The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/60073

Please be advised that this information was generated on 2019-03-25 and may be subject to change.
THE WEIERSTRASS-STONE APPROXIMATION THEOREM
FOR p-ADIC C^n-FUNCTIONS

J. Araujo and Wim H. Schikhof

Abstract.
Let \(K \) be a non-Archimedean valued field. Then, on compact subsets of \(K \), every \(K \)-valued \(C^n \)-function can be approximated in the \(C^n \)-topology by polynomial functions (Theorem 1.4). This result is extended to a Weierstrass-Stone type theorem (Theorem 2.10).

INTRODUCTION
The non-archimedean version of the classical Weierstrass Approximation Theorem - the case \(n = 0 \) of the Abstract - is well known and named after Kaplansky ([1], 5.28). To investigate the case \(n = 1 \) first let us return to the Archimedean case and consider a real-valued \(C^1 \)-function \(f \) on the unit interval. To find a polynomial function \(P \) such that both \(|f-P| \) and \(|f'-P'| \) are smaller or equal than a prescribed \(\varepsilon > 0 \) one simply can apply the standard Weierstrass Theorem to \(f' \) obtaining a polynomial function \(Q \) for which \(|f'-Q| \leq \varepsilon \). Then \(x \mapsto P(x) := f(0) + \int_0^x Q(t) dt \) solves the problem.

Now let \(f : X \to K \) be a \(C^1 \)-function where \(K \) is a non-archimedean valued field and \(X \subset K \) is compact.

Lacking an indefinite integral the above method no longer works. There do exist continuous linear antiderivations ([3], §64) but they do not map polynomials into polynomials ([3], Ex. 30.C). A further complicating factor is that the natural norm for \(C^1 \)-functions on \(X \) is given by

\[
\max\{|f(x)| : x \in X\} \vee \max\left\{ \left| \frac{f(x)-f(y)}{x-y} \right| : x, y \in X, x \neq y \right\}
\]

rather than the more classical formula

\[
\max\{|f(x) : x \in X\} \vee \max\{|f'(x)| : x \in X\}
\]

(Observe that in the real case both formulas lead to the same norm thanks to the Mean Value Theorem, see [3], §§26,27 for further discussions.)
Thus, to obtain non-archimedean C^n-Weierstrass-Stone Theorems for $n \in \{1, 2, \ldots\}$ our methods will necessarily deviate from the 'classical' ones.

0. PRELIMINARIES

1. Throughout K is a non-archimedean complete valued field whose valuation $|\|\|$ is not trivial. For $a \in K$, $r > 0$ we write $B(a, r) := \{x \in K : |x-a| \leq r\}$, the 'closed' ball about a with radius r. 'Clopen' is an abbreviation for 'closed and open'. The function $x \mapsto x$ ($x \in K$) is denoted \mathcal{X}. The K-valued characteristic function of a subset Y of K is written ξ_Y. For a set Z, a function $f : Z \to K$ and a set $W \subset Z$ we define $\|f\|_W := \sup \{|f(x)| : x \in W\}$ (allowing the value ∞). The cardinality of a set Γ is $\#\Gamma$. $N_0 := \{0, 1, 2, \ldots\}$, $N := \{1, 2, 3, \ldots\}$.

We now recall some facts from [2], [3] on C^n-theory.

2. For a set $Y \subset K$, $n \in \mathbb{N}$ we set $\nabla^n Y := \{(y_1, y_2, \ldots, y_n) \in Y^n : i \neq j \Rightarrow y_i \neq y_j\}$. For $f : Y \to K$, $n \in N_0$ we define its nth difference quotient $\Phi_n f : \nabla^{n+1} Y \to K$ inductively by $\Phi_0 f := f$ and the formula

$$\Phi_n f(y_1, \ldots, y_{n+1}) = \frac{\Phi_{n-1} f(y_1, y_3, \ldots, y_{n+1}) - \Phi_{n-1} f(y_2, y_3, \ldots, y_{n+1})}{y_1 - y_2}$$

f is called a C^n-function if $\Phi_n f$ can be extended to a continuous function on Y^{n+1}. The set of all C^n-functions $Y \to K$ is denoted $C^n(Y \to K)$. The function $f : Y \to K$ is a C^∞-function if it is in $C^\infty(Y \to K) := \bigcap_{n=0}^{\infty} C^n(Y \to K)$. The space $C^0(Y \to K)$, consisting of all continuous functions $Y \to K$ is sometimes written as $C(Y \to K)$.

FROM NOW ON IN THIS PAPER X IS A NONEMPTY COMPACT SUBSET OF K WITHOUT ISOLATED POINTS.

3. Since X has no isolated points we have for an $f \in C^n(X \to K)$ that the continuous extension of $\Phi_n f$ to X^{n+1} is unique; we denote this extension by $\overline{\Phi}_n f$. Also we write

$$D_n f(a) := \overline{\Phi}_n f(a, a, \ldots, a) \quad (a \in X)$$

The following facts are proved in [2] and [3].

Proposition 0.3.

(i) For each $n \in \mathbb{N}_0$ the space $C^n(X \to K)$ is a K-algebra under pointwise operations.

(ii) $C^0(X \to K) \supset C^1(X \to K) \supset \cdots$
(iii) If \(f \in C^n(X \to K) \) then \(f \) is \(n \) times differentiable and \(j!D_jf = f^{(j)} \) for each \(j \in \{0,1,\ldots,n\} \). More generally, if \(i,j \in \{0,1,\ldots,n\}, i+j \leq n \) then \((i+j)!D_iD_jf = D_{i+j}f \).

(iv) If \(f \in C^n(X \to K) \) then for \(x,y \in X \) we have Taylor's formula

\[
f(x) = f(y) + (x-y)D_if(y) + \cdots + (x-y)^{n-1}D_{n-1}f(y) + (x-y)^n\rho_1f(x,y),
\]

where \(\rho_1f(x,y) = \mathbb{P}_n f(x,y,y,\ldots,y) \).

