The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/60073

Please be advised that this information was generated on 2019-10-13 and may be subject to change.
THE WEIERSTRASS-STONE APPROXIMATION THEOREM
FOR \textit{p-ADIC} \textit{C^n}-FUNCTIONS

J. Araujo and Wim H. Schikhof

Abstract.
Let \(K \) be a non-Archimedean valued field. Then, on compact subsets of \(K \), every \(K \)-valued \(C^n \)-function can be approximated in the \(C^n \)-topology by polynomial functions (Theorem 1.4). This result is extended to a Weierstrass-Stone type theorem (Theorem 2.10).

INTRODUCTION
The non-archimedean version of the classical Weierstrass Approximation Theorem - the case \(n = 0 \) of the Abstract - is well known and named after Kaplansky ([1], 5.28). To investigate the case \(n = 1 \) first let us return to the Archimedean case and consider a real-valued \(C^1 \)-function \(f \) on the unit interval. To find a polynomial function \(P \) such that both \(|f - P| \) and \(|f' - P'| \) are smaller or equal than a prescribed \(\varepsilon > 0 \) one simply can apply the standard Weierstrass Theorem to \(f' \) obtaining a polynomial function \(Q \) for which \(|f' - Q| \leq \varepsilon \). Then \(x \mapsto P(x) := f(0) + \int_0^x Q(t) \, dt \) solves the problem.

Now let \(f : X \rightarrow K \) be a \(C^1 \)-function where \(K \) is a non-archimedean valued field and \(X \subseteq K \) is compact.

Lacking an indefinite integral the above method no longer works. There do exist continuous linear antiderivations ([3], §64) but they do not map polynomials into polynomials ([3], Ex. 30.C). A further complicating factor is that the natural norm for \(C^1 \)-functions on \(X \) is given by

\[
\|f\| = \max\{|f(x)| : x \in X\} \vee \max\{|f'(x)| : x \in X\}
\]

rather than the more classical formula

\[
\|f\| = \max\{|f(x) : x \in X\} \vee \max\{|f'(x)| : x \in X\}.
\]

(Observe that in the real case both formulas lead to the same norm thanks to the Mean Value Theorem, see [3], §§26,27 for further discussions.)
Thus, to obtain non-archimedean C^n-Weierstrass-Stone Theorems for $n \in \{1, 2, \ldots\}$ our methods will necessarily deviate from the 'classical' ones.

0. PRELIMINARIES

1. Throughout K is a non-archimedean complete valued field whose valuation $|\cdot|$ is not trivial. For $a \in K$, $r > 0$ we write $B(a, r) := \{x \in K : |x - a| \leq r\}$, the 'closed' ball about a with radius r. 'Clopen' is an abbreviation for 'closed and open'. The function $z \mapsto x (x \in K)$ is denoted X. The K-valued characteristic function of a subset Y of K is written χ_Y. For a set Z, a function $f : Z \to K$ and a set $W \subset Z$ we define $\|f\|_W := \sup\{|f(z)| : z \in W\}$ (allowing the value ∞). The cardinality of a set Γ is $\#\Gamma$. $N_0 := \{0, 1, 2, \ldots\}, N := \{1, 2, 3, \ldots\}$.

We now recall some facts from [2], [3] on C^n-theory.

2. For a set $Y \subset K$, $n \in \mathbb{N}$ we set $\nabla^n Y := \{(y_1, y_2, \ldots, y_n) \in Y^n : i \neq j \Rightarrow y_i \neq y_j\}$. For $f : Y \to K$, $n \in N_0$ we define its nth difference quotient $\Phi_n f : \nabla^{n+1} Y \to K$ inductively by $\Phi_0 f := f$ and the formula

$$\Phi_n f(y_1, \ldots, y_{n+1}) = \frac{\Phi_{n-1} f(y_1, y_3, \ldots, y_{n+1}) - \Phi_{n-1} f(y_2, y_3, \ldots, y_{n+1})}{y_1 - y_2}$$

f is called a C^n-function if $\Phi_n f$ can be extended to a continuous function on Y^{n+1}. The set of all C^n-functions $Y \to K$ is denoted $C^n(Y \to K)$. The function $f : Y \to K$ is a C^∞-function if it is in $C^\infty(Y \to K) := \bigcap_{n=0}^{\infty} C^n(Y \to K)$. The space $C^0(Y \to K)$, consisting of all continuous functions $Y \to K$ is sometimes written as $C(Y \to K)$.

FROM NOW ON IN THIS PAPER X IS A NONEMPTY COMPACT SUBSET OF K WITHOUT ISOLATED POINTS.

3. Since X has no isolated points we have for an $f \in C^n(X \to K)$ that the continuous extension of $\Phi_n f$ to X^{n+1} is unique; we denote this extension by $\overline{\Phi}_n f$. Also we write

$$D_n f(a) := \overline{\Phi}_n f(a, a, \ldots, a) \quad (a \in X)$$

The following facts are proved in [2] and [3].

Proposition 0.3.

(i) For each $n \in N_0$ the space $C^n(X \to K)$ is a K-algebra under pointwise operations.

(ii) $C^0(X \to K) \supset C^1(X \to K) \supset \ldots$
(iii) If \(f \in C^n(X \to K) \) then \(f \) is \(n \) times differentiable and \(j!D_jf = f^{(j)} \) for each \(j \in \{0,1,\ldots,n\} \). More generally, if \(i,j \in \{0,1,\ldots,n\} \), \(i+j \leq n \) then \(\binom{i+j}{i}D_iD_jf = D_{i+j}f \).

(iv) If \(f \in C^n(X \to K) \) then for \(x,y \in X \) we have Taylor’s formula

\[
 f(x) = f(y) + (x-y)D_i f(y) + \cdots + (x-y)^{n-1} D_{n-1} f(y) + (x-y)^n \rho_1 f(x,y),
\]

where \(\rho_1 f(x,y) = \Phi_n f(x,y,y,\ldots,y) \).

