The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/60319

Please be advised that this information was generated on 2018-11-24 and may be subject to change.
Novel approximations for inference and learning in nonlinear dynamical systems

Alexander Ypma* and Tom Heskes
SNN Nijmegen, Geert Grooteplein 21
6525 EZ Nijmegen, The Netherlands
Email: {ypma, tom}@snn.kun.nl, web: www.snn.kun.nl/~ypma

Abstract. We formulate the problem of inference in nonlinear dynamical systems in the Expectation-Propagation framework, and propose two novel inference algorithms based on Laplace approximation and the Unscented transform. The algorithms are compared empirically and employed as an improved E-step in a conjugate gradient learning algorithm. We illustrate its use for data mining with two high-dimensional time series from marketing research.

1 Introduction

Many real-world systems are nonlinear, dynamical and stochastic in nature. Inference and learning of nonlinear system models with hidden dynamics is a difficult task, which requires approximations and simplifications to be made. In this paper we consider dynamical systems where we have nonlinearities in the state- and observation equations,

\[x_t = f(x_{t-1}) + v_t, \quad v_t \sim \mathcal{N}(0, Q) \]
\[y_t = g(x_t) + w_t, \quad w_t \sim \mathcal{N}(0, R) \]

with conditionals \(p(x_t|x_{t-1}) \sim \mathcal{N}(f(x_{t-1}), Q) \); \(p(y_t|x_t) \sim \mathcal{N}(g(x_t), R) \). Here \(f(\cdot) \) and \(g(\cdot) \) are (known) nonlinear functions, see figure 1, and \(\mathcal{N}(\mu, \Sigma) \) denotes the normal distribution with mean \(\mu \) and covariance matrix \(\Sigma \). In the familiar Kalman filter and smoother, all functions are assumed linear and so-called forward and backward messages (which serve as intermediate steps for computing the belief state at each time) can be computed exactly. In the nonlinear model, forward and backward messages cannot be computed exactly any more, so one has to resort to approximations. Two popular methods (e.g. see [3]) are the extended Kalman filter (EKF), which linearizes the nonlinearity so that Gaussian messages can be computed and the unscented Kalman filter (UKF), which again assumes Gaussian posterior beliefs but computes moments from a set of nonlinearly transformed points.

*Supported by Technology Foundation STW, project “Graphical models for data mining”
Figure 1: left: Nonlinear dynamical system. All nodes are continuous-valued, and f and g are arbitrary nonlinear functions. Shaded nodes are observed. π denotes the prior distribution on X. Time progresses from left to right; right: factor graph representation of the NLDS. Evidence is incorporated into the factor nodes, which span two consecutive hidden nodes. Messages are sent between hidden and factor nodes. A hidden node’s outgoing message in a certain direction equals the incoming message in this direction.

2 Inference with Expectation-Propagation

Expectation-Propagation (EP, [2, 1]) is a message passing method to compute the beliefs in a graphical model, where all beliefs are approximated e.g. with Gaussians. Messages are propagated and recomputed iteratively until (possible) convergence. In the nonlinear dynamical system model (figure 1, left), we factorize $p(x_{t-1:T}, y_{1:T})$ as $\prod_{t=1}^{T} \Psi_t(x_{t-1}, x_t) = \prod_{t=1}^{T} \Psi_t^f(x_{t-1}, x_t) \cdot \Psi_t^g(x_t, y_t)$ and beliefs $p(x_t|y_{1:T})$ are computed by $\hat{\alpha}_t(x_t)$, where the forward message $\hat{\alpha}_t(x_t)$ is the message from $x_t \rightarrow x_{t-1}$ and the backward message $\hat{\beta}_{t-1}(x_{t-1})$ is the message from $\Psi_t \rightarrow x_{t-1}$ (figure 1, right). Hence we express a two-slice belief as a scaled product of a 2-slice potential and ‘incoming messages’, $\hat{p}_t(x_{t-1}, x_t) \propto \hat{\alpha}_{t-1}(x_{t-1}) \Psi_t(x_{t-1}, x_t) \hat{\beta}_t(x_t)$ where $\Psi_t(x_{t-1}, x_t) = p(x_t|x_{t-1})p(y_t|x_t)$. Belief $q_t(x_t)$ is obtained by a marginalize-collapse, $q_t(x_t) = \text{collapse}_{x_{t-1}} \hat{p}_t(x_{t-1}, x_t)$ where collapse$_{x_{t-1}}$ involves projection to a Gaussian and marginalization over x_{t-1}. A similar expression can be given for obtaining $q_t(x_{t-1})$ from the potential. The message passing algorithm then reads:

