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THE WEIERSTRASS-STONE APPROXIMATION THEOREM
- FOR p-ADIC C"-FUNCTIONS

J. Araujo and Wim H. Schikhof

Abstract.

Let K be a non-Archimedean valued field. Then, on compa.ct subsets of K, every K-

valued C™-function can be approxzmated in the C“-t0pology by polynorma.l functions

(Theorem 1. 4) ‘This result is extended to a Welerstrass-Stone type theorem (Theorem
2.10). | |

INTRODUGTION

The non-archimedean version of the classical Weierstrass Approximation Theorem - the
case n =0 of the Abstract - is well known and named after Kaplansky ({1}, 5.28). To
investigate the .case n = 1 first let us return to the Archimedean case and consider a
real-valued C*-function f on the unit interval.-To find a polynomial function P such
that both |f—P| and |f'—P’| are smaller or equal than a prescribed £ > 0 one simply
can a.pply the standard Weierstrass Theorem to f’ obtaining & polynomijal function ¢
for which |f'~Q| < €. Then z — P(z) := f(0) + Jo Q(t)dt solves the problem.

Nowlet f: X — K beaC 1--funct:lon where K is a non-archimedean va.lued field and
XCKis compact

La.clcmg an indefinite integral the above method no longer works. There do exist conti-
nuEUs lmea.r a.ntlderwa.tmns ([3], 864) but they do not map polynomials into polynomials

([3] ‘Ex. 30. C). A further complicating factor is that the natural norm for C'-functions
on X is given by

f s max{|f(z)| : z € X} Vmax{|f(") f(y)l z,y€X, z #y} -
rather than the more classical formula “
. f—max{|f(z):z € X}V max{|f'(z)|:z € X}

(Observe that in the real case both formulas lead to the same norm tha.nks to the Mea.n
Value Theorem, see [3], §5§26,27 for further discussions.)
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Thus, to obtain non-archimedean C™-Weierstrass-Stone Theorems forn € {1,2,...} our
methods will necessarily deviate from the 'classical’ ones. .

0. PRELIMINARIES

1. Throughout K is a non-archimedean complete valued field whose valuation | |is
not trivial. For a € K, r > 0 we write B(a,r) := {z € K : |z—~a| < r}, the "closed’ ball
about a with radius r. 'Clopen’ is an abbreviation for 'closed and open’. The function
z ~ z (z € K) is denoted X. The K-valued characteristic function of a subset Y of
K is written §y. For a set Z, a function f : Z — K and a set W C Z we define
N fllw = sup{|f(2)|: z € W} (allowing the value c0). The cardinality of a set I' is #I.
Np:={0,1,2,...}, N:={1,2,3,...}. ‘

We now recall some facts from [2], {3] on C"-theory. L

2. ForasetY C K,n e N weset V'Y := {(y1,¥2,.--,¥n) € Y™ 1 i#] == yiy;}.
Yor f : Y — K, n € Ny we define its nth difference quotient ®,f : V*HY o K
inductively by ®,f := f and the formula

‘I’n-lf(yu YsyeoosUntl) = Pn1f(¥2,¥3y+ -« 1 Yn+1)

an(ﬁl,*"}yﬂ‘*‘l)# Y1 — Y2

f is called a C™-function if $,f can be extended to a continuous function on Y™ ¥1.
The set of all C*-functions ¥ — K is denoted C*(Y — K). The function f:Y — K

is a C™-function if it is in C°(Y — K) := ﬁ C™(Y ~ K). The space C(Y — K),
* n=0

consisting of all continuous functions ¥ — K is sometimes written as C(Y — K).

FROM NOW ON IN THIS PAPER X IS A NONEMPTY
COMPACT SUBSET OF K WITHOUT ISOLATED POINTS.

3. Since X has no isolated points we have for an f € C*(X — K) that the continuous
extension of ¢, f to X™*?! is unique; we denote this extension by @, f. Also we write

D.f(a) = ®,f(a,a,...,a) (a€X)
The following facts are proved in (2] and (3].

