THE WEIERSTRASS-STONE APPROXIMATION THEOREM
FOR p-ADIC C^n-FUNCTIONS

J. Araujo and Wim H. Schikhof

Abstract.
Let K be a non-Archimedean valued field. Then, on compact subsets of K, every K-valued C^n-function can be approximated in the C^n-topology by polynomial functions (Theorem 1.4). This result is extended to a Weierstrass-Stone type theorem (Theorem 2.10).

INTRODUCTION
The non-archimedean version of the classical Weierstrass Approximation Theorem - the case $n = 0$ of the Abstract - is well known and named after Kaplansky ([1], 5.28). To investigate the case $n = 1$ first let us return to the Archimedean case and consider a real-valued C^1-function f on the unit interval. To find a polynomial function P such that both $|f-P|$ and $|f'-P'|$ are smaller or equal than a prescribed $\varepsilon > 0$ one simply can apply the standard Weierstrass Theorem to f obtaining a polynomial function Q for which $|f'-Q| \leq \varepsilon$. Then $x \mapsto P(x) := f(0) + \int_0^x Q(t)dt$ solves the problem.

Now let $f : X \to K$ be a C^1-function where K is a non-archimedean valued field and $X \subseteq K$ is compact.

Lacking an indefinite integral the above method no longer works. There do exist continuous linear antiderivations ([3], §64) but they do not map polynomials into polynomials ([3], Ex. 30.C). A further complicating factor is that the natural norm for C^1-functions on X is given by

$$f \mapsto \max\{|f(x)| : x \in X\} \vee \max\{|f(x) - f(y)| : x, y \in X, x \neq y\}$$

rather than the more classical formula

$$f \mapsto \max\{|f(x) : x \in X\} \vee \max\{|f'(x)| : x \in X\}.$$

(Observe that in the real case both formulas lead to the same norm thanks to the Mean Value Theorem, see [3], §§26,27 for further discussions.)
Thus, to obtain non-archimedean C^n-Weierstrass-Stone Theorems for $n \in \{1, 2, \ldots\}$ our methods will necessarily deviate from the 'classical' ones.

0. PRELIMINARIES

1. Throughout K is a non-archimedean complete valued field whose valuation $| \cdot |$ is not trivial. For $a \in K$, $r > 0$ we write $B(a, r) := \{x \in K : |x-a| \leq r\}$, the 'closed' ball about a with radius r. 'Clopen' is an abbreviation for 'closed and open'. The function $x \mapsto x$ ($x \in K$) is denoted \mathcal{X}. The K-valued characteristic function of a subset Y of K is written ζ_Y. For a set Z, a function $f : Z \rightarrow K$ and a set $W \subset Z$ we define $\|f\|_W := \sup\{|f(x)| : x \in W\}$ (allowing the value ∞). The cardinality of a set Γ is $\#\Gamma$. $N_0 := \{0, 1, 2, \ldots\}$, $N := \{1, 2, 3, \ldots\}$.

We now recall some facts from [2], [3] on C^n-theory.

2. For a set $Y \subset K$, $n \in N$ we set $\nabla^n Y := \{(y_1, y_2, \ldots, y_n) \in Y^n : i \neq j \Rightarrow y_i \neq y_j\}$. For $f : Y \rightarrow K$, $n \in N_0$ we define its nth difference quotient $\Phi_n f : \nabla^{n+1} Y \rightarrow K$ inductively by $\Phi_0 f := f$ and the formula

$$\Phi_n f(y_1, \ldots, y_{n+1}) = \frac{\Phi_{n-1} f(y_1, y_3, \ldots, y_{n+1}) - \Phi_{n-1} f(y_2, y_3, \ldots, y_{n+1})}{y_1 - y_2}$$

f is called a C^n-function if $\Phi_n f$ can be extended to a continuous function on Y^{n+1}. The set of all C^n-functions $Y \rightarrow K$ is denoted $C^n(Y \rightarrow K)$. The function $f : Y \rightarrow K$ is a C^∞-function if it is in $C^\infty(Y \rightarrow K) := \bigcap_{n=0}^{\infty} C^n(Y \rightarrow K)$. The space $C^0(Y \rightarrow K)$, consisting of all continuous functions $Y \rightarrow K$ is sometimes written as $C(Y \rightarrow K)$.

FROM NOW ON IN THIS PAPER X IS A NONEMPTY COMPACT SUBSET OF K WITHOUT ISOLATED POINTS.

3. Since X has no isolated points we have for an $f \in C^n(X \rightarrow K)$ that the continuous extension of $\Phi_n f$ to X^{n+1} is unique; we denote this extension by $\overline{\Phi}_n f$. Also we write

$$D_n f(a) := \overline{\Phi}_n f(a, a, \ldots, a) \quad (a \in X)$$

The following facts are proved in [2] and [3].

Proposition 0.3.

(i) For each $n \in N_0$ the space $C^n(X \rightarrow K)$ is a K-algebra under pointwise operations.

(ii) $C^0(X \rightarrow K) \supset C^1(X \rightarrow K) \supset \ldots$
(iii) If \(f \in C^n(X \to K) \) then \(f \) is \(n \) times differentiable and \(j!D_jf = f^{(j)} \) for each \(j \in \{0,1,\ldots,n\} \). More generally, if \(i,j \in \{0,1,\ldots,n\} \), \(i+j \leq n \) then \((i+j)!D_iD_jf = D_{i+j}f\).

(iv) If \(f \in C^n(X \to K) \) then for \(x,y \in X \) we have Taylor's formula

\[
f(x) = f(y) + (x-y)D_if(y) + \cdots + (x-y)^{n-1}D_{n-1}f(y) + (x-y)^n\rho_1f(x,y),
\]

where \(\rho_1f(x,y) = \Phi_n f(x,y,y,\ldots,y) \).