\begin{enumerate}
\item $\hat{p}_t(x_{t-1}, x_t) \propto \prod \text{incoming}(\Psi_t) \cdot \Psi_t(x_{t-1}, x_t) = \hat{\alpha}_{t-1}(x_{t-1}) \cdot \Psi_t(x_{t-1}, x_t) \cdot \hat{\beta}_t(x_t)$
\item $q_\Psi(x_t) = \text{collapse} \left[\int \hat{p}_t(x_{t-1}, x_t) d\{x_t\} \right]$ \item message($\Psi_t \rightarrow x_t$) = \frac{q_\Psi(x_t)}{\text{message}(x_t \rightarrow \Psi_t)}$
\end{enumerate}

For nonlinear systems, the 'difficult' quantity is $p_t(x_{t-1}, x_t)$ because of the nonlinearities in $\Psi_t(x_{t-1}, x_t)$ and the integral. In the collapse step, one projects the nongaussian marginal onto a suitable Gaussian approximation.
2.1 Laplace approximation

In the first approach we collapse the nongaussian marginal onto a Gaussian by applying the Laplace approximation,

\[
\int \int \hat{a}_{t-1}(x_{t-1})\hat{\phi}_{t}(x_{t-1}, x_{t})\hat{\beta}_{t}(x_{t})h(x_{t-1}, x_{t})dx_{t-1}dx_{t} \\
= \int dx_{t} \exp\{F(x_{t})\} \approx \int dx_{t} \exp\{Q(x_{t})\}
\]

(2)

where \(\exp\{Q(x_{t})\} \sim \mathcal{N}(\mathbf{x}_{t}^{*}, -(F'^{\top})^{-1}(\mathbf{x}_{t}^{*}))\) and \(Q(x_{t})\) is the quadratic approximation of \(F(x_{t})\) around its extremum \(\mathbf{x}_{t}^{*}\).

2.2 Unscented approximation

The Unscented transform (UT, e.g. [6, 3]) is a method for approximating the moments of a variable \(Y\) that is depending on a Gaussian variable \(X\) via a nonlinear transform \(f\). E.g., the first moment of the distribution of \(Y\) is

\[
\langle Y \rangle = \int dX \mathcal{N}(X; \mu, \Sigma) f(X).
\]

The latter integral is approximated numerically as \(\sum_{i} w_{i} \Upsilon_{i}\), where \(w_{i}\) are suitably chosen weights (in the UT, \(\sum_{i} w_{i} = 1\)) and \(\Upsilon_{i} = f(\chi_{i})\), i.e. nonlinearly transformed “sigma points” \(\chi_{i}\) which are deterministically chosen samples from the Gaussian over \(X\). In our second approach, we use the unscented transform to approximate the nongaussian two-slice joint \(p_{t}(x_{t-1}, x_{t})\) with a Gaussian, in three steps: 1. prediction: approximate \(\hat{a}_{t}(x_{t-1})\hat{\phi}_{t}(x_{t-1}, x_{t})\) with a Gaussian \(p_{t}^{*}(x_{t-1}, x_{t})\) using UT; 2. correction: compute \(p_{t}^{*}(x_{t})\) by marginalization; approximate \(p_{t}^{*}(x_{t}, y_{t})\) with a Gaussian \(p_{t}^{*}(x_{t}, y_{t})\) using UT; incorporate evidence into \(p_{t}^{*}(y_{t}, x_{t}) = p_{t}^{*}(x_{t}, y_{t})/p_{t}^{*}(x_{t})\), resulting in \(p_{t}^{*}(y_{t}, x_{t})\); 3. combination: compute \(q_{t}(x_{t-1}, x_{t}) = p_{t}^{*}(x_{t-1}, x_{t})p_{t}^{*}(y_{t}|x_{t})\beta_{t}(x_{t})\), and obtain \(q_{t}(x_{t-1})\) and \(q_{t}(x_{t})\) by marginalization. We use UT for computing moments of the joints \(p_{t}^{*}(x_{t-1}, x_{t}), p_{t}^{*}(x_{t}, y_{t}), \) e.g. by

\[
\int \int \hat{a}_{t-1}(x_{t-1})\hat{\phi}_{t}(x_{t-1}, x_{t})h(x_{t-1}, x_{t})dx_{t-1}dx_{t} \approx \sum_{i} w_{i} \mathcal{F}_{2}(\chi_{i})
\]

(3)

We remark that an Unscented smoother has been proposed before [6], but that our formulation does not require the dynamics to be inverted. Furthermore, we note that one forward-backward pass is already sufficient in this algorithm, since the \(\beta_{t}(x_{t})\) message is not used inside the collapse operation.