Proposition 0.3,
(i) For each n € Ny the space C*(X — K) 1s a K-algedra under pointwise operations.
(i) CHX - K)DCH{X - K)D...
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(ili) If f € C™(X — K) then f is n times diﬁercntiab_le and. j!D; f = fU) for each § €
| {0, 1,...,n}. More generally, if 1,5 € {Q,l,...,n}, i+j < n then (‘T’)D;Djf =
l+Jf | |

(iv) If f € C"(X — K} thcn for z,y € X we have Taylor’s formula

f(z) = f(y) + (w-y)sz (4) + -+ + (2=y)"" D1 fly) + (z=3)" 21 f(=, ¥),
where plf(xv y) - Eﬂf(zw y;yv vouy y)-

4. Since X is compact the difference quotients ®;f (0 €1 £ n) are bounded if f €
C*'(X — K). We set

11l X = ma.x{"d»,f"v,“x 0<1< n}

Then ||fllo x = lIfllx- We quote the following from [2] and [3]. Reca]l that a function
f: X — K is a local polynomial if for every a € X there is & nelghbourhood Uofa

such that f | X N U is a polynomial function. -

Proposition 0.4. Let n € Nj.

(1) The function | ||, x 13 ¢ norm on C™(X - K) making it into ¢ K-Banach
algebra.

(ii) The local polynomials form a dense subset of C*(X — K )
(i11) The furciion
frelf ”n X3 NP fllx lpsfllxa

(see Proms:t:on 0 3 (w)) a[.so is a norm on C"‘(X ~ K). We have

0<<

1f]

NS

ax =max{||Dif;_;x :0<i<n} (f€CHX - K)).

Remarks
1. Proposition 0.4 (ii) wﬂl also follow from ‘Proposition 2.8.
2. In general || ||, y is not equivalent to || ||, x for n 2> 3 (see (3], Example 83.2).

1
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1 THE WEIERSTRASS THEOREM FOR C®-FUNCTIONS
The following ﬁrodiict rule for difference quotients is eaéil}; proved by induction with
respect to 7.

Let f,g: X — K, let j € Ng. Then for all (zy,...,zi41) € V7*1 X we have

@j(fg)(l'l,- A ,Z’j+1) = Z ékf(xla*' . $3k+l)q’j—kg(zk+h XK :zj'\l-l)‘
=0 |

Or, less precise,

J
@J(fg)(xh so ey a:j'l"l) = Z Qkf(zk)(rjwkg(uj—k)
k=0

for certain z; € VF*IX, u;_, € VI7F1X,

In the sequel we need an extension of this formula to finite products of functions. The
proof is straightforward by induction with respect to N.

Lemma 1.1. (Product Rule) Let hy,...,hn : X — K, let j € No. Then for all
(.'1:1,. .o ,IJ‘+1) = V-’“"U{ we have

N N
@j(H h,)(ml, ‘n ,2‘:3'_4.1) = Z H ‘I’j‘h,(z,,,)

s=1 s=]

where the sum is taken over all g.:= (j1,...,JN) € N for which jy +++ +jn = ]
and where 2,, € V-""“X‘ for each s € {1,...,N}. (In fact, 2,1 = (Z1,...,%j;4+1),
20,2 = (Tji 4151 Tjrkiak1)s e ey TN = (Tjidetinoy+r oo Tj1)-) o

The following key lemma grew out of [1], 5.28.

Lemmma 1.2. Let0<b6<1,0<e<1,letB=ByUB,U"--+U By, where By,...,Bn,
are pasrwise disjoint ’closed’ balls in K of radius §, Then, for each n € {0,1,...} there
ezists o polynomiel funciion P: K — K such that |[|[P - €g,|ln.B L €.

Proof. We may assume 0 € By. Choose ¢; € B,,...,6m € Bn; we may assume that
ley| € Jez| € +++ £ |em|. Then § < |c;|. We shall prove the following statement by

induction with respect to n.

Let k € N be such that (§/|c l)“ < ed™, k> n. Let t1,t3,...,tm € N be such that for
all? € {1,...,m}

kty ks

kte—1 te
(1) A 4 O (-f-) < e
cy €2 Ce-1 e |
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(It is easily seen that such k, ¢;,...,t, exist since §/|c;| < 1.) Then the formula -

P(z)=[](1- (f—:}*)"
=] '

defines a polynomial function P : K — K for which ‘

”P - EBo"ﬂ,B <E.

The case n = 0 is proved in [1], 5.28. To prove the step n — 1 — n we first observe that
from the induction hypothesis (with € replaced by €6) it follows that

(2) |P = €Bylln-1,5 < €6

)

So it remains to be shown that ..