4. Since \(X \) is compact the difference quotients \(\Phi_if \) \((0 \leq i \leq n) \) are bounded if \(f \in C^n(X \to K) \). We set

\[
\|f\|_{n,X} := \max\{\|\Phi_if\|_{\nu+i+1,X} : 0 \leq i \leq n\}.
\]

Then \(\|f\|_{0,X} = \|f\|_X \). We quote the following from [2] and [3]. Recall that a function \(f : X \to K \) is a local polynomial if for every \(a \in X \) there is a neighbourhood \(U \) of \(a \) such that \(f | X \cap U \) is a polynomial function.

Proposition 0.4. Let \(n \in \mathbb{N}_0 \).

(i) The function \(\|\|_{n,X} \) is a norm on \(C^n(X \to K) \) making it into a \(K \)-Banach algebra.

(ii) The local polynomials form a dense subset of \(C^n(X \to K) \).

(iii) The function

\[
f \mapsto \|f\|_{n,X} := \max_{0 \leq i \leq n-1} \|D_i f\|_X \vee \|\rho_1 f\|_{X^2}
\]

(see Proposition 0.3 (iv)) also is a norm on \(C^n(X \to K) \). We have

\[
\|f\|_{n,X} = \max\{\|D_i f\|_{n-i,X} : 0 \leq i \leq n\} \quad (f \in C^n(X \to K)).
\]

Remarks

1. Proposition 0.4 (ii) will also follow from Proposition 2.8.

2. In general \(\|\|_{n,X} \) is not equivalent to \(\|\|_{n,X} \) for \(n \geq 3 \) (see [3], Example 83.2).
THE WEIERSTRASS THEOREM FOR C^2-FUNCTIONS

The following product rule for difference quotients is easily proved by induction with respect to j.

Let $f, g : X \to K$, let $j \in \mathbb{N}_0$. Then for all $(x_1, \ldots, x_{j+1}) \in \nabla^{j+1}X$ we have

$$\Phi_j(fg)(x_1, \ldots, x_{j+1}) = \sum_{k=0}^{j} \Phi_k f(x_1, \ldots, x_{k+1}) \Phi_{j-k} g(x_{k+1}, \ldots, x_{j+1}).$$

Or, less precise,

$$\Phi_j(fg)(x_1, \ldots, x_{j+1}) = \sum_{k=0}^{j} \Phi_k f(x_k) \Phi_{j-k} g(u_{j-k})$$

for certain $z_k \in \nabla^{k+1}X$, $u_{j-k} \in \nabla^{j-k+1}X$.

In the sequel we need an extension of this formula to finite products of functions. The proof is straightforward by induction with respect to N.

Lemma 1.1. (Product Rule) Let $h_1, \ldots, h_N : X \to K$, let $j \in \mathbb{N}_0$. Then for all $(x_1, \ldots, x_{j+1}) \in \nabla^{j+1}X$ we have

$$\Phi_j \left(\prod_{s=1}^{N} h_s \right)(x_1, \ldots, x_{j+1}) = \sum_{\sigma} \prod_{s=1}^{N} \Phi_{j_{\sigma,s}}(z_{\sigma,s})$$

where the sum is taken over all $\sigma := (j_1, \ldots, j_N) \in \mathbb{N}_0^N$ for which $j_1 + \cdots + j_N = j$ and where $z_{\sigma,s} \in \nabla^{j_{\sigma,s}}X$ for each $s \in \{1, \ldots, N\}$. (In fact, $z_{\sigma,1} = (x_1, \ldots, x_{j_1+1})$, $z_{\sigma,2} = (x_{j_1+1}, \ldots, x_{j_1+j_2+1}), \ldots, z_{\sigma,N} = (x_{j_1+\cdots+j_{N-1}+1}, \ldots, x_{j+1})$.

The following key lemma grew out of [1], 5.28.

Lemma 1.2. Let $0 < \delta < 1$, $0 < \varepsilon < 1$, let $B = B_0 \cup B_1 \cup \cdots \cup B_m$ where B_0, \ldots, B_m are pairwise disjoint 'closed' balls in K of radius δ. Then, for each $n \in \{0, 1, \ldots\}$ there exists a polynomial function $P : K \to K$ such that $\|P - \xi_{B_0}\|_{n,B} \leq \varepsilon$.

Proof. We may assume $0 \in B_0$. Choose $c_1 \in B_1, \ldots, c_m \in B_m$; we may assume that $|c_1| \leq |c_2| \leq \cdots \leq |c_m|$. Then $\delta < |c_1|$. We shall prove the following statement by induction with respect to n.

Let $k \in \mathbb{N}$ be such that $(\delta/|c_1|)^k \leq \varepsilon \delta^n$, $k > n$. Let $t_1, t_2, \ldots, t_m \in \mathbb{N}$ be such that for all $\ell \in \{1, \ldots, m\}$

