Phonon Excitations of Composite Fermion Landau Levels

F. Schulze-Wischeler¹, F. Hohls¹, U. Zeitler¹,², D. Reuter³, A. D. Wieck³, and R. J. Haug¹

¹Institut für Festkörperphysik, Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
²High Field Magnet Laboratory, NSRIM, University of Nijmegen, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
³Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany

(Dated: February 26, 2004)

Phonon excitations of fractional quantum Hall states at filling factors \(\nu = \frac{p}{q} \) (q is an odd-integer) [1, 2]. In the last decade this fractional quantum Hall (FQH) effect was very effectively described in the framework of Composite Fermions (CFs) [3]. At a fractional filling factor with even denominator, \(\nu = \frac{p}{q} \), these quasiparticles are formed by attaching an even number \(2n \) of flux quanta \(\phi_0 \) to each electron, i.e. two flux quanta at \(\nu = 1/2 \). Their effective mass \(m^* \) is originating from the Coulomb interaction [4].

The ground state of a 2DES at a fractional filling factor \(\nu = \frac{p}{q} \) is a collective wave function [2] with finite wavevector collective excitations [5, 6] directly accessible by e.g. Raman techniques [7, 8], photoluminescence [9] or phonon absorption experiments [10, 11]. In a simple picture these excitations originate from the level structure of CFs in an effective magnetic field, \(B_{e/f} = B - B \nu (\nu = \frac{1}{2}) \), with an effective (integer) filling factor, \(p = \frac{1}{2} \nu \) [3]. The levels can then be described as spin-split Landau levels of CFs and, therefore, excitations can be interpreted as either Landau level transitions or spin-excitations.

In this Letter we use phonons to probe the FQH excitation spectrum at filling factors \(\nu = 1/3, 2/5, 4/7, 3/5 \), 2/3, 4/3, and 5/3 when varying the electron densities in the same sample over a wide range. At a given filling factor nearly all gaps measured show a square-root field dependence, rather related to a spin transition forbidden for phonon excitations. This observation is a clear hint that the 2/3-ground-state is not fully spin-polarized in high B-fields and that a strict separation between spin transitions and CF Landau-level transitions is no more possible.

Our sample consists of a high-mobility AlGaAs/GaAs-heterojunction grown on a 2 mm thick GaAs wafer. On the front side containing the 2DES we patterned a \(w = 90 \mu m \) wide meander extending over a total length \(L = 10 \text{ mm} \) on an area \(A = 1 \times 1 \text{ mm}^2 \). The huge aspect ratio \(l/w = 111 \) maximizes the \(p_{xx} \)-contribution to the two-terminal resistance and thereby allows to measure smallest changes in \(p_{xx} \). The Ohmic contacts to the 2DES are placed at the edges of the sample far away from the meander to avoid any phonon interactions with the contacts. We took great care that the contact resistances (< 10 Ω) only play a negligible role in the measured two-terminal resistance. Using the persistent photoconductivity we varied the electron concentration in several steps from \(n = 0.89 \times 10^{12} \text{ m}^{-2} \) (mobility \(\mu = 102 \text{ m}^2/\text{Vs} \)) to \(n = 1.50 \times 10^{12} \text{ m}^{-2} \) (mobility \(\mu = 193 \text{ m}^2/\text{Vs} \)).

The sample is mounted on the tail of a dilution refrigerator in a superconducting magnet with maximum fields up to 13 T and connected to high frequency coaxial cables. Great care was taken to assure a proper thermal anchoring of the cables. We achieve a 2DES temperature \(T_{2DES} \lesssim 100 \text{ mK} \) for a cryostat base temperature of 75 mK.