(3) I‘I’u(P - £Bn)(31: ¢ o ,In+1)| S £

for all (z1,...,2Zn41) € VP B Now, if |z; - z;| > 6 for some i,5 € {1,...,n'+ 1} we
have, using (2), |

[ @n(P=€B, (%111 Tna1)] = |Zi=2j] 7 | Pna1 (P=E€B J(T1y -+ 1 Tjm11 T b1+ s Trckl )~
Pr1(P = €8, )(T1,+ 00y Tic1y Tig1yeeey Tnt1 )] S §~1 .66 = e. So this reduces the proof
of (3) to the case where |z; ~z;[ < fforalli,j € {1,...,n+1}; in other words we may
assume that z;,...,Zp4; are all in the same B, for some £ € {0,1,...,m}. But then,
after observing that n > 1, we have ®,£p,(21,...,Zn+1) = 0 so it suffices to prove the

following.
ffe {0,1,...,m} and z1,...,Zn41 € By are pairwise distinct then

(4) I(I)RP(mls“*’zn-i-l)I ..<... &

To prove it we introduce, with £ € {1,...,m} fixed, the constants M; (i € {1,...,n})

by
1 if1 > ¢
M= 6fley] HHi={
lee/eil* ifi< il

and use the following three steps.
Step 1. For each j € {0,1,...,n},7 € {1,...,n} we have

1 . #€=0,7=0

Xk -5r 8 \k : :
|2;(1~(=)%)l < 6 ()t if€=0,j>0
Tl Teina, 6"'1'1\].;? « i €> 0.

65
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Proof. .
a. The case 1 = 0. Then for z € B, we have
-if : > £ then |1—(f-':)“|zl
-if i = ¢ then |1 - (£)¥ = |92} < b <
-if ¢ < £ then |1 — (f—)"l = ]f—:l" — [-gflk
and the statement follows.
b. The case ;7 > 0. Then ¢;(1) = 0 so that

S 1= (50 =

Let (z1,...,Z2j+1) € V/*1B,, By the Product Rule 1.1, &;(X*)(z1,...,Tj+1) i8
k
a sum of terms of the form [](®; & )(z,). Such a term is 0 if one of the j, is

s=21 . o

> 1, so we only have to deal with j, = 0 (then ;A = &) or j, = 1 (then
k

$; & = 1). The latter case occurs j times (as ) j, = j) and it follows that

=1

k
IJI(Q ;.4 )(2,) is a product of k—j distinct terms taken from {zy,...,Z;41} (observe

that, indeed, j < k since j < n < k), so its absolute value is < |¢|*=7. It follows
that [|®;(1 — (£)*)les+18, < lce|*~7/]ci|* from which we conclude
-if 8= 0: ee|*™T /eil* < 6577 /|es|* = 677(8/]er ),
i8>0 e i |eilF < el < 67T = 67T M,
i i =8> 0 eI leil* < o] ey | = 87i(FRY < 67IM,
-1 <l |c£|k-j/|c,'[k < ch“j[%?lk < 6§~ M;
and step 1 is proved.

Step 2. For each j € {0,1,...,n},t1€ {1,...,n} we have

§=i(r) ie=0,7>0

1 f=0,5=0
{6*‘1'Mi"' if€>0

X . |
[®;(1 - (E}')k)” |vi+r1B, S

Proof. The case j = 0 follows directly from Step 1, part a, so assume ;7 > 0. By
the Product Rule 1.1 applied to A, = 1 — (-;_;"-f-)" for all s € {1,....t;} we have for
(Z1y+e-,Tj41) € VIT1B, that &;(1 - (%)")“(31,...,2;4.1) is a sum of terms of the
form

(5 T e (e
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where j; +---+ J, = 7. If £ =0 it follows from Step 1 that the absolute value of (5) is
<T]é6 )" where the product is taken over all s in the nonempty set I' :=

{s € {1,.. t i} : 7s > 0}, so the product is < 6"1(]—-[)" #I < 5"'-’(]——[)" Ifé>0it |

follows from Step 1 that the absolute value of (5) is < H §I M; =67 IM].

=]

The statement of Step 2 follows.