4. Since \(X \) is compact the difference quotients \(\mathbb{P}_i f (0 \leq i \leq n) \) are bounded if \(f \in C^n(X \to K) \). We set

\[
\|f\|_{n,X} := \max\{\|\mathbb{P}_i f\|_{\mathbb{P}_{i+1} X} : 0 \leq i \leq n\}.
\]

Then \(\|f\|_{0,X} = \|f\|_X \). We quote the following from [2] and [3]. Recall that a function \(f : X \to K \) is a local polynomial if for every \(a \in X \) there is a neighbourhood \(U \) of \(a \) such that \(f|X \cap U \) is a polynomial function.

Proposition 0.4. Let \(n \in \mathbb{N}_0 \).

(i) The function \(\| \| \) \(\|_{n,X} \) is a norm on \(C^n(X \to K) \) making it into a \(K \)-Banach algebra.

(ii) The local polynomials form a dense subset of \(C^n(X \to K) \).

(iii) The function

\[
f \mapsto \|f\|_{\sim,n,X} := \max_{0 \leq i \leq n-1} \|D_i f\|_X \vee \|\rho_1 f\|_X
\]

(see Proposition 0.3 (iv)) also is a norm on \(C^n(X \to K) \). We have

\[
\|f\|_{n,X} = \max\{\|D_i f\|_{\sim_i,X} : 0 \leq i \leq n\} \quad (f \in C^n(X \to K)).
\]

Remarks

1. Proposition 0.4 (ii) will also follow from Proposition 2.8.

2. In general \(\| \|_{\sim,n,X} \) is not equivalent to \(\| \|_{n,X} \) for \(n \geq 3 \) (see [3], Example 83.2).
1 THE WEIERSTRASS THEOREM FOR C^2-FUNCTIONS

The following product rule for difference quotients is easily proved by induction with respect to j.

Let $f, g : X \rightarrow K$, let $j \in \mathbb{N}_0$. Then for all $(x_1, \ldots, x_{j+1}) \in \nabla^{j+1}X$ we have

$$\Phi_j(fg)(x_1, \ldots, x_{j+1}) = \sum_{k=0}^{j} \Phi_k f(x_1, \ldots, x_{k+1}) \Phi_{j-k} g(x_{k+1}, \ldots, x_{j+1}).$$

Or, less precise,

$$\Phi_j(fg)(x_1, \ldots, x_{j+1}) = \sum_{k=0}^{j} \Phi_k f(x_k) \Phi_{j-k} g(u_{j-k})$$

for certain $x_k \in \nabla^{k+1}X$, $u_{j-k} \in \nabla^{j-k+1}X$.

In the sequel we need an extension of this formula to finite products of functions. The proof is straightforward by induction with respect to N.

Lemma 1.1. (Product Rule) Let $h_1, \ldots, h_N : X \rightarrow K$, let $j \in \mathbb{N}_0$. Then for all $(x_1, \ldots, x_{j+1}) \in \nabla^{j+1}X$ we have

$$\Phi_j(\prod_{s=1}^{N} h_s)(x_1, \ldots, x_{j+1}) = \sum_{s=1}^{N} \prod_{s=1}^{N} \Phi_j h_s(z_{\sigma,s})$$

where the sum is taken over all $\sigma := (j_1, \ldots, j_N) \in \mathbb{N}_0^N$ for which $j_1 + \cdots + j_N = j$ and where $z_{\sigma,s} \in \nabla^{j_s+1}X$ for each $s \in \{1, \ldots, N\}$. (In fact, $z_{s,1} = (x_1, \ldots, x_{j_1+1}), z_{s,2} = (x_{j_1+1}, \ldots, x_{j_1+j_2+1}), \ldots, z_{s,N} = (x_{j_1+\cdots+j_{N-1}+1}, \ldots, x_{j_1+j_2+\cdots+j_N})$)

The following key lemma grew out of [1], 5.28.

Lemma 1.2. Let $0 < \delta < 1, 0 < \varepsilon < 1$, let $B = B_0 \cup B_1 \cup \cdots \cup B_m$ where B_0, \ldots, B_m are pairwise disjoint 'closed' balls in K of radius δ. Then, for each $n \in \{0, 1, \ldots\}$ there exists a polynomial function $P : K \rightarrow K$ such that $\|P - \xi_{B_0}\|_{n,B} \leq \varepsilon$.

Proof. We may assume $0 \in B_0$. Choose $c_1 \in B_1, \ldots, c_m \in B_m$; we may assume that $|c_1| \leq |c_2| \leq \cdots \leq |c_m|$. Then $\delta < |c_1|$. We shall prove the following statement by induction with respect to n.

Let $k \in \mathbb{N}$ be such that $(\delta/|c_1|)^k \leq \varepsilon \delta^n$, $k > n$. Let $t_1, t_2, \ldots, t_m \in \mathbb{N}$ be such that for all $\ell \in \{1, \ldots, m\}$

$$\left|\frac{c_{\ell}}{c_1}\right|^{kt_1} \left|\frac{c_{\ell}}{c_2}\right|^{kt_2} \cdots \left|\frac{c_{\ell}}{c_{\ell-1}}\right|^{kt_{\ell-1}} \left(\frac{\delta}{|c_1|}\right)^{t_\ell} \leq \varepsilon \delta^n$$
(It is easily seen that such k, t_1, \ldots, t_m exist since $\delta /|c_1| < 1$.) Then the formula

$$P(x) = \prod_{i=1}^{m} \left(1 - \left(\frac{x}{c_i} \right)^k \right)^{t_i}$$

defines a polynomial function $P : K \to K$ for which

$$\|P - \xi_{B_0}\|_{n, B} \leq \varepsilon.$$

The case $n = 0$ is proved in [1], 5.28. To prove the step $n - 1 \to n$ we first observe that from the induction hypothesis (with ε replaced by $\varepsilon \delta$) it follows that

$$\|P - \xi_{B_0}\|_{n-1, B} \leq \varepsilon \delta$$

So it remains to be shown that

$$\|P - \xi_{B_0}\|_{n, B} \leq \varepsilon$$

for all $(x_1, \ldots, x_{n+1}) \in \nabla^{n+1} B$. Now, if $|x_i - x_j| > \delta$ for some $i, j \in \{1, \ldots, n+1\}$ we have, using (2),