3 Learning with radial basis functions

3.1 EM updates

It was proposed in [4] to parameterize the nonlinearities in (1) with radial basis functions \(\rho_{f}^{g}(\text{dynamics})\) and \(\rho_{g}^{h}(\text{observer})\), and include weighted inputs \(u_{t}\):

\[
\int dX dY f(X, Y) = \int dX \mathcal{N}(X; \mu, \Sigma) \int dY \mathcal{N}(Y; f(X), \Sigma) Y; \langle \cdot \rangle \text{ denotes expectation.}
\]
\[
\begin{aligned}
\begin{cases}
 x_{t+1} = \sum_{i=1}^{T} h_i^f(x_t) + A_f x_t + B_f u_t + b_f + v_t = \theta_f \Phi_f^T + v_t \\
y_t = \sum_{i=1}^{T} h_i^g(x_t) + A_g x_t + B_g u_t + b_g + w_t = \theta_g \Phi_g^T + w_t
\end{cases}
\end{aligned}
\]

where \(v_t \sim \mathcal{N}(0, Q), w_t \sim \mathcal{N}(0, R)\) and \(\rho_f^f(x_t)\) and \(\rho_f^g(x_t)\) are Gaussians in \(x_t\) space. In this model, EM learning can be done by alternating an E-step (e.g. using an inference algorithm from the previous section; an extended Kalman smoother was used in [4]) with an M-step (where parameters are updated). For the above model, one computes new parameters \(\hat{\theta}_f, \hat{\theta}_g\) and covariances \(\hat{Q}, \hat{R}\) as

\[
\begin{aligned}
\hat{\theta}_f &= \sum_{t=1}^{T} (x_{t+1}^T \Phi_f^T)_t^{-1} \left(\sum_{t=1}^{T} (\Phi_f^T \Phi_f^T)_t \right)^{-1} \\
\hat{\theta}_g &= \sum_{t=1}^{T} (y_t \Phi_g^T)_t \left(\sum_{t=1}^{T} (\Phi_g^T \Phi_g^T)_t \right)^{-1} \\
J\hat{Q} &= \sum_{t=1}^{T} (x_{t+1}^T \Phi_f^T)_{t+1} - \hat{\theta}_f \sum_{t=1}^{T} (x_{t+1}^T \Phi_f^T)_{t+1} + \hat{\theta}_f \sum_{t=1}^{T} (\Phi_f^T \Phi_f^T)_{t+1} \\
J\hat{R} &= \sum_{t=1}^{T} (y_t y_t^T)_t - \hat{\theta}_g \sum_{t=1}^{T} (\Phi_g^T \Phi_g^T)_{t+1}
\end{aligned}
\]

where \(J = T - 1\), superscripts \(\cdot^T\) denote transposition and \(y_t\) are instantiated when observed. Prediction of partially known outputs can be done by estimating the hidden state at the to be predicted time stamps (where known outputs are again instantiated and unknown outputs are integrated out), and the mean state estimates are then passed through the learned output nonlinearity.

3.2 ECG updates

In [5] it was shown that the actual gradient of the likelihood may be computed if the derivative of the complete data loglikelihood can be computed. Direct maximization of the gradient of the likelihood (e.g. using conjugate gradients, leading to an Expectation-Conjugate-Gradient or ECG algorithm) is beneficial when relatively many unobserved quantities are present in the model. If we define

\[
S = \sum_{t=1}^{T} (x_{t+1}^T \Phi_f^T)_{t+1} - \hat{\theta}_f \sum_{t=1}^{T} (x_{t+1}^T \Phi_f^T)_{t+1} - \sum_{t=1}^{T} (x_{t+1}^T \Phi_f^T)_{t+1} + \hat{\theta}_f \sum_{t=1}^{T} (\Phi_f^T \Phi_f^T)_{t+1} \hat{\theta}_f
\]

we compute the gradient of the loglikelihood \(\mathcal{L}\) with respect to \(Q, \theta_f\) for the parameterized nonlinear model (4) as

\[
\begin{aligned}
\nabla_Q(\mathcal{L}) &= \frac{1}{2} Q^{-1} \nabla Q^{-1} - \frac{J}{2} Q^{-1} \\
\nabla_{\theta_f}(\mathcal{L}) &= Q^{-1} \left(\sum_t (x_{t+1}^T \Phi_f^T)_{t+1} - \hat{\theta}_f \sum_t (\Phi_f^T \Phi_f^T)_{t+1} \right)
\end{aligned}
\]