Step 3. Proof of (4). Again, the Product Rule 1.1, now applied to h; =
(1 —(£)*)% fori € {1,...,m} tells us that for (2y,...,2Zn41) € V" B the expression
d P(a:l, .y Tn+1) 18 a sum of terms of the form

©) [Jon(- (MG

j=1

where ny + ++++ n,m = n. If £ =0 we have by Step 2 that the absolute value of (6) is
S § (-I—-[)" where the product is taken over i in the nonempty set I := {: : n; # 0},
so the product is < 6~ "(T—T)" #l < 6"‘(1—[)" §~" . g6™ =€, where we used the
assumption (§/]c1|)* < £6™. We see that |®,P(z1,...,Zn+1)| S € if (21,...,2Zn) € Bh.

m
Now let £ > 0. By Step 2 we have that the absolute value of (6) is < [] 6™ M;* =

1=l

S~ M. Mim = 6""e|-§f|“1 3 Pvers |“‘( )% which is < §7"¢6" by (1). This proves
(4) and the Lemma.

Corollary 1.3. For every locally constant f : X — K, for everyn € Ng and e > 0
there ezists a polynomial function P: K — K such that ||f — Pl|a,x <e&.

Proof. There exist a § € (0,1), pairwise disjoint 'closed’ balls By,..., By of radius ¢
covering X and A;,...,An € K such that

flz)=> Aip(z) (z€X)
i=1
By Lemma 1.2 there exist polynomials P,..., Pn such that |5, = Pilla, x £
€8, — Pilln.us: < €(JAi] + 1)~ for each i € {1,...,m}. Then P := Y " A\P;isa

polynomial function and ||f—-P||,,,x < max|{|A;(€p, — P)llnx < max|A;le(JA;i]|+ 1)""1 <
2 |
E.

Theorem 1.4. (C™®-Weierstrass Theorem) For eachn € Ng, f € C*(X — K) and
e > 0 there ezists a polynomial function P: K — K such that ||f = Pllax S €.

Proof. There is by Proposxtxon 0.4 a local polynomial ¢ : K ~ K with ||f ~glla,x S &
This ¢ has the form ¢ = Z Q;:h; where Qq,.. ,Qm are polynoxma.ls and hy,..., Am

=1

67
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are locally constant. By Corollary 1.3 we can find polynomials P, ..., P, for which
|hi = Pilln,x < €(||Qilln;x + 1)~ for each i. Then P:= Y Q;P; is a polynomial and

t1=2]

lg = Plln,x < e. It follows that ||f — Plla x < max(||f — g|la,x,]lg = Plln,x) < &.

Remarks.

1. In the case where X =7,, K D Q, the above Theorem 1.4 is not new: The Mahler
base e, e3,... of C(Z, — K) defined by en(z) = (%) is proved in (3], §54 to be a
Schauder base for C*(Z, — K), for each n.

2. It follows directly from Theorem 1.4 that the polynomial functions X — K form a
dense subset of C*°(X — K).

2. A WEIERSTRASS-STONE THEOREM FOR C"-FUNCTIONS

For this Theorem (2.10) we will need the continuity of g — g o f in the C"-topologies

(Proposition 2.5). To prove it we need some technical lemmas that are in the spirit of
131,877. |

Let n € N. For a function & : V*X — K we define Ah: V* X — K by the formula

h(Z1,23,T4y000yTn+1) — (T2, T340, Tn+1)

Ah(xl,mg,...,znﬂ)x Z1 — T2

We have the following product rule.

Lemma 2.1. (Product Rule), Letn € N, let h,t : V*'X — K. Then for all
(21,22,++ ., Zn+1) € VPTLX we have A(ht)(21,22,...,2p41) =

h(:‘rz, L3yeeo xn+1)At(x1, T2yaeny, $n+1) -+ t(:L’l, T3gency $u+1)Ah($1, L2y¢ee43¥n+41 ).
Proof, Straightforward.

Lemma 2.2. Let f: X — K, n € Ng. Let S, be the set of the following functions
defined on V"'f'lX.

(21,...sTn41) = @1 f(2i,, 24, ) (1€i1<128n+1)
(3:1:'*' 55’571-}-1) = ¢2f(zfuzf::$fa) (1 <1 <1t2 <13 <1+ 1)

(Z1y.- 2 Zag1) = Baf(Z1,. .y Zny1).