$$|\Phi_n(P - \xi_{B_0})(x_1, \ldots, x_{n+1})| = |x_i - x_j|^{-1} |\Phi_n(P - \xi_{B_0})(x_1, \ldots, x_{i-1}, x_j, x_{j+1}, \ldots, x_{n+1}) - \Phi_n(P - \xi_{B_0})(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1})| \leq \delta^{-1} \cdot \varepsilon \delta = \varepsilon.$$ So this reduces the proof of (3) to the case where $|x_i - x_j| \leq \delta$ for all $i, j \in \{1, \ldots, n+1\}$; in other words we may assume that x_1, \ldots, x_{n+1} are all in the same B_ℓ for some $\ell \in \{0,1,\ldots,m\}$. But then, after observing that $n \geq 1$, we have $\Phi_n \xi_{B_\ell}(x_1, \ldots, x_{n+1}) = 0$ so it suffices to prove the following.

If $\ell \in \{0,1,\ldots,m\}$ and $x_1, \ldots, x_{n+1} \in B_\ell$ are pairwise distinct then

$$|\Phi_n P(x_1, \ldots, x_{n+1})| \leq \varepsilon$$

To prove it we introduce, with $\ell \in \{1, \ldots, m\}$ fixed, the constants M_i ($i \in \{1, \ldots, n\}$) by

$$M_i := \begin{cases} 1 & \text{if } i > \ell \\ \delta /|c_1| & \text{if } i = \ell \\ |c_\ell /c_i|^k & \text{if } i < \ell \end{cases}$$

and use the following three steps.

Step 1. For each $j \in \{0,1,\ldots,n\}$, $i \in \{1, \ldots, n\}$ we have

$$\|\Phi_j(1 - \left(\frac{x}{c_i} \right)^k)\|_{\nabla^{j+1} B_\ell} \leq \begin{cases} 1 & \text{if } \ell = 0, j = 0 \\ \delta^{-j} \left(\frac{\delta}{|c_1|} \right)^k & \text{if } \ell = 0, j > 0 \\ \delta^{-j} M_i & \text{if } \ell > 0. \end{cases}$$
Proof.

a. The case \(j = 0 \). Then for \(x \in B_\ell \) we have

- if \(i > \ell \) then \(|1 - (\frac{x}{c_i})^k| = 1 \)
- if \(i = \ell \) then \(|1 - (\frac{x}{c_i})^k| = \left| \frac{c_i - x}{c_i} \right|^k \leq \frac{\delta^k}{|c_i|} \leq \frac{\delta}{|c_i|} \)
- if \(i < \ell \) then \(|1 - (\frac{x}{c_i})^k| = \left| \frac{x}{c_i} \right|^k = \left| \frac{c_i}{c_i} \right|^k \)

and the statement follows.

b. The case \(j > 0 \). Then \(\Phi_j(1) = 0 \) so that

\[
\Phi_j(1 - \left(\frac{X}{c_i} \right)^k) = \frac{1}{c_i^k} \Phi_j(X^k)
\]

Let \((x_1, \ldots, x_{j+1}) \in \nabla^{j+1} B_\ell\). By the Product Rule 1.1, \(\Phi_j(X^k)(x_1, \ldots, x_{j+1}) \) is a sum of terms of the form \(\prod_{s=1}^{k} (\Phi_j, \mathcal{X})(z_s) \). Such a term is 0 if one of the \(j_s \) is \(> 1 \), so we only have to deal with \(j_s = 0 \) (then \(\Phi_j, \mathcal{X} = \mathcal{X} \)) or \(j_s = 1 \) (then \(\Phi_j, \mathcal{X} = 0 \)). The latter case occurs \(j \) times (as \(\sum j_s = j \)) and it follows that

\[
\prod_{s=1}^{k} (\Phi_j, \mathcal{X})(z_s)
\]

is a product of \(k - j \) distinct terms taken from \(\{x_1, \ldots, x_{j+1}\} \) (observe that, indeed, \(j < k \) since \(j \leq n < k \)), so its absolute value is \(\leq |c_i|^{k-j} \). It follows that \(\|\Phi_j(1 - \left(\frac{X}{c_i} \right)^k)\|_{\nabla^{j+1} B_\ell} \leq |c_i|^{k-j}|c_i|^k \) from which we conclude

- if \(\ell = 0 \): \(|c_i|^{k-j}|c_i|^k \leq \delta^{k-j}/|c_i|^j = \delta^{-j} (|c_i|)^{k-j} \),
- if \(i > \ell > 0 \): \(|c_i|^{k-j}|c_i|^k \leq |c_i|^{k-j} \leq \delta^{-j} = \delta^{-j} M_i \)
- if \(i = \ell > 0 \): \(|c_i|^{k-j}|c_i|^k \leq |c_i|^{k-j} \leq |c_i|^{k-j} = \delta^{-j} (|c_i|)^j \leq \delta^{-j} M_i \)
- if \(i < \ell \): \(|c_i|^{k-j}|c_i|^k \leq |c_i|^{-j} |\frac{c_i}{c_i}|^k \leq \delta^{-j} M_i \)

and step 1 is proved.