The experimental setup is shown schematically in Fig. 1a: A thin constantan film acting as a phonon emitter is placed on the polished back side of the sample. By passing a short current pulse during a time \(\tau_h \) through this heater, non-equilibrium phonon pulses are created at the heater-GaAs interface. They are characterized by a black-body spectrum at a temperature \(T_H = (P_H/\sigma A_H + T_0) \), where \(A_H \) is the heater area, \(P_H \) is the power dissipated in the heater, \(\sigma = 524 \text{ W/m}^2 \text{K}^4 \) is the acoustic mismatch constant between constantan and GaAs, and \(T_0 \) is the GaAs lattice temperature [12]. When entering the GaAs, the non-equilibrium phonons travel ballistically through the 2 mm-thick substrate. Af-
After a certain time (≈ 10 μs), all nonequilibrium phonons induced by the heater are thermalized in the GaAs substrate and the 2DES and the substrate are in thermal equilibrium. This is experimentally measured by a merely changing 2DES temperature. This measured temperature agrees well with the theoretically expected one as deduced from the total energy dissipated in the heater, $P_H T_H$, and the specific heat of the GaAs substrate.

In order to extract quantitative data from our experiments we use a simple model to describe the phonon absorption in the 2DES. In the most general case, the differential temperature gain dT of the 2DES within a time interval dt is given by

$$C(T) dT = r(T, T_H) P_H dt - P_e(T, T_0) dt \quad (1)$$

where $C(T)$ is the 2DES’s specific heat, $r(T, T_H) P_H$ is the phonon energy absorbed by the 2DES with an absorption coefficient r depending on the heater temperature T_H and the 2DES temperature T, and $P_e(T, T_0)$ is the energy emitted by the 2DES, depending on T and the equilibrium substrate temperature T_0. In our experiments we use very short (10 ns) heater pulses with a moderate heater power P_H. Consequently, the peak height of the first ballistic phonon signal peak is dominated by absorption and the emission term can be ignored on these short time scales.

In a first set of experiments, we calibrate the relative specific heat of the 2DES at given fractional filling factor. The maximum 2DES temperature on the first ballistic phonon peak, T_1 (see Fig. 1d), is measured as a function of the 2DES base temperature T_0, with a fixed duration and a constant amplitude of the heater pulse. Since all the T_0 used are distinctively lower than the energy gaps at these filling factors we always deal with a situation where the quasiparticle ground states are almost full and their excitations are almost empty. As a consequence, the relative proportion of phonons absorbed is independent from T_0, and we can approximate $r(T, T_H) \to r_0$. Integrating Eq. (1) over the pulse length with these assumptions, we get:

$$\int_{T_0}^{T_1} C(T) dT = r_0 P_H T_H$$

Using the mean value theorem for this integral equation we can determine the relative specific heat $C(T)/r_0$ of the 2DES from our set of experiments where we measured T_1 for fixed heater power and varying T_0. As a consistency check we performed the same set of experiments with different heater powers and find a very comparable temperature dependence of $C(T)$.

In Fig. 2a the measured relative specific heats, $C(T)/r_0$, are shown exemplarily for filling factors $\nu = 2/3$ and 2/5. We should note that we cannot determine the absolute value of $C(T)$ due to the unknown absorption...
coefficient \(r_0 \) \((0 < r_0 < 1)\). The lines shown in Fig. 2a are fits to the theoretical predictions for the specific heat of a 2DES \(C_{2DES} \propto \frac{1}{T^2} e^{-\Delta c/T} \) [14] plus a small empirical constant, taking into account an additional contribution to \(C(T) \) possibly resulting from a finite (thermodynamic) density of states inside the excitation gap [11].

In a second set of phonon absorption experiments we can now determine the energy gaps at fractional filling factors. This time, the heater temperature \(T_H \) is varied for a fixed base temperature \(T_0 \). By increasing \(T_H \) the number of phonons for every wavelength is increased. Since the major contribution to the phonon absorption is predominantly due to excitations around a gap \(\Delta \), the total energy absorbed by the 2DES increases as

\[
E_{\text{abs}} \propto \frac{1}{\exp(\Delta/T_H)} - 1
\]

The absorbed phonon energy, \(E_{\text{abs}} = r(T, T_H) P_{\text{heat}} \), as a function of \(T_H \) is deduced from the measured \(T_1 \) and \(T_0 \) by integrating Eq. (1) using the previously determined specific heat. Again, the emission term is neglected for the short time scales considered. In Fig. 2b we show results for filling factors \(\nu = 2/3 \) and 2/5. The gap values are obtained by averaging over several experiments using different heater powers and base temperatures. All the individual gaps measured are within \(\pm 10\% \) of the average value. The solid lines in Fig. 2b show fits using Eq. (3) and indeed, the experimental data match a model with phonon excitation across a single energy gap \(\Delta \).