Analogous expressions can be derived for \(\nabla_R(\mathcal{L})\) and \(\nabla_{\theta_g}(\mathcal{L})\). As an aside, we enforce positive semidefinite covariance matrices during learning by updating their Choleski factors \(P_{kL}\) rather than the matrix entries \(Q_{ij}\) themselves. By the chain rule of differentiation this requires for example to postmultiply the gradient with respect to \(Q\) with a factor \(\frac{\partial Q_{ij}}{\partial \Phi_f^T_{ik}}\).
4 Comparison on artificial data

We analyze our EP-based inference algorithms with a 1-D NLDS: [6]

\[
\begin{align*}
 x_t &= x_{t-1} + \sin(x_{t-1}) \cdot x_{t-1} + v_t, \quad v_t \sim \mathcal{N}(0, Q) \\
 y_t &= x_t^2 + w_t, \quad w_t \sim \mathcal{N}(0, R)
\end{align*}
\]

This system has unstable fixed points at \(-\pi, \pi \pmod{2\pi}\) and a stable fixed point at \(0 \pmod{2\pi}\). The squaring nonlinearity in the observer gives rise to ambiguity in the polarity of the underlying state. We compared the performance of our EP-based algorithms (Laplace, denoted by EPEKS; Unscented, by EPUKS) with two benchmark algorithms (EKF, UKF) at different noise levels. We measured algorithm performance with the statistic \(\text{NMAD} = \text{mean}_t |x_t - \hat{x}_t| / \text{var}(\{y_t\})\). We repeated 25 runs with different noise realizations (for varying noise levels \(Q, R\)) and fixed the data length \(T\) to 40. In each trial we used 2 iterations for our Laplace algorithm (EPEKS) and 1 iteration for our Unscented algorithm (EPUKS). In figure 2 the results are plotted for a nonlinear (left) and linear (right) observer, respectively. In all cases, both EP algorithms outperform EKF and UKF (further signified by the fact that the distribution of performance differences has mean larger than zero), except for the case \([Q, R] = [0.01, 1]\) where EPEKS suffers from the emergence of non-positive definite covariance matrices. In turn, the inferred state at these nodes becomes incorrect since the search for the function optimum in the Laplace algorithm diverges. To our knowledge, no remedies have yet been devised in the literature to deal with this (technical, yet important) problem. This effect is even more pronounced in the linear observer case: apparently, the linear observer causes the same ‘high observation noise’ behaviour as in the nonlinear case for already small magnitudes of \(R\). On the other hand, when EPEKS does not suffer from this phenomenon, it performs better than all other methods. Finally, our Unscented algorithm is better than EKF and UKF in all cases, making it the more robust choice; in experiments with a two-dimensional system, this was further confirmed.

Figure 2: Median NMAD for algorithms EKF, UKF, Unscented, Laplace over 25 runs, for (left) nonlinear and (right) linear observer

\[\text{NMAD}(\text{COMP}) - \text{NMAD}(\text{EP}), \text{where COMP} = \{\text{EKF, UKF}\}, \text{EP} = \{\text{EPEKS, EPUKS}\}\]

5 Data mining of marketing time series

We applied the ECG algorithm\(^4\) to the task of data mining of marketing time series\(^4\). Here the underlying assumption is that a marketing steering variable has both an immediate influence on the output (via the observer) and a delayed influence via the dynamics (e.g., when ‘the general opinion’ about a brand gradually changes as a result of PR activities). Two time series were ‘compressed’ into a 2-D hidden representation. First: 12 inputs (marketing mix, exogenous), 21 outputs (market shares, consumer perceptions), length 64 weeks. Second: 10 inputs (marketing mix, exogenous), 46 outputs (sales figures, consumer perceptions), length 24 weeks. The market-shares time series has periodicities in the

![Figure 3: Compressed 2-D representation of marketing time series using ECG](image)

order of 16 weeks (figure 3, left), indicating more global trends. The sales time series shows underlying bursts (figure 3, right) that appear to be correlated with some of the inputs, indicating stronger dependence on steering variables. In the sequel we will study ways to incorporate prior knowledge on the process in the NLDS model and evaluate the predictive power of our method.

References

\(^4\)EM training resulted in non-positive definite covariance matrices during updating. We initialized ECG with a linear Kalman smoother with PCA-initialized observation matrix

\(^4\)The data was kindly provided by BrandmarC b.v., Leusden, The Netherlands