Step 2. For each \(j \in \{0, 1, \ldots, n\} \), \(i \in \{1, \ldots, n\} \) we have

\[
\|\Phi_j(1 - \left(\frac{X}{c_i} \right)^k)\|_{\nabla^{j+1} B_\ell} \leq \begin{cases} 1 & \text{if } \ell = 0, j = 0 \\ \delta^{-j} (\frac{\delta}{|c_i|^j})^k & \text{if } \ell = 0, j > 0 \\ \delta^{-j} M_i^{|i|} & \text{if } \ell > 0 \\
\end{cases}
\]

Proof. The case \(j = 0 \) follows directly from Step 1, part a, so assume \(j > 0 \). By the Product Rule 1.1 applied to \(h_s = 1 - \left(\frac{X}{c_i} \right)^k \) for all \(s \in \{1, \ldots, t_i\} \) we have for \((x_1, \ldots, x_{j+1}) \in \nabla^{j+1} B_\ell\) that \(\Phi_j(1 - \left(\frac{X}{c_i} \right)^k)(x_1, \ldots, x_{j+1}) \) is a sum of terms of the form

\[
\left(\prod_{s=1}^{t_i} \Phi_j(1 - \left(\frac{X}{c_i} \right)^k)(z_s) \right)
\]
where \(j_1 + \cdots + j_s = j \). If \(\ell = 0 \) it follows from Step 1 that the absolute value of (5) is
\[
\leq \prod \delta^{-j_s}(\frac{x_i}{|c_i|})^k \quad \text{where the product is taken over all } s \in \{1, \ldots, t_i\} : j_s > 0,
\]
so the product is \(\leq \delta^{-j_i}(\frac{x}{|c_i|})^k = \delta^{-j_i}M_i \). If \(\ell > 0 \) it
follows from Step 1 that the absolute value of (5) is \(\leq \prod_{i=1}^{t_i} \delta^{-j_i}M_i = \delta^{-j_i}M_i \).

The statement of Step 2 follows.

Step 3. Proof of (4). Again, the Product Rule 1.1, now applied to \(h_i = (1 - (\frac{x_i}{c_i})^k) \) for \(i \in \{1, \ldots, m\} \) tells us that for \((x_1, \ldots, x_{n+1}) \in V^{n+1}B_{\ell} \) the expression
\[
\Phi_n P(x_1, \ldots, x_{n+1})
\]
is a sum of terms of the form
\[
(6) \quad \prod_{i=1}^{m} \Phi_{n_i}(1 - (\frac{x_i}{c_i})^k_{i})^{t_i}(x_s)
\]
where \(n_1 + \cdots + n_m = n \). If \(\ell = 0 \) we have by Step 2 that the absolute value of (6) is
\[
\leq \prod \delta^{-n}(\frac{x_i}{|c_i|})^k \quad \text{where the product is taken over } i \text{ in the nonempty set } \Gamma := \{i : n_i \neq 0\},
\]
so the product is \(\leq \delta^{-n}(\frac{\delta}{|c_i|})^k = \delta^{-n} \cdot c \delta^n = \varepsilon \), where we used the
assumption \(\delta(\frac{\delta}{|c_i|})^k \leq 6\delta^n \). We see that \(\Phi_n P(x_1, \ldots, x_{n+1}) \mid \leq \varepsilon \) if \((x_1, \ldots, x_n) \in B_0 \).

Now let \(\ell > 0 \). By Step 2 we have that the absolute value of (6) is \(\leq \prod_{i=1}^{m} \delta^{-n_i}M_{i}^{t_i} =
\delta^{-n}M_1^{t_1} \cdots M_m^{t_m} = \delta^{-n} \cdot c_{i_1}^{k_1} \cdots c_{i_m}^{k_m} \cdot (\frac{\delta}{|c_i|})^k \) which is \(\leq \delta^{-n} \cdot 6 \delta^n \) by (1). This proves
(4) and the Lemma.

Corollary 1.3. For every locally constant \(f : X \to K \), for every \(n \in \mathbb{N}_0 \) and \(\varepsilon > 0 \)
there exists a polynomial function \(P : K \to K \) such that \(\| f - P \|_{n,x} \leq \varepsilon \).

Proof. There exist a \(\delta \in (0,1) \), pairwise disjoint 'closed' balls \(B_1, \ldots, B_m \) of radius \(\delta \)
covering \(X \) and \(\lambda_1, \ldots, \lambda_m \in K \) such that
\[
f(x) = \sum_{i=1}^{m} \lambda_i \xi_{B_i}(x) \quad (x \in X)
\]
By Lemma 1.2 there exist polynomials \(P_1, \ldots, P_m \) such that \(\| \xi_{B_i} - P_i \|_{n,x} \leq \varepsilon(\lambda_i + 1)^{-1} \) for each \(i \in \{1, \ldots, m\} \). Then \(P := \sum_{i=1}^{m} \lambda_i P_i \) is a
polynomial function and \(\| f - P \|_{n,x} \leq \max_i \| \lambda_i (\xi_{B_i} - P_i) \|_{n,x} \leq \max_i \lambda_i \varepsilon(\lambda_i + 1)^{-1} \leq \varepsilon \).

Theorem 1.4. (C^n-Weierstrass Theorem) For each \(n \in \mathbb{N}_0, f \in C^n(X \to K) \) and \(\varepsilon > 0 \) there exists a polynomial function \(P : K \to K \) such that \(\| f - P \|_{n,x} \leq \varepsilon \).

Proof. There is by Proposition 0.4 a local polynomial \(g : K \to K \) with \(\| f - g \|_{n,x} \leq \varepsilon \).
This \(g \) has the form \(g = \sum_{i=1}^{m} Q_i h_i \) where \(Q_1, \ldots, Q_m \) are polynomials and \(h_1, \ldots, h_m \)
are locally constant. By Corollary 1.3 we can find polynomials \(P_1, \ldots, P_m \) for which
\[
\|h_i - P_i\|_{n, X} \leq \varepsilon (\|Q_i\|_{n, X} + 1)^{-1}
\]
for each \(i \). Then \(P := \sum_{i=1}^{m} Q_i P_i \) is a polynomial and
\[
\|g - P\|_{n, X} \leq \varepsilon. \]
It follows that \(\|f - P\|_{n, X} \leq \max(\|f - g\|_{n, X}, \|g - P\|_{n, X}) \leq \varepsilon. \)

Remarks.

1. In the case where \(X = \mathbb{Z}_p, K \supseteq \mathbb{Q}_p \) the above Theorem 1.4 is not new: The Mahler base \(e_0, e_1, \ldots \) of \(C(\mathbb{Z}_p \to K) \) defined by \(e_m(x) = (\frac{x}{m}) \) is proved in [3], §54 to be a Schauder base for \(C^n(\mathbb{Z}_p \to K) \), for each \(n \).