For k € N, let RS be the additive group generated by S,,S2,...,5% where, for each
j € {1,...,k}, S is the product set {hlhg...hj : hy € S, for each i € {1,,3}}
Then, for all'k,n € N, AR C RE_,. |
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Proof. We use induction with respect to k. For the case ¥ = 1 it suffices to prove
h € Sp = Ah € R, ;. Then h has the form

(-’1?1,.“,33,;-}-1)"‘* (bjf(miuxi:v"’xijq.;)
for some ;7 € {2,3,...,n+ 1} and so

h(zls L3, - xn+2) — h(Ig, R TEER 1mﬂ+2)
X1 — I

vanishes if 1; > 1 (and then AhA'1 18 the null functlon) while if #; = 1 it equals

Ah(&'l,&'z, $n+1) —

D; f(z15313+1, 33!+1+1) ‘bjf(321313+1; ¢ 5$l,+1+1)

{1 - I9

- ‘I’j+1f($1, L2y Tighrlye e ,-$£;+1+1) |
and it follows that Ak € Sp41 C Rn-H. For the induction step assume AR~ C Rﬁ:ll;
1t suffices to prove that AS" C Rn+‘1 So'let h € S and write h = hy H, where hy € Sh,
H € S5-1, By the Product Rule 2.1 we have

Ah(z1,...,Zns2) = h1(T2,73,. .., Tn42)AH(21,72,. .., Znt2)+

+ H($1, T3yeery zn+2)Ah1(31332, vo- ,3n+2)'

The fact that h; € S,; makes

(21,22, .+, Tns2) = h1(21, 23, . o, Tnta)
into an element of S,4;. Similarly, since H € S,’:""', the function

(mh TRy amn+2) = H(ﬂig, ¢ PR ,$n+2)

1S in .S’,f;'_'i By our first induction step, Ahy € R, and by the induction hypothesis

AH € Ry7]. Hence,

Ah €Sn41 Rﬁ;{ + Spr1 B
C R LRI+ RIRL L C Rpyi.

Lemma 2.3. Let f n,Sa, k, Ry be as in the previous lemma. Let f(X) CY C K where
Y has no isolated points. Let g: Y — K be a C™-function. Let B, be the set of the
following functions defined on V1 X,

(21, ., Zap1) — Bag(f(2i), f(zi)) (1< <ig<n+1)
(21,- s Tag1) = Bag(f(2iy), f(zi,), f(21,)) (1S <iz<iz3<n+1)

(311"‘ '?)zn-l-l) = ang(f(xl)if(z‘z_), “ e ,f(zn.,.l)).
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Let A, be the additive group generated by B,R*. Then

AAn C An+1.

Proof. We prove: h € BoR! = Ah € Ap4,. Write h = br where b € B,, r € R}, By
the Product Rule 2.1 we have for all (z1,Z2,...,Zn42) € V72X

Ah(z1,22,...,Tnt2) = (22,23, ..., Tnt2)Ar(21, T2, . ., Tnt2)+

+ T(:L’l, 7k PRI ,:Bn.}.z)Ab(Il, L2500 ,$n+2).

We have:
(1) 8 € By 50 (Z1,...,Zn+2) — b(22,23,...,Zp+1) is in Bpy.
(ii) 7 € R? 50 (T1,...yTnt2) > 7(T1,23,...,Tn42) 18 in Ry, (in the previous proot
-:we had r € S* = the map (2y,..., Znsz) = (Z1,T3,...,Tns1) is in S5, and (ii)
follows from this). a |
(iit) r € R} so Ar € Ry, (Previous Lemma).
(iv) b has the form

(21, 225+ ¢y Tnt1) H&;,-g(f(z;l),.. "f(zij-}-l))
for some 5 € {2,...,n+ 1} and so

Ab($1,$2,-n1zn+2):’: Iy — T2

vanishes if i3 > 1 (and then Ab is the null function), while if ¢ = 1 it equals

®;9(f(z1), F(@ig+1), - F(@ijpu41)) = Rig(f(22), f(Zigr)s - -, F(&5) a1 41))

Iy — I2

= %119 (f(21), f(22), f(Ziz1)s -1 f(@i;4141)) B2 f (21, 22).

(if f(z1) = f(z2) we have 0 at both sides). So we see that Ab € Bny1 R} ;.
Combining (i) - (iv) we get Ah € Bpy1 Ry + R:+an+1R},+1 C Bﬂ+1Rzii + Bat1
Rfr:j:i C Anty.

Corollary 2.4. With the notations as in the previous lemma we have $,(g9 o f) € Ay
(n € N).

Proof. We proceed by induction on n. For the case n = 1 we write, for (z;,z3) € VX,

®1(g0 f)z1,22) = (21~ 22)™" (9(f(-‘51)) “g(f(xz))) = @19(f(z1), f(x2)) 1 f(21,22).