$$\left| \begin{array}{cc|cc|cc|cc|cc} c_{t_1} & c_{t_2} & \cdots & c_{t_{\ell-1}} & (\frac{\delta}{|c_1|})^{t_{\ell}} & \leq \varepsilon \delta^n \end{array} \right|$$
(It is easily seen that such \(k, t_1, \ldots, t_m \) exist since \(\delta/|c_1| < 1 \).) Then the formula
\[
P(x) = \prod_{i=1}^{m} \left(1 - \left(\frac{x}{c_i} \right)^k t_i \right)
\]
defines a polynomial function \(P : K \to K \) for which
\[
\|P - \xi_{B_\delta}\|_{n,B} \leq \varepsilon.
\]
The case \(n = 0 \) is proved in [1], 5.28. To prove the step \(n \to n + 1 \) we first observe that from the induction hypothesis (with \(\varepsilon \) replaced by \(\varepsilon \delta \)) it follows that
\[
\|P - \xi_{B_\delta}\|_{n-1,B} \leq \varepsilon \delta
\]
So it remains to be shown that
\[
\|P - \xi_{B_\delta}\|_{n+1,B} \leq \varepsilon
\]
for all \((x_1, \ldots, x_{n+1}) \in \nabla^{n+1} B\). Now, if \(|x_i - x_j| > \delta \) for some \(i, j \in \{1, \ldots, n+1\} \) we have, using (2),
\[
\|\Phi_{n}(P - \xi_{B_\delta})(x_1, \ldots, x_{n+1})\|_{n+1} = |x_i - x_j|^{-1} \|\Phi_{n-1}(P - \xi_{B_\delta})(x_1, \ldots, x_{i-1}, x_{j+1}, \ldots, x_{n+1}) - \Phi_{n-1}(P - \xi_{B_\delta})(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1})| \leq \delta^{-1} \varepsilon \delta = \varepsilon.
\]
So this reduces the proof of (3) to the case where \(|x_i - x_j| \leq \delta \) for all \(i, j \in \{1, \ldots, n+1\} \); in other words we may assume that \(x_1, \ldots, x_{n+1} \) are all in the same \(B_\ell \) for some \(\ell \in \{0,1,\ldots,m\} \). But then, after observing that \(n \geq 1 \), we have \(\Phi_{n}\xi_{B_\delta}(x_1, \ldots, x_{n+1}) = 0 \) so it suffices to prove the following.
If \(\ell \in \{0,1,\ldots,m\} \) and \(x_1, \ldots, x_{n+1} \in B_\ell \) are pairwise distinct then
\[
\|\Phi_{n} P(x_1, \ldots, x_{n+1})\| \leq \varepsilon
\]
To prove it we introduce, with \(\ell \in \{1, \ldots, m\} \) fixed, the constants \(M_i \) (\(i \in \{1, \ldots, n\} \)) by
\[
M_i := \begin{cases}
1 & \text{if } i > \ell \\
\delta/|c_1| & \text{if } i = \ell \\
|c_i/c_1|^k & \text{if } i < \ell
\end{cases}
\]
and use the following three steps.

Step 1. For each \(j \in \{0,1,\ldots,n\}, \ell \in \{1, \ldots, n\} \) we have
\[
\|\Phi_{j}(1 - \left(\frac{\delta}{c_i} \right)^k)\|_{\nabla^{j+1} B_\ell} \leq \begin{cases}
1 & \text{if } \ell = 0, j = 0 \\
\delta^{-j} (\frac{\delta}{|c_1|})^k & \text{if } \ell = 0, j > 0 \\
\delta^{-j} M_i & \text{if } \ell > 0.
\end{cases}
\]
Proof.
a. The case \(j = 0 \). Then for \(x \in B_\ell \) we have
- if \(i > \ell \) then \(|1 - (\frac{x}{ci})^k| = 1\)
- if \(i = \ell \) then \(|1 - (\frac{x}{ci})^k| = \frac{c_i - x}{c_i}^k \leq \frac{\delta^k}{|c_i|^k} \leq \frac{\delta}{|c_i|}\)
- if \(i < \ell \) then \(|1 - (\frac{x}{ci})^k| = \frac{|x|^k}{|c_i|^k} = \frac{c_i^k}{|c_i|^k}\)
and the statement follows.
b. The case \(j > 0 \). Then \(\Phi_j(1) = 0 \) so that

\[\Phi_j(1 - \left(\frac{x}{c_i}\right)^k) = \frac{1}{c_i^k} \Phi_j(x^k) \]

Let \((x_1, \ldots, x_{j+1}) \in \nabla^{j+1}B_\ell\). By the Product Rule 1.1, \(\Phi_j(x^k)(x_1, \ldots, x_{j+1}) \) is a sum of terms of the form \(\prod_{s=1}^{k} (\Phi_{j_s}x)(z_s) \). Such a term is 0 if one of the \(j_s \) is > 1, so we only have to deal with \(j_s = 0 \) (then \(\Phi_{j_s}x = x \)) or \(j_s = 1 \) (then \(\Phi_{j_s}x = 1 \)). The latter case occurs \(j \) times (as \(\sum j_s = j \)) and it follows that

\[\prod_{s=1}^{k} (\Phi_{j_s}x)(z_s) \]

is a product of \(k-j \) distinct terms taken from \(\{x_1, \ldots, x_{j+1}\} \) (observe that, indeed, \(j < k \) since \(j \leq n < k \)), so its absolute value is \(\leq |c_\ell|^{k-j} \). It follows that \(\|\Phi_j(1 - \left(\frac{x}{c_i}\right)^k)\|_{\nabla^{j+1}B_\ell} \leq |c_\ell|^{k-j}/|c_i|^k \) from which we conclude
- if \(\ell = 0 \): \(|c_\ell|^{k-j}/|c_i|^k \leq \delta^{k-j}/|c_i|^k = \delta^{k-j}(|\delta/c_i|^k) \)
- if \(i > \ell > 0 \): \(|c_i|^{k-j}/|c_i|^k \leq |c_\ell|^{k-j} < \delta^{k-j} = \delta^{k-j}M_i \)
- if \(i = \ell > 0 \): \(|c_i|^{k-j}/|c_i|^k \leq |c_\ell|^{k-j} \leq |c_\ell|^{k-j} = \delta^{k-j}(|c_i|^k) \leq \delta^{k-j}M_i \)
- if \(i < \ell \): \(|c_i|^{k-j}/|c_i|^k \leq |c_\ell|^{k-j} \leq |c_\ell|^{k-j} \leq \delta^{k-j}M_i \)

and step 1 is proved.