4. Since \(X \) is compact the difference quotients \(\Phi_i f \) \((0 \leq i \leq n)\) are bounded if \(f \in C^n(X \to K) \). We set

\[
 \|f\|_{n,X} := \max \{ \|\Phi_i f\|_{n+i,X} : 0 \leq i \leq n \}.
\]

Then \(\|f\|_{0,X} = \|f\|_X \). We quote the following from [2] and [3]. Recall that a function \(f : X \to K \) is a local polynomial if for every \(a \in X \) there is a neighbourhood \(U \) of \(a \) such that \(f \mid X \cap U \) is a polynomial function.

Proposition 0.4. Let \(n \in \mathbb{N}_0 \).

(i) The function \(\| \|_{n,X} \) is a norm on \(C^n(X \to K) \) making it into a \(K \)-Banach algebra.

(ii) The local polynomials form a dense subset of \(C^n(X \to K) \).

(iii) The function

\[
 f \mapsto \|f\|_{n,X} := \max_{0 \leq i \leq n-1} \|D_i f\|_X \vee \|\rho_1 f\|_{X^3}
\]

(see Proposition 0.3 (iv)) also is a norm on \(C^n(X \to K) \). We have

\[
 \|f\|_{n,X} = \max \{ \|D_i f\|_{n-i,X} : 0 \leq i \leq n \} \quad (f \in C^n(X \to K)).
\]

Remarks

1. Proposition 0.4 (ii) will also follow from Proposition 2.8.

2. In general \(\| \|_{n,X} \) is not equivalent to \(\| \|_{n,X} \) for \(n \geq 3 \) (see [3], Example 83.2).
1 THE WEIERSTRASS THEOREM FOR C^2-FUNCTIONS

The following product rule for difference quotients is easily proved by induction with respect to j.

Let $f, g : X \to K$, let $j \in \mathbb{N}_0$. Then for all $(x_1, \ldots, x_{j+1}) \in \nabla^{j+1}X$ we have

$$
\Phi_j(fg)(x_1, \ldots, x_{j+1}) = \sum_{k=0}^{j} \Phi_k f(x_1, \ldots, x_{k+1}) \Phi_{j-k} g(x_{k+1}, \ldots, x_{j+1}).
$$

Or, less precise,

$$
\Phi_j(fg)(x_1, \ldots, x_{j+1}) = \sum_{k=0}^{j} \Phi_k f(x_k) \Phi_{j-k} g(u_{j-k})
$$

for certain $x_k \in \nabla^{k+1}X$, $u_{j-k} \in \nabla^{j-k+1}X$.

In the sequel we need an extension of this formula to finite products of functions. The proof is straightforward by induction with respect to N.

Lemma 1.1. (Product Rule) Let $h_1, \ldots, h_N : X \to K$, let $j \in \mathbb{N}_0$. Then for all $(x_1, \ldots, x_{j+1}) \in \nabla^{j+1}X$ we have

$$
\Phi_j(\prod_{s=1}^{N} h_s)(x_1, \ldots, x_{j+1}) = \sum_{\sigma \subseteq \{1, \ldots, N\}} \prod_{s=1}^{N} \Phi_{j_{\sigma,s}} h_s(z_{\sigma,s})
$$

where the sum is taken over all $\sigma := (j_1, \ldots, j_N) \in \mathbb{N}_N^N$ for which $j_1 + \cdots + j_N = j$ and where $z_{\sigma,s} \in \nabla^{j_{\sigma,s}}X$ for each $s \in \{1, \ldots, N\}$. (In fact, $z_{\sigma,1} = (x_1, \ldots, x_{j_1+1})$, $z_{\sigma,2} = (x_{j_1+1}, \ldots, x_{j_1+j_2+1}), \ldots, z_{\sigma,N} = (x_{j_1+\cdots+j_{N-1}+1}, \ldots, x_{j_1+\cdots+j_N})$.)

The following key lemma grew out of [1], 5.28.

Lemma 1.2. Let $0 < \delta < 1$, $0 < \varepsilon < 1$, let $B = B_0 \cup B_1 \cup \cdots \cup B_m$ where B_0, \ldots, B_m are pairwise disjoint 'closed' balls in K of radius δ. Then, for each $n \in \{0, 1, \ldots\}$ there exists a polynomial function $P : K \to K$ such that $\|P - \xi_B\|_{n,B} \leq \varepsilon$.

Proof. We may assume $0 \in B_0$. Choose $c_1 \in B_1, \ldots, c_m \in B_m$; we may assume that $|c_1| \leq |c_2| \leq \cdots \leq |c_m|$. Then $\delta < |c_1|$. We shall prove the following statement by induction with respect to n.

Let $k \in \mathbb{N}$ be such that $(\delta/|c_1|)^k \leq \varepsilon \delta^n$, $k > n$. Let $t_1, t_2, \ldots, t_m \in \mathbb{N}$ be such that for all $\ell \in \{1, \ldots, m\}$

$$
\left|\frac{c_{\ell}^{tk_1}}{c_1^{tk_1}}\right| \leq \left|\frac{c_2^{tk_2}}{c_1^{tk_2}}\right| \cdots \leq \left|\frac{c_{\ell-1}^{tk_{\ell-1}}}{c_1^{tk_{\ell-1}}}\right| \left(\frac{\delta}{|c_1|}\right)^{t_\ell} \leq \varepsilon \delta^n
$$
(It is easily seen that such \(k, t_1, \ldots, t_m \) exist since \(\delta/|c_i| < 1 \).) Then the formula

\[
P(x) = \prod_{i=1}^{m} \left(1 - \left(\frac{x}{c_i}\right)^k\right)^{t_i}
\]
defines a polynomial function \(P : K \to K \) for which

\[
\|P - \xi_{B_0}\|_{n,B} \leq \varepsilon.
\]

The case \(n = 0 \) is proved in [1], 5.28. To prove the step \(n - 1 \to n \) we first observe that from the induction hypothesis (with \(\varepsilon \) replaced by \(\varepsilon \delta \)) it follows that

\[
\|P - \xi_{B_0}\|_{n-1,B} \leq \varepsilon \delta
\]