2. It follows directly from Theorem 1.4 that the polynomial functions \(X \to K \) form a dense subset of \(C^\infty (X \to K) \).

2. A WEIERSTRASS-STONE THEOREM FOR \(C^n \)-FUNCTIONS

For this Theorem (2.10) we will need the continuity of \(g \mapsto g \circ f \) in the \(C^n \)-topologies (Proposition 2.5). To prove it we need some technical lemmas that are in the spirit of [3], §77.

Let \(n \in \mathbb{N} \). For a function \(h : \nabla^n X \to K \) we define \(\Delta h : \nabla^{n+1} X \to K \) by the formula
\[
\Delta h(x_1, x_2, \ldots, x_{n+1}) = \frac{h(x_1, x_3, x_4, \ldots, x_{n+1}) - h(x_2, x_3, \ldots, x_{n+1})}{x_1 - x_2}
\]
We have the following product rule.

Lemma 2.1. (Product Rule). Let \(n \in \mathbb{N} \), let \(h, t : \nabla^n X \to K \). Then for all \((x_1, x_2, \ldots, x_{n+1}) \in \nabla^{n+1} X \) we have
\[
\Delta(h \circ t)(x_1, x_2, \ldots, x_{n+1}) = h(x_2, x_3, \ldots, x_{n+1}) \Delta t(x_1, x_2, \ldots, x_{n+1}) + t(x_1, x_3, \ldots, x_{n+1}) \Delta h(x_1, x_2, \ldots, x_{n+1}).
\]

Proof. Straightforward.

Lemma 2.2. Let \(f : X \to K, n \in \mathbb{N}_0 \). Let \(S_n \) be the set of the following functions defined on \(\nabla^{n+1} X \).
\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_1 f(x_{i_1}, x_{i_2}) \quad (1 \leq i_1 < i_2 \leq n + 1)
\]
\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_2 f(x_{i_1}, x_{i_2}, x_{i_3}) \quad (1 \leq i_1 < i_2 < i_3 \leq n + 1)
\]
\[
\vdots
\]
\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_n f(x_1, \ldots, x_{n+1}).
\]

For \(k \in \mathbb{N} \), let \(R_n^k \) be the additive group generated by \(S_n, S_n^2, \ldots, S_n^k \) where, for each \(j \in \{1, \ldots, k\}, \ S_n^j \) is the product set \(\{h_1 h_2 \ldots h_j : h_i \in S_n \text{ for each } i \in \{1, \ldots, j\}\} \).

Then, for all \(k, n \in \mathbb{N} \), \(\Delta R_n^k \subset R_{n+1}^k \).
Proof. We use induction with respect to \(k \). For the case \(k = 1 \) it suffices to prove \(h \in S_n \Rightarrow \Delta h \in R^1_{n+1} \). Then \(h \) has the form
\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_j f(x_{i_1}, x_{i_2}, \ldots, x_{i_{j+1}})
\]
for some \(j \in \{2, 3, \ldots, n+1\} \) and so
\[
\Delta h(x_1, x_2, \ldots, x_{n+1}) = \frac{h(x_1, x_3, \ldots, x_{n+2}) - h(x_2, x_3, \ldots, x_{n+2})}{x_1 - x_2}
\]
vansishes if \(i_1 > 1 \) (and then \(\Delta h \) is the null function), while if \(i_1 = 1 \) it equals
\[
\Phi_j f(x_1, x_{i_1+1}, \ldots, x_{i_{j+1}+1}) - \Phi_j f(x_2, x_{i_2+1}, \ldots, x_{i_{j+1}+1}) = \frac{x_1 - x_2}{x_1 - x_2}
\]
and it follows that \(\Delta h \in S_{n+1} \subset R^1_{n+1} \). For the induction step assume \(\Delta R^k_{n+1} \subset R^k_{n+1} \); it suffices to prove that \(\Delta S_n^k \subset R^k_{n+1} \). So let \(h \in S_n^k \) and write \(h = h_1 H \), where \(h_1 \in S_n \), \(H \in S^k_{n-1} \). By the Product Rule 2.1 we have
\[
\Delta h(x_1, \ldots, x_{n+2}) = h_1(x_2, x_3, \ldots, x_{n+2}) \Delta H(x_1, x_2, \ldots, x_{n+2}) + H(x_1, x_3, \ldots, x_{n+2}) \Delta h_1(x_1, x_2, \ldots, x_{n+2}).
\]
The fact that \(h_1 \in S_n \) makes
\[
(x_1, x_2, \ldots, x_{n+2}) \mapsto h_1(x_1, x_2, \ldots, x_{n+2})
\]
into an element of \(S_{n+1}^k \). Similarly, since \(H \in S^k_{n-1} \), the function
\[
(x_1, x_2, \ldots, x_{n+2}) \mapsto H(x_2, x_3, \ldots, x_{n+2})
\]
is in \(S_{n+1}^{k-1} \). By our first induction step, \(\Delta h_1 \in R^1_{n+1} \) and by the induction hypothesis \(\Delta H \in R^k_{n+1} \). Hence,
\[
\Delta h \in S_{n+1} R^k_{n+1} + S_{n+1}^{k-1} R^1_{n+1} \subset R^k_{n+1} R^1_{n+1} + R^1_{n+1} R^1_{n+1} \subset R^k_{n+1}.
\]