Step 2. For each \(j \in \{0, 1, \ldots, n\} \), \(i \in \{1, \ldots, n\} \) we have

\[\|\Phi_j(1 - \left(\frac{x}{c_i}\right)^k)t_i\|_{\nabla^{j+1}B_\ell} \leq \begin{cases} 1 & \text{if } \ell = 0, j = 0 \\ \delta^{j-i}(|\delta/c_i|^k) & \text{if } \ell = 0, j > 0 \\ \delta^{k-j}M_i^{k-i} & \text{if } \ell > 0 \end{cases} \]

Proof. The case \(j = 0 \) follows directly from Step 1, part a, so assume \(j > 0 \). By the Product Rule 1.1 applied to \(h_s = 1 - \left(\frac{x}{c_i}\right)^k \) for all \(s \in \{1, \ldots, t_i\} \) we have for \((x_1, \ldots, x_{j+1}) \in \nabla^{j+1}B_\ell\) that \(\Phi_j(1 - \left(\frac{x}{c_i}\right)^k)t_i(x_1, \ldots, x_{j+1}) \) is a sum of terms of the form

(5) \[\prod_{s=1}^{t_i} \Phi_{j_s}(1 - \left(\frac{x}{c_i}\right)^k)(z_s) \]
where $j_1 + \cdots + j_s = j$. If $\ell = 0$ it follows from Step 1 that the absolute value of (5) is
\[\prod_{s=1}^{t_1} \delta^{-j_s}(\frac{\delta}{|c_i|})^{k_s} \]
where the product is taken over all s in the nonempty set $\Gamma_1 := \{s \in \{1, \ldots, t_1\} : j_s > 0\}$, so the product is
\[\delta^{-j}(\frac{\delta}{|c_i|})^{k_1} \leq \delta^{-j}(\frac{\delta}{|c_i|})^{k} \]
if $\ell > 0$ it follows from Step 1 that the absolute value of (5) is
\[\prod_{s=1}^{t_1} \delta^{-j_s}M_i = \delta^{-jM_i} \]
The statement of Step 2 follows.

Step 3. Proof of (4). Again, the Product Rule 1.1, now applied to
\[h_i = (1 - (\frac{x_i}{c_i}))^{k_i} \]
for $i \in \{1, \ldots, m\}$ tells us that for $(x_1, \ldots, x_{n+1}) \in \nabla^{n+1}B_\ell$ the expression
\[\Phi_nP(x_1, \ldots, x_{n+1}) \]
is a sum of terms of the form
\[\prod_{i=1}^{m} \Phi_{n_i}(1 - (\frac{x_i}{c_i}))^{k_i}(x_s) \]
where $n_1 + \cdots + n_m = n$. If $\ell = 0$ we have by Step 2 that the absolute value of (6) is
\[\prod_{i=1}^{m} \delta^{-n_i}(\frac{\delta}{|c_i|})^{k_i} \]
where the product is taken over i in the nonempty set $\Gamma := \{i : n_i \neq 0\}$, so the product is
\[\delta^{-n}(\frac{\delta}{|c_i|})^{k} \leq \delta^{-n}(\frac{\delta}{|c_i|})^{k} \leq \delta^{-n} \cdot \epsilon \delta^n = \epsilon, \]
where we used the assumption $(\delta/|c_i|)^{k} \leq \epsilon \delta^n$. We see that $|\Phi_nP(x_1, \ldots, x_{n+1})| \leq \epsilon$ if $(x_1, \ldots, x_n) \in B_0$.
Now let $\ell > 0$. By Step 2 we have that the absolute value of (6) is
\[\prod_{i=1}^{m} \delta^{-n_i}M_i^{k_i} = \delta^{-n}M_1^{k_1} \cdots M_m^{k_m} = \delta^{-n} |c_1|^{k_1} \cdots |c_l|^{k_i}(\frac{\delta}{|c_i|})^{k_i} \]
which is $\leq \delta^{-n} \epsilon \delta^n$ by (1). This proves (4) and the Lemma.

Corollary 1.3. For every locally constant $f : X \to K$, for every $n \in \mathbb{N}_0$ and $\epsilon > 0$ there exists a polynomial function $P : K \to K$ such that $\|f - P\|_{n,X} \leq \epsilon$.

Proof. There exist a $\delta \in (0, 1)$, pairwise disjoint 'closed' balls B_1, \ldots, B_m of radius δ covering X and $\lambda_1, \ldots, \lambda_m \in K$ such that
\[f(x) = \sum_{i=1}^{m} \lambda_i \xi_{B_i}(x) \quad (x \in X) \]
By Lemma 1.2 there exist polynomials P_1, \ldots, P_m such that $\|\xi_{B_i} - P_i\|_{n,X} \leq \epsilon(|\lambda_i| + 1)^{-1}$ for each $i \in \{1, \ldots, m\}$. Then $P := \sum_{i=1}^{m} \lambda_i P_i$ is a polynomial function and $\|f - P\|_{n,X} \leq \max_i \|\lambda_i(\xi_{B_i} - P_i)\|_{n,X} \leq \max \|\lambda_i|\epsilon(|\lambda_i| + 1)^{-1} \leq \epsilon$.

Theorem 1.4. (**C^n-Weierstrass Theorem**) For each $n \in \mathbb{N}_0$, $f \in C^n(X \to K)$ and $\epsilon > 0$ there exists a polynomial function $P : K \to K$ such that $\|f - P\|_{n,X} \leq \epsilon$.

Proof. There is by Proposition 0.4 a local polynomial $g : K \to K$ with $\|f - g\|_{n,X} \leq \epsilon$.
This g has the form $g = \sum_{i=1}^{m} Q_i h_i$ where Q_1, \ldots, Q_m are polynomials and h_1, \ldots, h_m
are locally constant. By Corollary 1.3 we can find polynomials P_1, \ldots, P_m for which
$$
\|h_i - P_i\|_{n,X} \leq \varepsilon (\|Q_i\|_{n,X} + 1)^{-1}
$$
for each i. Then $P := \sum_{i=1}^m Q_i P_i$ is a polynomial and
$$
\|g - P\|_{n,X} \leq \varepsilon. \text{ It follows that } \|f - P\|_{n,X} \leq \max(\|f - g\|_{n,X}, \|g - P\|_{n,X}) \leq \varepsilon.
$$

Remarks.