So it remains to be shown that

\[
|\Phi_n(P - \xi_{B_0})(x_1, \ldots, x_{n+1})| \leq \varepsilon
\]

for all \((x_1, \ldots, x_{n+1}) \in \nabla^{n+1} B \). Now, if \(|x_i - x_j| > \delta \) for some \(i,j \in \{1, \ldots, n+1\} \) we have, using (2),

\[
|\Phi_n(P - \xi_{B_0})(x_1, \ldots, x_{n+1})| = |x_i - x_j|^{-1} |\Phi_{n-1}(P - \xi_{B_0})(x_1, \ldots, x_{n-1}, x_{j+1}, \ldots, x_{n+1}) - \Phi_{n-1}(P - \xi_{B_0})(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n+1})| \leq \delta^{-1} \cdot \varepsilon \delta = \varepsilon.
\]

So this reduces the proof of (3) to the case where \(|x_i - x_j| \leq \delta \) for all \(i,j \in \{1, \ldots, n+1\} \); in other words we may assume that \(x_1, \ldots, x_{n+1} \) are all in the same \(B_\ell \) for some \(\ell \in \{0,1, \ldots, m\} \). But then, after observing that \(n > 1 \), we have \(\Phi_n \xi_{B_0}(x_1, \ldots, x_{n+1}) = 0 \) so it suffices to prove the following.

If \(\ell \in \{0,1, \ldots, m\} \) and \(x_1, \ldots, x_{n+1} \in B_\ell \) are pairwise distinct then

\[
|\Phi_n P(x_1, \ldots, x_{n+1})| \leq \varepsilon
\]

To prove it we introduce, with \(\ell \in \{1, \ldots, m\} \) fixed, the constants \(M_i \) (\(i \in \{1, \ldots, n\} \)) by

\[
M_i := \begin{cases}
1 & \text{if } i > \ell \\
\delta/|c_i| & \text{if } i = \ell \\
|c_\ell/c_i|^k & \text{if } i < \ell
\end{cases}
\]

and use the following three steps.

Step 1. For each \(j \in \{0,1, \ldots, n\}, i \in \{1, \ldots, n\} \) we have

\[
|\Phi_j(1 - \left(\frac{x}{c_i}\right)^k)|_{\nabla^{j+1} B_\ell} \leq \begin{cases}
1 & \text{if } \ell = 0, j = 0 \\
\delta^{-j} \left(\frac{\delta}{|c_\ell|}\right)^k & \text{if } \ell = 0, j > 0 \\
\delta^{-j} M_i & \text{if } \ell > 0.
\end{cases}
\]
Proof.

a. The case \(j = 0 \). Then for \(x \in B_\ell \) we have

- if \(i > \ell \) then \(|1 - \left(\frac{x}{c_i} \right)^k| = 1 \)
- if \(i = \ell \) then \(|1 - \left(\frac{x}{c_i} \right)^k| = \left| \frac{c_i - x}{c_i} \right|^k \leq \frac{\delta^k}{|c_i|^k} \leq \frac{\delta}{|c_i|} \)
- if \(i < \ell \) then \(|1 - \left(\frac{x}{c_i} \right)^k| = \left| \frac{c_i}{c_i} \right|^k = \left| \frac{c_i}{c_i} \right|^k \)

and the statement follows.

b. The case \(j > 0 \). Then \(\Phi_j(1) = 0 \) so that

\[
\Phi_j(1 - \left(\frac{X}{c_i} \right)^k) = \frac{1}{c_i^k} \Phi_j(X^k)
\]

Let \((x_1, \ldots, x_{j+1}) \in \nabla^{j+1} B_\ell \). By the Product Rule 1.1, \(\Phi_j(X^k)(x_1, \ldots, x_{j+1}) \) is a sum of terms of the form \(\prod_{s=1}^k (\Phi_j, X)(z_s) \). Such a term is 0 if one of the \(j_s \) is > 1, so we only have to deal with \(j_s = 0 \) (then \(\Phi_j, X = X \)) or \(j_s = 1 \) (then \(\Phi_j, X = 1 \)). The latter case occurs \(j \) times (as \(\sum j_s = j \)) and it follows that

\[
\prod_{s=1}^k (\Phi_j, X)(z_s)
\]

is a product of \(k-j \) distinct terms taken from \(\{x_1, \ldots, x_{j+1}\} \) (observe that, indeed, \(j < k \) since \(j \leq n < k \)), so its absolute value is \(\leq |c_i|^{k-j} \). It follows that \(\|\Phi_j(1 - \left(\frac{X}{c_i} \right)^k)\|_{\nabla^{j+1} B_\ell} \leq |c_i|^{k-j}/|c_i|^k \) from which we conclude

- if \(\ell = 0 \) : \(|c_i|^{k-j}/|c_i|^k \leq \delta^{k-j}/|c_i|^k = \delta^{-j}(\delta/|c_i|)^k \),
- if \(i > \ell > 0 \) : \(|c_i|^{k-j}/|c_i|^k \leq |c_i|^{k-j} \leq \delta^{-j} = \delta^{-j} M_i \),
- if \(i = \ell > 0 \) : \(|c_i|^{k-j}/|c_i|^k \leq |c_i|^{k-j} \leq \delta^{-j}(\delta/|c_i|)^k \leq \delta^{-j} M_i \),
- if \(i < \ell \) : \(|c_i|^{k-j}/|c_i|^k \leq |c_i|^{k-j}/|c_i|^k \leq \delta^{-j} M_i \).

and step 1 is proved.