Lemma 2.3. Let \(f, n, S_n, k, R^k_n \) be as in the previous lemma. Let \(f(X) \subset Y \subset K \) where \(Y \) has no isolated points. Let \(g : Y \to K \) be a \(C^n \)-function. Let \(B_n \) be the set of the following functions defined on \(\nabla^{n+1} X \).
\[
\begin{align*}
(x_1, \ldots, x_{n+1}) & \mapsto \Phi_1 g(f(x_{i_1}), f(x_{i_2})) & (1 \leq i_1 < i_2 \leq n+1) \\
(x_1, \ldots, x_{n+1}) & \mapsto \Phi_2 g(f(x_{i_1}), f(x_{i_2}), f(x_{i_3})) & (1 \leq i_1 < i_2 < i_3 \leq n+1) \\
& \vdots \quad \vdots \\
(x_1, \ldots, x_{n+1}) & \mapsto \Phi_n g(f(x_1), f(x_2), \ldots, f(x_{n+1})).
\end{align*}
\]
Let A_n be the additive group generated by B_nR^n. Then

$$\Delta A_n \subset A_{n+1}.$$

Proof. We prove: $h \in B_nR^n \Rightarrow \Delta h \in A_{n+1}$. Write $h = b\tau$ where $b \in B_n$, $\tau \in R^n$. By the Product Rule 2.1 we have for all $(x_1, x_2, \ldots, x_{n+2}) \in \nabla^{n+2}X$

$$\Delta h(x_1, x_2, \ldots, x_{n+2}) = b(x_2, x_3, \ldots, x_{n+2})\Delta \tau(x_1, x_2, \ldots, x_{n+2}) +$$

$$+ \tau(x_1, x_3, \ldots, x_{n+2})\Delta b(x_1, x_2, \ldots, x_{n+2}).$$

We have:

(i) $b \in B_n$ so $(x_1, \ldots, x_{n+2}) \mapsto b(x_2, x_3, \ldots, x_{n+1})$ is in B_{n+1}.

(ii) $\tau \in R^n$ so $(x_1, x_2, \ldots, x_{n+2}) \mapsto \tau(x_1, x_3, \ldots, x_{n+1})$ is in R^{n+1} (in the previous proof

we had $r \in S^k \Rightarrow$ the map $(x_1, \ldots, x_{n+2}) \mapsto r(x_1, x_3, \ldots, x_{n+1})$ is in S^k_{n+1}, and (ii)

follows from this).

(iii) $\tau \in R^n$ so $\Delta \tau \in R^n_{n+1}$ (Previous Lemma).

(iv) b has the form

$$(x_1, x_2, \ldots, x_{n+1}) \mapsto \overline{f}_j g(f(x_i), \ldots, f(x_{i+j-1}))$$

for some $j \in \{2, \ldots, n+1\}$ and so

$$\Delta b(x_1, x_2, \ldots, x_{n+2}) = \frac{b(x_1, x_3, x_4, \ldots, x_{n+2}) - b(x_2, x_3, \ldots, x_{n+2})}{x_1 - x_2}$$

vanishes if $i_1 > 1$ (and then Δb is the null function), while if $i_1 = 1$ it equals

$$\overline{f}_j g(f(x_1), f(x_{i+1}), \ldots, f(x_{i+j-1+1})) - \overline{f}_j g(f(x_2), f(x_{i+1}), \ldots, f(x_{i+j-1+1}))$$

$$\quad = \overline{f}_{j+1} g(f(x_1), f(x_2), f(x_{i+1}), \ldots, f(x_{i+j-1+1})) f_1 f(x_1, x_2).$$

(if $f(x_1) = f(x_2)$ we have 0 at both sides). So we see that $\Delta b \in B_{n+1}R^n_{n+1}$.

Combining (i) - (iv) we get $\Delta h \in B_{n+1}R^n_{n+1} + R^n_{n+1}B_{n+1}R^n_{n+1} \subset B_{n+1}R^n_{n+1} + B_{n+1} \cdot$

$R^n_{n+1} \subset A_{n+1}$.

Corollary 2.4. With the notations as in the previous lemma we have $\Phi_n(g \circ f) \in A_n$

$(n \in \mathbb{N})$.

Proof. We proceed by induction on n. For the case $n = 1$ we write, for $(x_1, x_2) \in \nabla^2 X$

$$\Phi_1(g \circ f)(x_1, x_2) = (x_1 - x_2)\overline{1}(g(f(x_1)) - g(f(x_2))) = \overline{f}_1 g(f(x_1), f(x_2)) f_1 f(x_1, x_2).$$
Hence, $\Phi_1(g \circ f) \in B_1S_1 \subset B_1R \subset A_1$. To prove the step $n \to n + 1$ observe that by the induction hypothesis, $\Phi_n(g \circ f) \in A_n$. By Lemma 2.3, $\Phi_{n+1}(g \circ f) = \Delta \Phi_n(g \circ f) \in A_{n+1}$.

Remark. From Corollary 2.4 it follows easily that the composition of two C^n-functions is again a C^n-function, a result that already was obtained in [3], 77.5.

Proposition 2.5. (Continuity of $g \to g \circ f$) Let $n \in \mathbb{N}_0$, let $f \in C^n(X \to K)$ and let $g \in C^n(Y \to K)$ where Y has no isolated points, $Y \supset f(X)$. Then $\|g \circ f\|_{n,X} \leq \|g\|_{n,Y} \max_{0 \leq j \leq n} \|f\|_{j,X}$.

Proof. We may assume $\|g\|_{n,Y} < \infty$. It suffices to prove $\|\Phi_n(g \circ f)\|_{v^{n+1},X} \leq \|g\|_{n,Y}\|f\|_{n,X}^n$. Now $\|\Phi_0(g \circ f)\|_{v^1,X} = \max_{x \in X} |g(f(x))| \leq \|g\|_{0,Y}\|f\|_{0,X}$ which proves the case $n = 0$. For $n \geq 1$ we apply Corollary 2.4 which says that $\Phi_n(g \circ f) \in A_n$ i.e. $\Phi_n(g \circ f)$ is a sum of functions in B_nS_n. By the definition of B_n we have

$$h \in B_n \Rightarrow \|h\|_{v^{n+1},X} \leq \|g\|_{n,Y}$$

Similarly

$$k \in S_n \Rightarrow \|k\|_{v^{n+1},X} \leq \max_{1 \leq i \leq n} \|\Phi_i f\|_{v^{i+1},X} \leq \|f\|_{n,X}$$

so that

$$k \in S_n \Rightarrow \|k\|_{v^{n+1},X} \leq \|f\|_{n,X}$$

Combination of (*) and (**) yields $\|\Phi_n(g \circ f)\|_{v^{n+1},X} \leq \|g\|_{n,Y}\|f\|_{n,X}^n$.

