (dashed
line) and a HCP that propagated through 40 cm of dry
nitrogen (solid line). Surprisingly, at 61 V/cm, when the
25D \(\rightarrow\) 28P transition is resonant with the absorption
line at 752 GHz, the absorbed pulse which actually
has a hole in the spectrum at this frequency as shown in
Fig. 1(d), transfers more population to the upper state than
the clean pulse which has an intact spectrum.

In Fig. 3 we show results of a numerical integration of
the time-dependent Schrödinger equation of a Rb 25D
state in fields as shown in Fig. 1. The wave function is
represented on a radial grid by a sum of angular wave
functions, which are the product of a radial function and a
spherical harmonic. The calculations were performed
using a split-operator method. The Hamiltonian was split
into two parts, the first representing the field-free atomic
Hamiltonian in a Rb model potential, the second part
representing the external fields [17].

In Fig. 3(a) the population in the 28P state during and
after the HCP is plotted as a function of time for three
HCP amplitudes. The peak of the HCP with a full width
at half maximum of 0.65 ps is at 10 ps. The population
oscillates in time with a frequency that depends on the
HCP amplitude and the population after the pulse is over
is a nontrivial function of the amplitude. In Fig. 3(b) the
population difference of 28P population excited by clean
pulses [Fig. 1(a)] and absorbed pulses [Fig. 1(c)] is shown
as a function of time for HCP amplitudes of 350 and
1100 V/cm. In the field shown in Fig. 1(c), the weak
oscillating tail contains the missing frequency, but with
a phase shift of \(\pi\), such that it interferes destructively
with the same frequency component of the half-cycle
pulse, leading to the spectrum shown in Fig. 1(d). In a
linear interaction, we naturally expect that a frequency
that is not contained in the spectrum does not drive a
transition. The wave function excited by the half-cycle
pulse is then out of phase with the coherent resonant tail
of the pulse and the population is coherently driven back
down rather than up, even though the initial (25D) state
population exceeds the 28P state population by far. This
behavior is shown by the dashed line in Fig. 3(b) for a
350 V/cm HCP amplitude. For very small HCP amplitudes
(\(\sim 10\) V/cm) and excitation probabilities (\(\sim 10^{-6}\)),
the excited fraction for the absorbed pulse after the pulse
is ca. 25% of the clean pulse population as expected from
the spectrum Fig. 1(d).

Even for moderate HCP amplitudes, the interaction of
the HCP with the Rydberg state is highly nonlinear. The
classical energy transfer \(\Delta E\) then equals or exceeds the
energies in the THz spectrum and the transition probability
depends almost exclusively on the transition energy
rather than the single-photon cross section of the transition.
Note that all but the smallest HCP amplitudes are
strong compared to typical fields in the Rydberg atom (a
static field of \(\sim 200\) V/cm already mixes the 25D state
with the next higher-lying manifold of Stark states). In a
nonlinear interaction, the created wave function
does not necessarily have a destructive phase relationship
with the oscillatory tail, such that this narrow-band feature
can efficiently drive more population from the 25D
to the 28P state. Naturally, this effect is limited by the
fact that strong half-cycle pulses leave very little population
in the initial 25D state [=6% in the case of the
1100 V/cm trace in Fig. 3(b)]. Figure 3(c) shows the
asymptotic population in the 28P state as a function of
the HCP amplitude for clean and absorbed HCPs. The
population shows clear oscillations with peak values that
are much smaller than 1 and not constant. These oscil-
lations are not adequately described by a generalized Rabi
frequency. The ultrabroad bandwidth and the half-cycle
shape of the radiation as well as the potentially large
number of states involved complicate the situation. Popu-
lation oscillations in HCP excitation have been predicted
using semiclassical calculations [18] and have been ob-
served experimentally [19]. Figure 3(d) shows the differ-
ence in the 28P state populations for both pulse shapes.
The effect of the oscillatory tail clearly depends on the
HCP amplitude. Only for low amplitudes (\(\lesssim 500\) V/cm)
the upper state population is less for the spectrum which
lacks the transition frequency. For a HCP amplitude of
1150 V/cm, the absorbed HCP transfers more population
from the 25D to the 28P state than the clean HCP.
explained by the nonlinear interaction of the half-cycle pulse with the atom which creates a wave function that does not have a destructive phase relationship with the low-amplitude tail. This allows the oscillatory tail to excite more population rather than to deexcite, as it would in a linear interaction.

We thank F. Robicheaux for his code to integrate the Schrödinger equation, L. Kuipers for careful reading of the manuscript, and B.W. Shore and L.D. Noordam for helpful discussions. A.G. acknowledges support from the EU program HPRN-CT-1999-00129, COCOMO. This work is part of the research program of the “Stichting voor Fundamenteel Onderzoek der Materie (FOM),” which is financially supported by the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).”

This situation can be compared with filtering by linear and nonlinear filters. Linear frequency filters, e.g., dichroic bandpass filters [20], will produce a gap in the spectrum when applied to a pulse like the one shown in Fig. 1(c). Nonlinear filters, e.g., ultrafast switchable mirrors switched on after the HCP or saturable absorbers, can produce a pulse with a peak at the absorbed frequency.

We use the sensitivity and the tunability of the Rydberg transitions to probe a single rotational transition in gaseous water. In Fig. 4, we show the measured line shape of the H2O $(J, K_a, K_c) = (2 \, 1 \, 1) \rightarrow (2 \, 0 \, 2)$ transition (circles) and Voigt profile fit to the data (line). The x axis is converted from field to energy using Fig. 2(c).

In conclusion, we have shown that the interaction of THz half-cycle pulses that contain narrow-band low-amplitude oscillations as a result of an absorption process result in an interesting interplay between strong and weak field effects in Rb Rydberg atoms. A transition can be driven more effectively when its transition frequency is missing in the THz spectrum. This can be

FIG. 4. Measured absorption line profile of the H2O $(J, K_a, K_c) = (2 \, 1 \, 1) \rightarrow (2 \, 0 \, 2)$ transition (circles) and Voigt profile fit to the data (line). The x axis is converted from field to energy using Fig. 2(c).