Step 2. For each \(j \in \{0, 1, \ldots, n\}, i \in \{1, \ldots, n\} \) we have

\[
\|\Phi_j(1 - \left(\frac{X}{c_i} \right)^k)\|_{\nabla^{j+1} B_\ell} \leq \begin{cases} 1 & \text{if } \ell = 0, j = 0 \\ \delta^{-j}(\delta/|c_i|)^k & \text{if } \ell = 0, j > 0 \\ \delta^{-j} M_i^k & \text{if } \ell > 0 \end{cases}
\]

Proof. The case \(j = 0 \) follows directly from Step 1, part a, so assume \(j > 0 \). By the Product Rule 1.1 applied to \(h_s = 1 - \left(\frac{X}{c_i} \right)^k \) for all \(s \in \{1, \ldots, t_i\} \) we have for \((x_1, \ldots, x_{j+1}) \in \nabla^{j+1} B_\ell \) that \(\Phi_j(1 - \left(\frac{X}{c_i} \right)^k)(x_1, \ldots, x_{j+1}) \) is a sum of terms of the form

\[
(5) \quad \prod_{s=1}^{t_i} \Phi_j(1 - \left(\frac{X}{c_i} \right)^k)(z_s)
\]
where \(j_1 + \cdots + j_s = j \). If \(\ell = 0 \) it follows from Step 1 that the absolute value of (5) is \(\leq \prod \delta^{-j_s \left(\frac{\ell}{|c_i|} \right)^k} \) where the product is taken over all \(s \) in the nonempty set \(\Gamma := \{ s \in \{ 1, \ldots, t_i \} : j_s > 0 \} \), so the product is \(\leq \delta^{-j \left(\frac{\ell}{|c_i|} \right)^k} \leq \delta^{-j \left(\frac{\ell}{|c_i|} \right)^k} \). If \(\ell > 0 \) it follows from Step 1 that the absolute value of (5) is \(\leq \prod_{s=1}^{t_i} \delta^{-j_s} M_i = \delta^{-j} M^i_1 \).

The statement of Step 2 follows.

Step 3. Proof of (4). Again, the Product Rule 1.1, now applied to \(h_i = (1 - \left(\frac{x}{c_i} \right)^k)^{i_1} \) for \(i \in \{ 1, \ldots, m \} \) tells us that for \((x_1, \ldots, x_{n+1}) \in \nabla^{n+1} B_\ell \) the expression \(\Phi_n P(x_1, \ldots, x_{n+1}) \) is a sum of terms of the form

\[
\prod_{i=1}^{m} \phi_{n_i} \left(1 - \left(\frac{x}{c_i} \right)^k \right)^{i_1} (y_i)
\]

where \(n_1 + \cdots + n_m = n \). If \(\ell = 0 \) we have by Step 2 that the absolute value of (6) is \(\leq \prod \delta^{n_i \left(\frac{\ell}{|c_i|} \right)^k} \) where the product is taken over \(i \) in the nonempty set \(\Gamma := \{ i : n_i \neq 0 \} \), so the product is \(\leq \delta^{-n \left(\frac{\ell}{|c_i|} \right)^k} \leq \delta^{-n \cdot \varepsilon \delta n} = \varepsilon \), where we used the assumption \(\left(\delta/|c_i| \right)^k \leq \varepsilon \delta n \). We see that \(\| \Phi_n P(x_1, \ldots, x_{n+1}) \| \leq \varepsilon \) if \((x_1, \ldots, x_n) \in B_0 \).

Now let \(\ell > 0 \). By Step 2 we have that the absolute value of (6) is \(\leq \prod \delta^{-n_i} M^i_1 = \delta^{-n} M^m_1 \cdots M^m_1 = \delta^{-n} \cdot |c_{i_1}|^{k_{i_1}} \cdots |c_{i_m}|^{k_{i_m}} \) which is \(\leq \delta^{-n} \varepsilon \delta n \) by (1). This proves (4) and the Lemma.

Corollary 1.3. For every locally constant \(f : X \to K \), for every \(n \in \mathbb{N}_0 \) and \(\varepsilon > 0 \) there exists a polynomial function \(P : K \to K \) such that \(\| f - P \|_{n,X} \leq \varepsilon \).

Proof. There exist a \(\delta \in (0,1) \), pairwise disjoint 'closed' balls \(B_1, \ldots, B_m \) of radius \(\delta \) covering \(X \) and \(\lambda_1, \ldots, \lambda_m \in K \) such that

\[
f(x) = \sum_{i=1}^{m} \lambda_i \xi_{B_i}(x) \quad (x \in X)
\]

By Lemma 1.2 there exist polynomials \(P_1, \ldots, P_m \) such that \(\| \xi_{B_i} - P_i \|_{n,X} \leq \| \xi_{B_i} - P_i \|_{n,\cup B_i} \leq \varepsilon (|\lambda_i| + 1)^{-1} \) for each \(i \in \{ 1, \ldots, m \} \). Then \(P := \sum_{i=1}^{m} \lambda_i P_i \) is a polynomial function and \(\| f - P \|_{n,X} \leq \max_i \| \lambda_i (\xi_{B_i} - P_i) \|_{n,X} \leq \max_i |\lambda_i| \varepsilon (|\lambda_i| + 1)^{-1} \leq \varepsilon \).

Theorem 1.4. (\(C^n \)-Weierstrass Theorem) For each \(n \in \mathbb{N}_0 \), \(f \in C^n(X \to K) \) and \(\varepsilon > 0 \) there exists a polynomial function \(P : K \to K \) such that \(\| f - P \|_{n,X} \leq \varepsilon \).

Proof. There is by Proposition 0.4 a local polynomial \(g : K \to K \) with \(\| f - g \|_{n,X} \leq \varepsilon \). This \(g \) has the form \(g = \sum_{i=1}^{m} Q_i h_i \) where \(Q_1, \ldots, Q_m \) are polynomials and \(h_1, \ldots, h_m \)...
are locally constant. By Corollary 1.3 we can find polynomials P_1, \ldots, P_m for which
$||h_i - P_i||_{n,X} \leq \varepsilon(||Q_i||_{n,X} + 1)^{-1}$ for each i. Then $P := \sum_{i=1}^{m} Q_i P_i$ is a polynomial and
$||g - P||_{n,X} \leq \varepsilon$. It follows that $||f - P||_{n,X} \leq \max(||f - g||_{n,X}, ||g - P||_{n,X}) \leq \varepsilon$.

Remarks.
1. In the case where $X = \mathbb{Z}_p, K \supseteq \mathbb{Q}_p$ the above Theorem 1.4 is not new: The Mahler
 base e_0, e_1, \ldots of $C(\mathbb{Z}_p \to K)$ defined by $e_m(x) = (\frac{x}{m})$ is proved in [3], §54 to be a
 Schauder base for $C^n(\mathbb{Z}_p \to K)$, for each n.
2. It follows directly from Theorem 1.4 that the polynomial functions $X \to K$ form a
 dense subset of $C^\infty(X \to K)$.