1. In the case where $X = \mathbb{Z}_p$, $K \supseteq \mathbb{Q}_p$ the above Theorem 1.4 is not new: The Mahler base e_0, e_1, \ldots of $C(\mathbb{Z}_p \to K)$ defined by $e_m(x) = \left(\frac{x}{m}\right)$ is proved in [3], §54 to be a Schauder base for $C^\infty(\mathbb{Z}_p \to K)$, for each n.

2. It follows directly from Theorem 1.4 that the polynomial functions $X \to K$ form a dense subset of $C^\infty(X \to K)$.

2. **A WEIERSTRASS-STONE THEOREM FOR C^n-FUNCTIONS**

For this Theorem (2.10) we will need the continuity of $g \mapsto g \circ f$ in the C^n-topologies (Proposition 2.5). To prove it we need some technical lemmas that are in the spirit of [3], §77.

Let $n \in \mathbb{N}$. For a function $h : \nabla^n X \to K$ we define $\Delta h : \nabla^{n+1} X \to K$ by the formula

$$
\Delta h(x_1, x_2, \ldots, x_{n+1}) = \frac{h(x_1, x_3, x_4, \ldots, x_{n+1}) - h(x_2, x_3, \ldots, x_{n+1})}{x_1 - x_2}
$$

We have the following product rule.

Lemma 2.1. (Product Rule). Let $n \in \mathbb{N}$, let $h, t : \nabla^n X \to K$. Then for all $(x_1, x_2, \ldots, x_{n+1}) \in \nabla^{n+1} X$ we have $\Delta(ht)(x_1, x_2, \ldots, x_{n+1}) = h(x_2, x_3, \ldots, x_{n+1}) \Delta t(x_1, x_2, \ldots, x_{n+1}) + t(x_1, x_3, \ldots, x_{n+1}) \Delta h(x_1, x_2, \ldots, x_{n+1})$.

Proof. Straightforward.

Lemma 2.2. Let $f : X \to K$, $n \in \mathbb{N}_0$. Let S_n be the set of the following functions defined on $\nabla^{n+1} X$.

$$(x_1, \ldots, x_{n+1}) \mapsto \Phi_1 f(x_{i_1}, x_{i_2}) \quad (1 \leq i_1 < i_2 \leq n + 1)$$

$$(x_1, \ldots, x_{n+1}) \mapsto \Phi_2 f(x_{i_1}, x_{i_2}, x_{i_3}) \quad (1 \leq i_1 < i_2 < i_3 \leq n + 1)$$

$$
\vdots
$$

$$(x_1, \ldots, x_{n+1}) \mapsto \Phi_n f(x_1, \ldots, x_{n+1}).$$

For $k \in \mathbb{N}$, let R_n^k be the additive group generated by $S_n, S_n^2, \ldots, S_n^k$ where, for each $j \in \{1, \ldots, k\}$, S_n^j is the product set $\{h_1 h_2 \ldots h_j : h_i \in S_n \text{ for each } i \in \{1, \ldots, j\}\}$. Then, for all $k,n \in \mathbb{N}$, $\Delta R_n^k \subseteq R_{n+1}^k$.
The Weierstrass-Stone Approximation Theorem

Proof. We use induction with respect to \(k \). For the case \(k = 1 \) it suffices to prove \(h \in S_n \Rightarrow \Delta h \in R_{n+1}^1 \). Then \(h \) has the form

\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_j f(x_{i_1}, x_{i_2}, \ldots, x_{i_{j+1}})
\]

for some \(j \in \{2, 3, \ldots, n+1\} \) and so

\[
\Delta h(x_1, x_2, \ldots, x_{n+1}) = \frac{h(x_1, x_3, \ldots, x_{n+2}) - h(x_2, x_3, \ldots, x_{n+2})}{x_1 - x_2}
\]

vanishes if \(i_1 > 1 \) (and then \(\Delta h \) is the null function), while if \(i_1 = 1 \) it equals

\[
\frac{\Phi_j f(x_1, x_{i_2}, \ldots, x_{i_{j+1} + 1}) - \Phi_j f(x_2, x_{i_2}, \ldots, x_{i_{j+1} + 1})}{x_1 - x_2} = \frac{\Phi_{j+1} f(x_1, x_2, x_{i_2}, \ldots, x_{i_{j+1} + 1})}{x_1 - x_2}
\]

and it follows that \(\Delta h \in S_{n+1} \subset R^1_{n+1} \). For the induction step assume \(\Delta R^k_{n+1} \subset R^{k-1}_{n+1} \); it suffices to prove that \(\Delta S^k_n \subset R^k_{n+1} \). So let \(h \in S^k_n \) and write \(h = h_1 H \), where \(h_1 \in S_n \), \(H \in S^{k-1}_n \). By the Product Rule 2.1 we have

\[
\Delta h(x_1, \ldots, x_{n+2}) = h_1(x_2, x_3, \ldots, x_{n+2}) + H(x_1, x_3, \ldots, x_{n+2}) \Delta h_1(x_1, x_2, \ldots, x_{n+2}).
\]

The fact that \(h_1 \in S_n \) makes

\[
(x_1, x_2, \ldots, x_{n+2}) \mapsto h_1(x_1, x_3, \ldots, x_{n+2})
\]

into an element of \(S_{n+1} \). Similarly, since \(H \in S^{k-1}_n \), the function

\[
(x_1, x_2, \ldots, x_{n+2}) \mapsto H(x_2, x_3, \ldots, x_{n+2})
\]

is in \(S^{k-1}_{n+1} \). By our first induction step, \(\Delta h_1 \in R^1_{n+1} \) and by the induction hypothesis \(\Delta H \in R^{k-1}_{n+1} \). Hence,

\[
\Delta h \in S_{n+1} R^k_{n+1} + S^{k-1}_n R^1_{n+1}
\]

and

\[
\subset R^k_{n+1} R^1_{n+1} + R^{k-1}_{n+1} R^1_{n+1} \subset R^k_{n+1}.
\]