Proposition 2.5 enables us to prove

Proposition 2.6. Let $n \in \mathbb{N}_0$ and let A be a closed subalgebra of $C^n(X \to K)$. Suppose A separates the points of X and contains the constant functions. Then A contains all locally constant functions $X \to K$.

Proof. 1. We first prove that $f \in A$, $U \subset K$, U clopen implies $\xi_{f^{-1}(U)} \in A$. In fact, $f(X)$ is compact so there exist a $\delta \in (0,1)$ and finitely many disjoint balls B_1, \ldots, B_m of radius δ covering $f(X)$ where, say, B_1, \ldots, B_q lie in U, and B_{q+1}, \ldots, B_m are in $K \setminus U$. Let $\epsilon > 0$. By the Key Lemma 1.2 there exists, for each $i \in \{1, \ldots, m\}$ a polynomial P_i such that $\|\xi_{B_i} - P_i\|_{n,B} < \epsilon$, where $B := \bigcup_{i=1}^m B_i$. Then $P := \sum_{i=1}^m P_i$ is a polynomial and

$$\|P - \xi_U\|_{n,B} = \|P - \xi_{B^0}\|_{n,B} = \|\sum_{i=1}^m (P_i - \xi_{B_i})\|_{n,B} < \epsilon,$$

where $B^0 := \bigcup_{i=1}^q B_i$.

By Proposition 2.5

$$\|(P - \xi_U) \circ f\|_{n,X} \leq \|P - \xi_U\|_{n,B} \max_{0 \leq j \leq n} \|f\|_{j,X} \leq \epsilon \max_{0 \leq j \leq n} \|f\|_{j,X}$$
and we see that there exists a sequence P_1, P_2, \ldots of polynomials such that
\[\| P_k \circ f - \xi U \circ f \|_{n, X} \to 0. \]
Since A is an algebra with an identity we have $P_k \circ f \in A$ for all k. Then $\xi_{f^{-1}(U)} = \xi U \circ f = \lim_{k \to \infty} P_k \circ f \in A$.

2. Now consider
\[B := \{ V \subset X, \xi U \in A \}. \]
It is very easy to see that B is a ring of clopen subsets of X and that B covers X. To show that B separates the points of X let $x \in X, y \in X, x \neq y$. Then there is an $f \in A$ for which $f(x) \neq f(y)$. Set $U := \{ \lambda \in K : |\lambda - f(x)| < |f(x) - f(y)| \}$. Then U is clopen in K. By the first part of the proof, $f^{-1}(U) \in B$. But $x \in f^{-1}(U)$ whereas $y \notin f^{-1}(U)$.

By [1], Exercise 2.11 B is the ring of all clopens of X. It follows easily that all locally constant functions are in A.

To arrive at the Weierstrass-Stone Theorem 2.10 we need a final technical lemma.

Lemma 2.7. Let $a_1, \ldots, a_m \in X$, let $\delta_1, \ldots, \delta_m$ be in $(0, 1)$ such that $B(a_1, \delta_1), \ldots, B(a_m, \delta_m)$ form a disjoint covering of X. Let $n \in \mathbb{N}_0$, $h \in C^n(X \to K)$ and suppose $D_j h(a_i) = 0$ and $|\mathcal{F}_{n-j} D_j h(x_1, \ldots, x_{n-j+1})| \leq \varepsilon$ for all $i \in \{1, \ldots, m\}$, $x_1, \ldots, x_{n+1} \in B(a_i, \delta_i) \cap X$, $j \in \{0, 1, \ldots, n\}$. Then $\|h\|_{n, X} \leq \varepsilon$.

Proof. We first prove that $\|h\|_{n, X} \leq \varepsilon$ (see Proposition 0.4(iii)). Let $i \in \{1, \ldots, m\}$. Set $B_i = B(a_i, \delta_i)$. By Taylor's formula (Proposition 0.3(iv)) we have for $x \in X \cap B_i$:
\[|h(x)| = \sum_{s=0}^{n-1} \binom{n}{s} (x - a_i)^s D_s h(a_i) + (x - a_i)^n \rho_1 h(x, a_i) \leq |x - a_i^n| |\mathcal{F}_n h(x, a_i, a_i, \ldots, a_i)| \leq \delta_1^n \varepsilon. \]
Similarly we have for $j \in \{0, \ldots, n-1\}$ and $x \in X \cap B_i : |D_j h(x)| = \sum_{s=0}^{n-1-j} \binom{n-j}{s} D_j D_j h(a_i) + (x - a_i)^{n-j} \rho_1 (D_j h)(x, a_i)$. Now using Proposition 0.3(iii) we see that $D_j D_j h(a_i) = 0$ so that
\[|D_j h(x)| = |x - a_i|^{n-j} |\mathcal{F}_{n-j} D_j h(x, a_i, a_i, \ldots, a_i)| \leq \delta_1^{n-j} \varepsilon. \]

It follows that $\|h\|_X, \|D_1 h\|_X, \ldots, \|D_{n-1} h\|_X$ are all $\leq \varepsilon$. Now let $x, y \in X$. If x, y are in the same B_i then $|\rho_1 h(x, y)| = |\mathcal{F}_n h(x, y, y, \ldots, y)| \leq \varepsilon$ by assumption. If $x \in B_i$, $y \in B_j$ and $i \neq j$ then $|x - y| \geq \delta := \max(\delta_1, \delta_2)$ and by Taylor's formula
\[h(x) = \sum_{i=0}^{n-1} (x - y)^i D_i h(y) + (x - y)^n \rho_1 h(x, y) \]
we obtain, using (*),
\[|\rho_1 h(x, y)| \leq \frac{|h(x) - h(y)|}{|(x - y)^n|} \vee \frac{|D_1 h(y)|}{|x - y|^{n-1}} \vee \ldots \vee \frac{|D_{n-1} h(y)|}{|x - y|} \]
\[\leq \delta^n \varepsilon \vee \frac{\delta^n \varepsilon}{\delta^{n-1}} \vee \ldots \vee \frac{\delta \varepsilon}{\delta} \leq \varepsilon. \]
and we have proved $\|h\|_{n,X} \leq \varepsilon$.