2. A WEIERSTRASS-STONE THEOREM FOR C^n-FUNCTIONS

For this Theorem (2.10) we will need the continuity of $g \mapsto g \circ f$ in the C^n-topologies
(Proposition 2.5). To prove it we need some technical lemmas that are in the spirit of
[3], §77.

Let $n \in \mathbb{N}$. For a function $h : \nabla^n X \to K$ we define $\Delta h : \nabla^{n+1} X \to K$ by the formula
\[
\Delta h(x_1, x_2, \ldots, x_{n+1}) = \frac{h(x_1, x_3, x_4, \ldots, x_{n+1}) - h(x_2, x_3, \ldots, x_{n+1})}{x_1 - x_2}
\]
We have the following product rule.

Lemma 2.1. (Product Rule). Let $n \in \mathbb{N}$, let $h, t : \nabla^n X \to K$. Then for all
$(x_1, x_2, \ldots, x_{n+1}) \in \nabla^{n+1} X$ we have $\Delta(h \circ t)(x_1, x_2, \ldots, x_{n+1}) =
\Delta h(x_1, x_2, \ldots, x_{n+1}) \Delta t(x_1, x_2, \ldots, x_{n+1}) + t(x_1, x_3, \ldots, x_{n+1}) \Delta h(x_1, x_2, \ldots, x_{n+1}).$
Proof. Straightforward.

Lemma 2.2. Let $f : X \to K$, $n \in \mathbb{N}_0$. Let S_n be the set of the following functions
defined on $\nabla^{n+1} X$.
\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_1 f(x_{i_1}, x_{i_2}) \quad (1 \leq i_1 < i_2 \leq n + 1)
\]
\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_2 f(x_{i_1}, x_{i_2}, x_{i_3}) \quad (1 \leq i_1 < i_2 < i_3 \leq n + 1)
\]
\[
\vdots
\]
\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_n f(x_1, \ldots, x_{n+1}).
\]
For $k \in \mathbb{N}$, let R^n_k be the additive group generated by $S_n, S^2_n, \ldots, S^n_k$ where, for each
$j \in \{1, \ldots, k\}$, S^n_j is the product set \{ $h_1 h_2 \ldots h_j : h_i \in S_n$ for each $i \in \{1, \ldots, j\}$ \}.
Then, for all $k, n \in \mathbb{N}$, $\Delta R^n_k \subseteq R^{n+1}_k$.
Proof. We use induction with respect to \(k \). For the case \(k = 1 \) it suffices to prove \(h \in S_n \Rightarrow \Delta h \in R_{n+1}^1 \). Then \(h \) has the form

\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_j f(x_{i_1}, x_{i_2}, \ldots, x_{i_{j+1}})
\]

for some \(j \in \{2, 3, \ldots, n+1\} \) and so

\[
\Delta h(x_1, x_2, \ldots, x_{n+1}) = \frac{h(x_1, x_3, \ldots, x_{n+2}) - h(x_2, x_3, \ldots, x_{n+2})}{x_1 - x_2}
\]

vanishes if \(i_1 > 1 \) (and then \(\Delta h \) is the null function), while if \(i_1 = 1 \) it equals

\[
\frac{\Phi_j f(x_1, x_{i_2+1}, \ldots, x_{i_{j+1}+1}) - \Phi_j f(x_2, x_{i_2+1}, \ldots, x_{i_{j+1}+1})}{x_1 - x_2}
\]

and it follows that \(\Delta h \in S_{n+1} \subset R_{n+1}^1 \). For the induction step assume \(\Delta R_{n+1}^{k-1} \subset R_{n+1}^{k-1} \); it suffices to prove that \(\Delta S_n^k \subset R_{n+1}^k \). So let \(h \in S_n^k \) and write

\[
h = h_1 H, \quad h_1 \in S_n, \quad H \in S_{n+1}^{k-1}.
\]

By the Product Rule 2.1 we have

\[
\Delta h(x_1, \ldots, x_{n+2}) = h_1(x_2, x_3, \ldots, x_{n+2}) \Delta H(x_1, x_2, \ldots, x_{n+2}) + H(x_1, x_3, \ldots, x_{n+2}) \Delta h_1(x_1, x_2, \ldots, x_{n+2}).
\]

The fact that \(h_1 \in S_n \) makes

\[
(x_1, x_2, \ldots, x_{n+2}) \mapsto h_1(x_1, x_3, \ldots, x_{n+2})
\]

into an element of \(S_{n+1} \). Similarly, since \(H \in S_{n+1}^{k-1} \), the function

\[
(x_1, x_2, \ldots, x_{n+2}) \mapsto H(x_2, x_3, \ldots, x_{n+2})
\]

is in \(S_{n+1}^{k-1} \). By our first induction step, \(\Delta h_1 \in R_{n+1}^1 \) and by the induction hypothesis \(\Delta H \in R_{n+1}^{k-1} \). Hence,

\[
\Delta h \in S_{n+1} R_{n+1}^{k-1} + S_{n+1}^1 R_{n+1}^1 \subset R_{n+1}^{k-1} + R_{n+1}^1 R_{n+1}^1 \subset R_{n+1}^k.
\]

Lemma 2.3. Let \(f, n, S_n, k, R_k \) be as in the previous lemma. Let \(f(X) \subset Y \subset K \) where \(Y \) has no isolated points. Let \(g : Y \to K \) be a \(C^n \)-function. Let \(B_n \) be the set of the following functions defined on \(\nabla^{n+1} X \):

\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_1 g(f(x_{i_1}), f(x_{i_2})) \quad (1 \leq i_1 < i_2 \leq n+1)
\]