Lemma 2.3. Let \(f, n, S_n, k, R^k \) be as in the previous lemma. Let \(f(X) \subset Y \subset K \) where \(Y \) has no isolated points. Let \(g : Y \to K \) be a \(C^n \)-function. Let \(B_n \) be the set of the following functions defined on \(\nabla^{n+1} X \):

\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_1 g(f(x_{i_1}), f(x_{i_2})) \quad (1 \leq i_1 < i_2 \leq n + 1)
\]

\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_2 g(f(x_{i_1}), f(x_{i_2}), f(x_{i_3})) \quad (1 \leq i_1 < i_2 < i_3 \leq n + 1)
\]

\[
\vdots
\]

\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_n g(f(x_1), f(x_2), \ldots, f(x_{n+1})).
\]
Let A_n be the additive group generated by $B_n R_n^e$. Then

$$\Delta A_n \subseteq A_{n+1}.$$

Proof. We prove: $h \in B_n R_n^e \Rightarrow \Delta h \in A_{n+1}$. Write $h = br$ where $b \in B_n$, $r \in R_n^e$. By the Product Rule 2.1 we have for all $(x_1, x_2, \ldots, x_{n+2}) \in \nabla^{n+2} X$

$$\Delta h(x_1, x_2, \ldots, x_{n+2}) = b(x_2, x_3, \ldots, x_{n+2}) \Delta r(x_1, x_2, \ldots, x_{n+2}) +$$

$$+ r(x_1, x_3, \ldots, x_{n+2}) \Delta b(x_1, x_2, \ldots, x_{n+2}).$$

We have:

(i) $b \in B_n$ so $(x_1, \ldots, x_{n+2}) \mapsto b(x_2, x_3, \ldots, x_{n+1})$ is in B_{n+1}.
(ii) $r \in R_n^e$ so $(x_1, \ldots, x_{n+2}) \mapsto r(x_1, x_3, \ldots, x_{n+1})$ is in R_{n+1}^e (in the previous proof we had $r \in S_n^k$ so the map $(x_1, \ldots, x_{n+2}) \mapsto r(x_1, x_3, \ldots, x_{n+1})$ is in S_{n+1}^k, and (ii) follows from this).
(iii) $r \in R_n^e$ so $\Delta r \in R_{n+1}^e$ (Previous Lemma).
(iv) b has the form

$$(x_1, x_2, \ldots, x_{n+1}) \mapsto \Phi_j g(f(x_{i_1}), \ldots, f(x_{i_{j+1}}))$$

for some $j \in \{2, \ldots, n+1\}$ and so

$$\Delta b(x_1, x_2, \ldots, x_{n+2}) = \frac{b(x_1, x_3, x_4, \ldots, x_{n+2}) - b(x_2, x_3, \ldots, x_{n+2})}{x_1 - x_2}$$

vanishes if $i_1 > 1$ (and then Δb is the null function), while if $i_1 = 1$ it equals

$$\Phi_j g(f(x_1), f(x_{i_1+1}), \ldots, f(x_{i_{j+1}+1})) = \Phi_j g(f(x_1), f(x_{i_1+1}), \ldots, f(x_{i_{j+1}+1})) = \Phi_j f(x_1, x_2).$$

(if $f(x_1) = f(x_2)$ we have 0 at both sides). So we see that $\Delta b \in B_{n+1} R_{n+1}^e$.

Combining (i) - (iv) we get $\Delta h \in B_{n+1} R_{n+1}^e + R_{n+1}^e B_{n+1} R_{n+1}^e \subseteq B_{n+1} R_{n+1}^{e+1} + B_{n+1} \cdot R_{n+1}^{e+1} \subseteq A_{n+1}.$

Corollary 2.4. With the notations as in the previous lemma we have $\Phi_n (g \circ f) \in A_n$ ($n \in \mathbb{N}$).

Proof. We proceed by induction on n. For the case $n = 1$ we write, for $(x_1, x_2) \in \nabla^2 X$,

$$\Phi_1 (g \circ f)(x_1, x_2) = (x_1 - x_2)^{-1} \left(g(f(x_1)) - g(f(x_2)) \right) = \Phi_1 g(f(x_1), f(x_2)) \Phi_1 f(x_1, x_2).$$
Hence, \(\Phi_1(g \circ f) \in B_1 S_1 \subset B_1 R \subset A_1 \). To prove the step \(n \to n+1 \) observe that by the induction hypothesis, \(\Phi_n(g \circ f) \in A_n \). By Lemma 2.3, \(\Phi_{n+1}(g \circ f) = \Delta \Phi_n(g \circ f) \in A_{n+1} \).

Remark. From Corollary 2.4 it follows easily that the composition of two \(C^n \)-functions is again a \(C^n \)-function, a result that already was obtained in [3], 77.5.

Proposition 2.5. (Continuity of \(g \mapsto g \circ f \)) Let \(n \in N_0 \), let \(f \in C^n(X \to K) \) and let \(g \in C^n(Y \to K) \) where \(Y \) has no isolated points, \(Y \supset f(X) \). Then \(\|g \circ f\|_{n,X} \leq \|g\|_{n,Y} \max_{0 \leq j \leq n} \|f\|_{j,X} \).

Proof. We may assume \(\|g\|_{n,Y} < \infty \). It suffices to prove \(\|\Phi_n(g \circ f)\|_{n+1,X} \leq \|g\|_{n,Y} \|f\|_{n,X} \). Now \(\|\Phi_0(g \circ f)\|_{1,X} = \max_{x \in X} |g(f(x))| \leq \|g\|_{0,Y} \|f\|_0 \), which proves the case \(n = 0 \). For \(n \geq 1 \) we apply Corollary 2.4 which says that \(\Phi_n(g \circ f) \in A_n \) i.e. \(\Phi_n(g \circ f) \) is a sum of functions in \(B_n S_n \). By the definition of \(B_n \) we have

\[
(*) \quad h \in B_n \Rightarrow \|h\|_{n+1,X} \leq \|g\|_{n,Y}
\]

Similarly

\[
k \in S_n \Rightarrow \|k\|_{n+1,X} \leq \max_{1 \leq i \leq n} \|\Phi_i f\|_{n+1,X} \leq \|f\|_{n,X}
\]

so that

\[
(**) \quad k \in S_n \Rightarrow \|k\|_{n+1,X} \leq \|f\|_{n,X}
\]

Combination of (*) and (**) yields \(\|\Phi_n(g \circ f)\|_{n+1,X} \leq \|g\|_{n,Y} \|f\|_{n,X} \).