Now to prove that even $\|h\|_{n,X} \leq \varepsilon$ observe that by Proposition 0.4(iii)

$$\|h\|_{n,X} = \|h\|_{n,X}^* \vee \|D_1 h\|_{n-1,X}^* \vee \cdots \vee \|D_n h\|_{0,X}^*.$$

To prove, for example, that $\|D_1 h\|_{n-1,X}^* \leq \varepsilon$ we observe that by Proposition 0.4(iii) and we have proved $|v| < \varepsilon$.

To prove, for example, that $\|D_1 h\|_{n-1,X}^* \leq \varepsilon$ we observe that by Proposition 0.4(iii)

$$\|D_1 h\|_{n-1,X}^* = \|D_1 h\|_{n-1,X}^* \vee |v| \vee \cdots \vee \|D_n h\|_{0,X}^*$$

by assumption. So the conditions of our Lemma (with $D_1 h, n-1$ in place of h, n respectively) are satisfied and by the first part of the proof we may conclude that $\|D_1 h\|_{n-1,X}^* \leq \varepsilon$. In a similar way we prove that $\|D_2 h\|_{n-2,X}^* \leq \varepsilon, \ldots, \|D_n h\|_{0,X}^* \leq \varepsilon$ and it follows that $\|h\|_{n,X} \leq \varepsilon$.

Proposition 2.8. Let $n \in \mathbb{N}_0$ and let A be a closed subalgebra of $C^n(X \to K)$ containing the locally constant functions. Let $g \in C^n(X \to K)$ and suppose for each $a \in X$ there exists an $f_a \in A$ with $D^i g(a) = D^i f_a(a)$ for $i \in \{0,1,\ldots,n\}$. Then $g \in A$.

Proof. Let $\varepsilon > 0$. For each $a \in X$ choose an $f_a \in A$ with $f_a(a) = g(a)$, $D_1 f_a(a) = D_1 g(a), \ldots, D_n f_a(a) = D_n g(a)$. By continuity there exists a $\delta_a > 0$ such that, with $h_a := f_a - g$, \[|\mathbb{F}_{n-1-j} D_j h_a(x_1, \ldots, x_{n-j})| = |(j+1)| \mathbb{F}_{n-1-j} D_{j+1} h_a(x_1, \ldots, x_{n-j})| \leq \varepsilon \]

by assumption. So the conditions of our Lemma (with $D_1 h, n-1$ in place of h, n respectively) are satisfied and by the first part of the proof we may conclude that $\|D_1 h\|_{n-1,X}^* \leq \varepsilon$. In a similar way we prove that $\|D_2 h\|_{n-2,X}^* \leq \varepsilon, \ldots, \|D_n h\|_{0,X}^* \leq \varepsilon$ and it follows that $\|h\|_{n,X} \leq \varepsilon$.

Remark. It follows directly that the local polynomial functions $X \to K$ form a dense subset of $C^n(X \to K)$.

Proposition 2.9. Let $n \in \mathbb{N}$ and let A be a K-subalgebra of $C^n(X \to K)$ containing the constant functions. Suppose $f'(a) \neq 0$ for some $f \in A$, $a \in X$. Then there is a $g \in A$ with $g(a) = 0$, $g'(a) = 1$ and $D_2 g(a) = D_3 g(a) = \cdots = D_n g(a) = 0$.

Proof. By considering the function $f'(a)^{-1}(f - f(a))$ it follows that we may assume that $f(a) = 0, f'(a) = 1$. Then

$$(*) \quad f = (X - a)h$$
where \(h \) is continuous, \(h(a) = 1 \). To obtain the statement by induction with respect to \(n \) we only have to consider the induction step \(n - 1 \to n \) and, to prove that, we may assume that \(D_2 f(a) = \cdots = D_{n-1} f(a) = 0 \). From (*) we obtain

\[
f^n = (X - a)^n h^n
\]

and by uniqueness of the Taylor expansion of the \(C^n \)-function \(f^n \) we obtain \(f^n(a) = D_1 f^n(a) = \cdots = D_{n-1} f^n(a) = 0 \) and \(D_n f^n(a) = h^n(a) = 1 \). We see that \(g := f - D_n f(a) f^n \) is in \(A \) and that \(g(a) = 0, g'(a) = 1, D_2 g(a) = \cdots = D_{n-1} g(a) = 0 \) and \(D_n g(a) = D_n f(a) - D_n f(a) D_n f^n(a) = 0 \).

Theorem 2.10. (Weierstrass-Stone Theorem for \(C^n \)-functions). Let \(n \in \mathbb{N}_0 \) and let \(A \) be a closed subalgebra that separates the points of \(A \) and that contains the constant functions. Suppose also that for each \(a \in X \) there exists an \(f \in A \) with \(f(a) \neq 0 \). Then \(A = C^n(X \to K) \).

Proof. By Proposition 2.9, for each \(a \in X \) there exists an \(f \in A \) with \(f(a) = 0 \), \(f'(a) = 1 \), \(D_i f(a) = 0 \) for \(i \in \{2, \ldots, n\} \). The function \(g := \mathcal{X} \) satisfies \(g(a) = 0 \), \(g'(a) = 1 \), \(D_i g(a) = 0 \) for \(i \in \{2, \ldots, n\} \) so applying Proposition 2.8 (observe that \(A \) contains the locally constant functions by Proposition 2.6) we obtain that \(\mathcal{X} \in A \). But then all polynomials are in \(A \) and \(A = C^n(X \to K) \) by the Weierstrass Theorem 1.4.

Remarks.

1. The case \(n = 0 \) yields, at least for those \(X \) that are embeddable into \(K \), the well known Kaplansky Theorem proved in [1], 6.15.

2. We leave it to the reader to establish a \(C^\infty \)-version of Theorem 2.10.

REFERENCES