\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_2 g(f(x_{i_1}), f(x_{i_2}), f(x_{i_3})) \quad (1 \leq i_1 < i_2 < i_3 \leq n+1)
\]

\[
\vdots
\]

\[
(x_1, \ldots, x_{n+1}) \mapsto \Phi_n g(f(x_1), f(x_2), \ldots, f(x_{n+1})).
\]
Let A_n be the additive group generated by $B_n R^n_n$. Then

$$\Delta A_n \subset A_{n+1}. $$

Proof. We prove: $h \in B_n R^n_n \Rightarrow \Delta h \in A_{n+1}$. Write $h = br$ where $b \in B_n$, $r \in R^n_n$. By the Product Rule 2.1 we have for all $(x_1, x_2, \ldots, x_{n+2}) \in \nabla^{n+2} X$

$$\Delta h(x_1, x_2, \ldots, x_{n+2}) = b(x_2, x_3, \ldots, x_{n+2}) \Delta r(x_1, x_2, \ldots, x_{n+2}) +$$

$$+ r(x_1, x_3, \ldots, x_{n+2}) \Delta b(x_1, x_2, \ldots, x_{n+2}).$$

We have:

(i) $b \in B_n$ so $(x_1, \ldots, x_{n+2}) \mapsto b(x_2, x_3, \ldots, x_{n+1})$ is in B_{n+1}.

(ii) $r \in R^n_n$ so $(x_1, \ldots, x_{n+2}) \mapsto r(x_1, x_3, \ldots, x_{n+1})$ is in R^{n+1}_n (in the previous proof we had $r \in S^n_n$ so the map $(x_1, \ldots, x_{n+2}) \mapsto r(x_1, x_3, \ldots, x_{n+1})$ is in S^{n+1}_n, and (ii) follows from this).

(iii) $r \in R^n_n$ so $\Delta r \in R^{n+1}_n$ (Previous Lemma).

(iv) b has the form

$$(x_1, x_2, \ldots, x_{n+1}) \mapsto \Phi_j g(f(x_{i_1}), \ldots, f(x_{i+j}))$$

for some $j \in \{2, \ldots, n+1\}$ and so

$$\Delta b(x_1, x_2, \ldots, x_{n+2}) = \frac{b(x_1, x_3, x_4, \ldots, x_{n+2}) - b(x_2, x_3, \ldots, x_{n+2})}{x_1 - x_2}$$

vanishes if $i_1 > 1$ (and then Δb is the null function), while if $i_1 = 1$ it equals

$$\Phi_j g(f(x_1), f(x_{i_1+1}), \ldots, f(x_{i_j+1})) - \Phi_j g(f(x_2), f(x_{i_1+1}), \ldots, f(x_{i_j+1}))$$

$$\frac{1}{x_1 - x_2}$$

$$= \Phi_{j+1} g(f(x_1), f(x_2), f(x_{i_1+1}), \ldots, f(x_{i_j+1})) \Phi_1 f(x_1, x_2).$$

(if $f(x_1) = f(x_2)$ we have 0 at both sides). So we see that $\Delta b \in B_{n+1} R^{n+1}_n$. Combining (i) - (iv) we get $\Delta h \in B_{n+1} R^n_n + R^{n+1}_n B_{n+1} R^{n+1}_n \subset B_{n+1} R^{n+1}_n + B_{n+1} \cdot R^{n+1}_n \subset A_{n+1}$.

Corollary 2.4. With the notations as in the previous lemma we have $\Phi_n(g \circ f) \in A_n$ ($n \in \mathbb{N}$).

Proof. We proceed by induction on n. For the case $n = 1$ we write, for $(x_1, x_2) \in \nabla^2 X$, $\Phi_1(g \circ f)(x_1, x_2) = (x_1 - x_2)^{-1} \left(g(f(x_1)) - g(f(x_2)) \right) = \Phi_1 g(f(x_1), f(x_2)) \Phi_1 f(x_1, x_2).$
Hence, \(\Phi_1(g \circ f) \in B_1 S_1 \subset B_1 R_1 \subset A_1 \). To prove the step \(n \to n+1 \) observe that by the induction hypothesis, \(\Phi_n(g \circ f) \in A_n \). By Lemma 2.3, \(\Phi_{n+1}(g \circ f) = \Delta \Phi_n(g \circ f) \in A_{n+1} \).

Remark. From Corollary 2.4 it follows easily that the composition of two \(C^n \)-functions is again a \(C^n \)-function, a result that already was obtained in [3], 77.5.

Proposition 2.5. (Continuity of \(g \mapsto g \circ f \)) Let \(n \in \mathbb{N}_0 \), let \(f \in C^n(X \to K) \) and let \(g \in C^n(Y \to K) \) where \(Y \) has no isolated points, \(Y \supset f(X) \). Then \(\| g \circ f \|_{n,X} \leq \sum_{0 \leq j \leq n} \| f \|_{j,X} \).

Proof. We may assume \(\| g \|_{n,Y} < \infty \). It suffices to prove \(\| \Phi_n(g \circ f) \|_{n+1,X} \leq \sum_{0 \leq j \leq n} \| f \|_{j,X} \). Now \(\| \Phi_n(g \circ f) \|_{n+1,X} = \max_{x \in X} | g(f(x)) | \leq \| g \|_{0,Y} \| f \|_{0,X} \) which proves the case \(n = 0 \). For \(n \geq 1 \) we apply Corollary 2.4 which says that \(\Phi_n(g \circ f) \in A_n \) i.e. \(\Phi_n(g \circ f) \) is a sum of functions in \(B_n S_n \). By the definition of \(B_n \) we have

\[
(*) \quad h \in B_n \Rightarrow \| h \|_{n+1,X} \leq \| g \|_{n,Y}
\]

Similarly,

\[
k \in S_n \Rightarrow \| k \|_{n+1,X} \leq \max_{1 \leq i \leq n} \| \Phi_i f \|_{n+1,X} \leq \| f \|_{n,X}
\]

so that

\[
(**) \quad k \in S_n \Rightarrow \| k \|_{n+1,X} \leq \| f \|_{n,X}.
\]

Combination of (*) and (**) yields \(\| \Phi_n(g \circ f) \|_{n+1,X} \leq \| g \|_{n,Y} \| f \|_{n,X} \).