Proposition 2.5 enables us to prove

Proposition 2.6. Let \(n \in N_0 \) and let \(A \) be a closed subalgebra of \(C^n(X \to K) \). Suppose \(A \) separates the points of \(X \) and contains the constant functions. Then \(A \) contains all locally constant functions \(X \to K \).

Proof. 1. We first prove that \(f \in A \), \(U \subset K \), \(U \) clopen implies \(\xi_{f^{-1}(U)} \in A \). In fact, \(f(X) \) is compact so there exist a \(\delta \in (0,1) \) and infinitely many disjoint balls \(B_1, \ldots, B_m \) of radius \(\delta \) covering \(f(X) \) where, say, \(B_1, \ldots, B_q \) lie in \(U \), and \(B_{q+1}, \ldots, B_m \) are in \(K \setminus U \). Let \(\varepsilon > 0 \). By the Key Lemma 1.2 there exists, for each \(i \in \{1, \ldots, m\} \) a polynomial \(P_i \) such that \(\|\xi_{B_i} - P_i\|_{n,B} < \varepsilon \), where \(B := \bigcup_{i=1}^m B_i \). Then \(P := \sum_{i=1}^q P_i \) is a polynomial and

\[
\|P - \xi U\|_{n,B} = \|P - \xi B^0\|_{n,B} = \| \sum_{i=1}^q (P_i - \xi B_i)\|_{n,B} < \varepsilon , \quad \text{where} \quad B^0 := \bigcup_{i=1}^q B_i.
\]

By Proposition 2.5

\[
\|(P - \xi U) \circ f\|_{n,X} \leq \|P - \xi U\|_{n,B} \max_{0 \leq j \leq n} \|f\|_{j,X} \leq \varepsilon \max_{0 \leq j \leq n} \|f\|_{j,X}
\]
and we see that there exists a sequence P_1, P_2, \ldots of polynomials such that
\[\|P_k \circ f - \xi_U \circ f\|_{n, X} \to 0. \]
Since A is an algebra with an indentity we have $P_k \circ f \in A$ for all k. Then $\xi_{f^{-1}(U)} = \xi_U \circ f = \lim_{k \to \infty} P_k \circ f \in A$.

2. Now consider
\[B := \{ V \subset X, \xi_V \in A \}. \]

It is very easy to see that B is a ring of clopen subsets of X and that B covers X. To show that B separates the points of X let $x \in X$, $y \in X$, $x \neq y$. Then there is an $f \in A$ for which $f(x) \neq f(y)$. Set $U := \{ \lambda \in K : |\lambda - f(x)| < |f(x) - f(y)| \}$. Then U is clopen in K. By the first part of the proof, $f^{-1}(U) \in B$. But $x \in f^{-1}(U)$ whereas $y \notin f^{-1}(U)$.

By [1], Exercise 2.H B is the ring of all clopens of X. It follows easily that all locally constant functions are in A.

To arrive at the Weierstrass-Stone Theorem 2.10 we need a final technical lemma.

Lemma 2.7. Let $a_1, \ldots, a_m \in X$, let $\delta_1, \ldots, \delta_m$ be in $(0, 1)$ such that $B(a_1, \delta_1), \ldots, B(a_m, \delta_m)$ form a disjoint covering of X. Let $n \in \mathbb{N}_0$, $h \in C^n(X \to K)$ and suppose $D_j h(a_i) = 0$ and $|\Delta_n-j D_j h(x_1, \ldots, x_{n-j+1})| \leq \varepsilon$ for all $i \in \{1, \ldots, m\}$, $x_1, \ldots, x_{n+1} \in B(a_i, \delta_i) \cap X$, $j \in \{0, 1, \ldots, n\}$. Then $\|h\|_{n, X} \leq \varepsilon$.

Proof. We first prove that $\|h\|_{n, X} \leq \varepsilon$ (see Proposition 0.4(iii)). Let $i \in \{1, \ldots, m\}$. Set $B_i = B(a_i, \delta_i)$. By Taylor's formula (Proposition 0.3(iv)) we have for $x \in X \cap B_i$:
\[|h(x)| = \sum_{s=0}^{n-1} (x - a_i)^s D_s h(a_i) + (x - a_i)^n \rho_1 h(x, a_i) \leq \delta_i^n \varepsilon. \]

Similarly we have for $j \in \{0, \ldots, n-1\}$ and $x \in X \cap B_i$:
\[|D_j h(x)| = \sum_{s=0}^{n-1-j} (x - a_i)^{s-j} D_j D_s h(a_i) + (x - a_i)^n \rho_1 (D_j h)(x, a_i) \leq \delta_i^{n-j} \varepsilon. \]

It follows that $\|h\|_X$, $\|D_1 h\|_X$, \ldots, $\|D_{n-1} h\|_X$ are all $\leq \varepsilon$. Now let $x, y \in X$. If x, y are in the same B_i then $|\rho_1 h(x, y)| = |\Delta_n h(x, y, \ldots, y)| \leq \varepsilon$ by assumption. If $x \in B_i$, $y \in B_s$ and $i \neq s$ then $|x - y| \geq \delta := \max(\delta_i, \delta_s)$ and by Taylor's formula
\[h(x) \leq \sum_{i=0}^{n-1} (x - y)^i D_i h(y) + (x - y)^n \rho_1 h(x, y) \]
we obtain, using (*)
\[|\rho_1 h(x, y)| \leq \delta^n \varepsilon \]
\[\leq \delta^n \varepsilon \leq \varepsilon. \]
and we have proved \(\| h \|_{n,X} \leq \varepsilon \).