Using such an elaborated series of calibrations we can now investigate in detail the excitation gaps. As listed in Table I, we have measured the gaps for eight different electron concentrations at filling factors \(\nu = 2/3, 2/5, \) and 1/3 up to the highest magnetic fields accessible in our magnet. These filling factors all showed well developed minima for all the concentrations used. Additional filling factors \(\nu = 4/3, 5/3, 3/5 \) and 2/7 are only clearly pronounced for the highest electron concentration and, accordingly, phonon gaps were only measured in sample #8 for these filling fractions.

All gaps measured at various filling factors and electron concentrations are compiled in Fig. 3a. For comparison, we also show the energy gaps deduced from activated transport measurements [17] in Fig. 3b. In order to discuss these results for different filling factors \(\nu \) we describe them within the CF picture [3], where the FQH filling factors \(\nu = \frac{p}{2p+1} \) are mapped to integer CF filling factors \(p \). The energy levels for \(|p| \) filled CF Landau levels can then be written [15] as:

\[
E_{\text{ns}}(p) = (n + \frac{1}{2}) \hbar \omega_c(p) + sg^* \mu_B B
\]
Here the CF cyclotron energy is given purely by the Coulomb interaction and thus follows the form \(h\omega^* = \frac{hcB}{(m^*(2p \pm 1)} \) with a CF mass \(m^* = m_e\alpha\sqrt{B[T]} \) [16].

Since phonons carry no spin we expect that, in a phonon absorption experiment, the lowest lying excitations of a CF state \(p \) are Landau level transitions from \(n \) to \(n+1 \) with the same spin \(s \). The corresponding energy gap \(h\omega^*(p) \) can now be adjusted to our data by one single dimensionless mass parameter \(\alpha \). In Fig. 3 the fits of such Landau level mass transitions to all the data at \(\nu = 1/3, 2/5, 4/7, 3/5, 5/3 \) for eight different electron densities. For all filling factors besides \(\nu = 2/3 \) the measured gaps can be well described in the framework of Landau level transitions of CF involving no spin flip. The gaps measured at \(\nu = 2/3 \), however, correspond to a normally forbidden spin transition, pointing towards a complex not fully polarized ground state.

In conclusion, we have measured phonon excitation gaps in the FQH regime for filling factors \(\nu = 1/3, 2/5, 4/7, 3/5, 2/3, 4/3, \) and \(5/3 \) for eight different electron densities. As a result, we may speculate that the complexity of the \(2/3 \) state is responsible for the appearance of a spin-forbidden transition in the phonon absorption.

We acknowledge financial support by BMBF and DFG priority program “quantum Hall systems”.

TABLE I: Electron concentrations, mobilities and energy gaps measured by phonon absorption at filling factors 2/3, 2/5, and 1/3. When no values are given, the field required was too large to be accessed in our magnet.

<table>
<thead>
<tr>
<th>sample</th>
<th>(n) ([10^{15} \text{ m}^{-2}])</th>
<th>(\mu) ([\text{m}^2/\text{Vs}])</th>
<th>(\Delta) [K] for (\nu = \frac{2}{3})</th>
<th>(\frac{2}{5})</th>
<th>(\frac{1}{3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.89</td>
<td>102</td>
<td>3.2</td>
<td>4.9</td>
<td>9.2</td>
</tr>
<tr>
<td>2</td>
<td>0.95</td>
<td>109</td>
<td>4.1</td>
<td>5.3</td>
<td>8.2</td>
</tr>
<tr>
<td>3</td>
<td>1.03</td>
<td>119</td>
<td>4.5</td>
<td>5.9</td>
<td>8.9</td>
</tr>
<tr>
<td>4</td>
<td>1.13</td>
<td>131</td>
<td>4.8</td>
<td>5.9</td>
<td>8.9</td>
</tr>
<tr>
<td>5</td>
<td>1.21</td>
<td>144</td>
<td>4.9</td>
<td>5.7</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>1.36</td>
<td>168</td>
<td>6.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>1.46</td>
<td>187</td>
<td>6.7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>1.50</td>
<td>193</td>
<td>6.6</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