Proposition 2.5 enables us to prove

Proposition 2.6. Let \(n \in \mathbb{N}_0 \) and let \(A \) be a closed subalgebra of \(C^n(X \to K) \). Suppose \(A \) separates the points of \(X \) and contains the constant functions. Then \(A \) contains all locally constant functions \(X \to K \).

Proof. 1. We first prove that \(f \in A \), \(U \subset K \), \(U \) clopen implies \(\xi_{f^{-1}(U)} \in A \). In fact, \(f(X) \) is compact so there exist a \(\delta \in (0,1) \) and finitely many disjoint balls \(B_1, \ldots, B_m \) of radius \(\delta \) covering \(f(X) \) where, say, \(B_1 \ldots B_q \) lie in \(U \), and \(B_{q+1}, \ldots, B_m \) are in \(K \setminus U \). Let \(\varepsilon > 0 \). By the Key Lemma 1.2 there exists, for each \(i \in \{1, \ldots, m\} \) a polynomial \(P_i \) such that \(\| \xi_{B_i} - P_i \|_{n,B} < \varepsilon \), where \(B := \bigcup_{i=1}^m B_i \). Then \(P := \sum_{i=1}^q P_i \) is a polynomial and

\[
\| P - \xi U \|_{n,B} = \| P - \xi B^0 \|_{n,B} = \| \sum_{i=1}^q (P_i - \xi_{B_i}) \|_{n,B} < \varepsilon,
\]

where \(B^0 := \bigcup_{i=1}^q B_i \).

By Proposition 2.5

\[
\|(P - \xi U) \circ f \|_{n,X} \leq \| P - \xi U \|_{n,B} \max_{0 \leq j \leq n} \| f \|_{j,X} \leq \varepsilon \max_{0 \leq j \leq n} \| f \|_{j,X}
\]
and we see that there exists a sequence \(P_1, P_2, \ldots \) of polynomials such that
\[
\|P_k \circ f - \xi U \circ f\|_{n,X} \to 0.
\]
Since \(A \) is an algebra with an indentity we have \(P_k \circ f \in A \) for all \(k \). Then \(\xi f^{-1}(U) = \xi U \circ f = \lim_{k \to \infty} P_k \circ f \in A \).

2. Now consider
\[
B := \{ V \subset X, \xi U \in A \}.
\]
It is very easy to see that \(B \) is a ring of clopen subsets of \(X \) and that \(B \) covers \(X \). To show that \(B \) separates the points of \(X \) let \(x \in X \), \(y \in X \), \(x \neq y \). Then there is an \(f \in A \) for which \(f(x) \neq f(y) \). Set \(U := \{ A \in K : |A - f(x)| < |f(x) - f(y)| \} \). Then \(U \) is clopen in \(K \). By the first part of the proof, \(f^{-1}(U) \in B \). But \(x \in f^{-1}(U) \) whereas \(y \notin f^{-1}(U) \).

By [1], Exercise 2.8 \(B \) is the ring of all clopens of \(X \). It follows easily that all locally constant functions are in \(A \).

To arrive at the Weierstrass-Stone Theorem 2.10 we need a final technical lemma.

Lemma 2.7. Let \(a_1, \ldots, a_m \in X \), let \(\delta_1, \ldots, \delta_m \) be in \((0,1)\) such that \(B(a_1, \delta_1), \ldots, B(a_m, \delta_m) \) form a disjoint covering of \(X \). Let \(n \in \mathbb{N}_0 \), \(h \in C^n(X \to K) \) and suppose \(D_j h(a_i) = 0 \) and \(|\Phi_{n-j} D_j h(x_1, \ldots, x_{n-j+1})| \leq \varepsilon \) for all \(i \in \{1, \ldots, m\} \), \(x_1, \ldots, x_{n+1} \in B(a_i, \delta_i) \cap X \), \(j \in \{0, 1, \ldots, n\} \). Then \(\|h\|_{n,X} \leq \varepsilon \).

Proof. We first prove that \(\|h\|_{n,X} \leq \varepsilon \) (see Proposition 0.4(iii)). Let \(i \in \{1, \ldots, m\} \).

Set \(B_i = B(a_i, \delta_i) \). By Taylor's formula (Proposition 0.3(iv)) we have for \(x \in X \cap B_i \):
\[
|h(x)| = |\sum_{j=0}^{n-1} (x - a_i)^j D_s h(a_i) + (x - a_i)^n \rho_1 h(x, a_i)| \leq \delta_i^n \varepsilon.
\]
Similarly we have for \(j \in \{0, \ldots, n - 1\} \) and \(x \in X \cap B_i : |D_j h(x)| = |\sum_{i=0}^{n-1-j} (x - a_i)^i D_j D_s h(a_i) + (x - a_i)^n \rho_1 (D_j h)(x, a_i)| \). Now using Proposition 0.3(iii) we see that \(D_j D_s h(a_i) = 0 \) so that
\[
|D_j h(x)| = |x - a_i|^{n-j} |\Phi_{n-j} D_s h(x, a_i, \ldots, a_i)| \leq \delta_i^{n-j} \varepsilon.
\]
It follows that \(\|h\|_{X, X}, \|D_1 h\|_{X, X}, \ldots, \|D_{n-1} h\|_{X, X} \) are all \(\leq \varepsilon \). Now let \(x, y \in X \). If \(x, y \) are in the same \(B_i \) then \(|\rho_1 h(x, y)| = |\Phi_{n} h(x, y, \ldots, y)| \) \(\leq \varepsilon \) by assumption. If \(x \in B_i \), \(y \in B_i \) and \(i \neq s \) then \(|x - y| \geq \delta := \max(\delta_i, \delta_s) \) and by Taylor's formula
\[
h(x) = \sum_{i=0}^{n-1} (x - y)^i D_i h(y) + (x - y)^n \rho_1 h(x, y)
\]
we obtain, using \((*)\),
\[
|\rho_1 h(x, y)| \leq \frac{|h(x) - h(y)|}{|(x - y)^n|} \vee \frac{|D_1 h(y)|}{|x - y|^{n-1}} \vee \ldots \vee \frac{|D_{n-1} h(y)|}{|x - y|} \leq \delta^n \varepsilon \vee \frac{\delta^{n-1} \varepsilon}{\delta} \vee \ldots \vee \frac{\delta \varepsilon}{\delta} \leq \varepsilon.
\]
and we have proved $\|h\|_{n,X} \leq \varepsilon$.
Now to prove that even $\|h\|_{n,X} \leq \varepsilon$ observe that by Proposition 0.4(iii)

$$\|h\|_{n,X} = \|h\|_{n-1,X} \vee \|D_1 h\|_{n-1,X} \vee \cdots \vee \|D_n h\|_{n,X}.$$

To prove, for example, that $\|D_1 h\|_{n-1,X} \leq \varepsilon$ we observe that by Proposition 0.4(iii) and we have proved $|\varepsilon| < \varepsilon$.