Now to prove that even \(\| h \|_{n,X} \leq \varepsilon \) observe that by Proposition 0.4(iii)

\[
\| h \|_{n,X} = \| h \|_{n-1,X} \vee \| D_1 h \|_{n-1,X} \vee \cdots \vee \| D_n h \|_{0,X}.
\]

To prove, for example, that \(\| D_1 h \|_{n-1,X} \leq \varepsilon \) we observe that by Proposition 0.4(iii)

\[
\| W_{u,x} = \| W_{-x} \|_{v} \vee \| V \|_V - \| V \|_V - \| A \|_{a,x} \|
\]

by assumption. So the conditions of our Lemma (with \(D_1 h, n - 1 \) in place of \(h, n \)
respectively) are satisfied and by the first part of the proof we may conclude that

\(\| D_1 h \|_{n-1,X} \leq \varepsilon \). In a similar way we prove that \(\| D_2 h \|_{n-2,X} \leq \varepsilon, \ldots, \| D_n h \|_{0,X} \leq \varepsilon \)
and it follows that \(\| h \|_{n,X} \leq \varepsilon \).

Proposition 2.8. Let \(n \in \mathbb{N}_0 \) and let \(A \) be a closed subalgebra of \(C^n(X \to K) \)
containing the locally constant functions. Let \(g \in C^n(X \to K) \) and suppose for each \(a \in X \)
there exists an \(f_a \in A \) with \(D_i g(a) = D_i f_a(a) \) for \(i \in \{0, 1, \ldots, n\} \). Then \(g \in A \).

Proof. Let \(\varepsilon > 0 \). For each \(a \in X \) choose an \(f_a \in A \) with \(f_a(a) = g(a), D_1 f_a(a) = D_1 g(a), \ldots, D_n f_a(a) = D_n g(a) \). By continuity there exists a \(\delta_a > 0 \) such that, with

\[
h_a := f_a - g, \quad |f_{n-j} D_j h_a(x_1, \ldots, x_{n-j})| \leq \varepsilon \quad \text{for all} \quad j \in \{0, 1, \ldots, n\} \quad \text{and} \quad x_1, \ldots, x_{n-j+1} \in B(a, \delta_a).\]

The \(B(a, \delta_a) \) cover \(X \) and by compactness there exists a finite disjoint subcovering \(B(a_1, \delta_{a_1}), \ldots, B(a_m, \delta_{a_m}) \). Set

\[
f := \sum_{i=1}^{m} f_{a_i} \chi_{B(a_i, \delta_{a_i})\cap X}
\]

Then, by our assumption on \(A, f \in A \). By Lemma 2.7, applied to \(h := f - g \) and where \(\delta_1, \ldots, \delta_m \) are replaced by \(\delta_{a_1}, \ldots, \delta_{a_m} \) respectively, we then have \(\| f - g \|_{n,X} \leq \varepsilon \). We see that \(g \in \overline{A} = A \).

Remark. It follows directly that the local polynomial functions \(X \to K \) form a dense subset of \(C^n(X \to K) \).

Proposition 2.9. Let \(n \in \mathbb{N} \) and let \(A \) be a \(K \)-subalgebra of \(C^n(X \to K) \) containing
the constant functions. Suppose \(f'(a) \neq 0 \) for some \(f \in A, a \in X \). Then there is a
\(g \in A \) with \(g(a) = 0, g'(a) = 1 \) and \(D_2 g(a) = D_3 g(a) = \cdots = D_n g(a) = 0 \).

Proof. By considering the function \(f'(a)^{-1}(f - f(a)) \) it follows that we may assume
that \(f(a) = 0, f'(a) = 1 \). Then

\[
f = (X - a)h
\]
where h is continuous, $h(a) = 1$. To obtain the statement by induction with respect to n we only have to consider the induction step $n - 1 \rightarrow n$ and, to prove that, we may assume that $D_2 f(a) = \cdots = D_{n-1} f(a) = 0$. From (*) we obtain

$$f^n = (X - a)^n h^n$$

and by uniqueness of the Taylor expansion of the C^n-function f^n we obtain $f^n(a) = D_1 f^n(a) = \cdots = D_{n-1} f^n(a) = 0$ and $D_n f^n(a) = h^n(a) = 1$. We see that $g := f - D_n f(a) f^n$ is in A and that $g(a) = 0$, $g'(a) = 1$, $D_2 g(a) = \cdots = D_{n-1} g(a) = 0$ and $D_n g(a) = D_n f(a) - D_n f(a) D_n f^n(a) = 0$.

Theorem 2.10. (Weierstrass-Stone Theorem for C^n-functions). Let $n \in \mathbb{N}$ and let A be a closed subalgebra that separates the points of X and that contains the constant functions. Suppose also that for each $a \in X$ there exists an $f \in A$ with $f'(a) \neq 0$. Then $A = C^n(X \rightarrow K)$.

Proof. By Proposition 2.9, for each $a \in X$ there exists an $f \in A$ with $f(a) = 0$, $f'(a) = 1$, $D_i f(a) = 0$ for $i \in \{2, \ldots, n\}$. The function $g := f$ satisfies $g(a) = 0$, $g'(a) = 1$, $D_2 g(a) = 0$ for $i \in \{2, \ldots, n\}$ so applying Proposition 2.8 (observe that A contains the locally constant functions by Proposition 2.6) we obtain that $X \in A$. But then all polynomials are in A and $A = C^n(X \rightarrow K)$ by the Weierstrass Theorem 1.4.

Remarks.

1. The case $n = 0$ yields, at least for those X that are embeddable into K, the well known Kaplansky Theorem proved in [1], 6.15.

2. We leave it to the reader to establish a C^∞-version of Theorem 2.10.

REFERENCES