Now to prove that even $\|A\|_{n,X} < \varepsilon$ observe that by Proposition 0.4(iii)

$$\|A\|_{n,X} = \|A\|_{n-1,X} \vee \|D_1 A\|_{n-1,X} \vee \cdots \vee \|D_n A\|_{n,X}.$$

To prove, for example, that $\|D_1 A\|_{n-1,X} \leq \varepsilon$ we observe that by Proposition 0.4(iii) and we have proved $|\varepsilon| < \varepsilon$.

To prove, for example, that $\|D_2 h\|_{n-2,X} \leq \varepsilon$, ..., $\|D_n h\|_{0,X} \leq \varepsilon$ and it follows that $\|h\|_{n,X} \leq \varepsilon$.

Proposition 2.8. Let $n \in \mathbb{N}_0$ and let A be a closed subalgebra of $C^n(X \to K)$ containing the locally constant functions. Let $g \in C^n(X \to K)$ and suppose for each $a \in X$ there exists an $f_a \in A$ with $D_i g(a) = D_i f_a(a)$ for $i \in \{0, \ldots, n\}$. Then $g \in A$.

Proof. Let $\varepsilon > 0$. For each $a \in X$ choose an $f_a \in A$ with $f_a(a) = g(a)$, $D_1 f_a(a) = D_1 g(a)$, ..., $D_n f_a(a) = D_n g(a)$. By continuity there exists a $\delta_a > 0$ such that, with $h_a := f_a - g$, $|D_{n-j} h_a(x_1, \ldots, x_{n-j})| \leq \varepsilon$ for all $j \in \{0, 1, \ldots, n\}$ and $x_1, \ldots, x_{n-j+1} \in B(a, \delta_a)$. The $B(a, \delta_a)$ cover X and by compactness there exists a finite disjoint subcovering $B(a_1, \delta_{a_1}), \ldots, B(a_m, \delta_{a_m})$. Set

$$f := \sum_{i=1}^m f_a \cdot 1_{B(a_i, \delta_{a_i}) \cap X}$$

Then, by our assumption on A, $f \in A$. By Lemma 2.7, applied to $h := f - g$ and where $\delta_1, \ldots, \delta_m$ are replaced by $\delta_{a_1}, \ldots, \delta_{a_m}$ respectively, we then have $\|f - g\|_{n,X} \leq \varepsilon$. We see that $g \in \overline{A} = A$.

Remark. It follows directly that the local polynomial functions $X \to K$ form a dense subset of $C^n(X \to K)$.

Proposition 2.9. Let $n \in \mathbb{N}$ and let A be a K-subalgebra of $C^n(X \to K)$ containing the constant functions. Suppose $f'(a) \neq 0$ for some $f \in A$, $a \in X$. Then there is a $g \in A$ with $g(a) = 0$, $g'(a) = 1$ and $A g(a) = D_2 g(a) = \cdots = D_n g(a) = 0$.

Proof. By considering the function $f'(a)^{-1}(f - f(a))$ it follows that we may assume that $f(a) = 0$, $f'(a) = 1$. Then

$$(*) \quad f = (X - a)h$$
where \(h \) is continuous, \(h(a) = 1 \). To obtain the statement by induction with respect to \(n \) we only have to consider the induction step \(n - 1 \to n \) and, to prove that, we may assume that \(D_2 f(a) = \cdots = D_{n-1} f(a) = 0 \). From (*) we obtain

\[
 f^n = (X - a)^n h^n
\]

and by uniqueness of the Taylor expansion of the \(C^n \)-function \(f^n \) we obtain \(f^n(a) = D_1 f^n(a) = \cdots = D_{n-1} f^n(a) = 0 \) and \(D_n f^n(a) = h^n(a) = 1 \). We see that \(g := f - D_n f(a) f^n \) is in \(A \) and that \(g(a) = 0, g'(a) = 1, D_2 g(a) = \cdots = D_{n-1} g(a) = 0 \) and \(D_n g(a) = D_n f(a) - D_n f(a) D_n f^n(a) = 0 \).

Theorem 2.10. (Weierstrass-Stone Theorem for \(C^n \)-functions). Let \(n \in \mathbb{N}_0 \) and let \(A \) be a closed subalgebra that separates the points of \(A \) and that contains the constant functions. Suppose also that for each \(a \in X \) there exists an \(f \in A \) with \(f(a) \neq 0 \). Then \(A = C^n(X \to K) \).

Proof. By Proposition 2.9, for each \(a \in X \) there exists an \(f \in A \) with \(f(a) = 0 \), \(f'(a) = 1 \), \(D_i f(a) = 0 \) for \(i \in \{2, \ldots, n\} \). The function \(g := X \) satisfies \(g(a) = 0 \), \(g'(a) = 1 \), \(D_i g(a) = 0 \) for \(i \in \{2, \ldots, n\} \) so applying Proposition 2.8 (observe that \(A \) contains the locally constant functions by Proposition 2.6) we obtain that \(X \in A \). But then all polynomials are in \(A \) and \(A = C^n(X \to K) \) by the Weierstrass Theorem 1.4.

Remarks.

1. The case \(n = 0 \) yields, at least for those \(X \) that are embeddable into \(K \), the well known Kaplansky Theorem proved in [1], 6.15.

2. We leave it to the reader to establish a \(C^\infty \)-version of Theorem 2.10.

REFERENCES

Manuscript received in February 1993