COMPACTNESS OF p-ADIC INTEGRAL OPERATORS

J. Martínez Maurica and W.H. Schikhof

Abstract.
The p-adic counterparts of the classical integral operators are shown to be compact. This result is extended to integral operators $C^n \rightarrow C^m$.

Preliminaries
Throughout K is a non-archimedean valued complete field whose valuation $| \cdot |$ is not trivial. For a compact topological space X the K-Banach space of all continuous functions $f : X \rightarrow K$ with the norm $f \mapsto \|f\|_\infty := \max\{|f(x)| : x \in X\}$ is denoted $C(X \rightarrow K)$. The closed unit ball of a K-Banach space E is written B_E. A (continuous) linear map $T : E \rightarrow F$, where E, F are locally convex spaces over K, is called compact if there is a neighbourhood U of 0 in E for which TU is a compactoid, where a subset Y of F is called a compactoid if for each neighbourhood V of 0 in F there exists a finitely generated absolutely convex set I such that $Y \subseteq V + I$. The topological dual of E is E'.

Further background on p-adic Functional Analysis can be found in [3].

1. Integral Operators
Let X, Y be compact topological spaces, $\mu \in C(Y \rightarrow K)'$, $G \in C(X \times Y \rightarrow K)$. For each $f \in C(Y \rightarrow K)$ and $x \in X$ the function $h_x : y \mapsto G(x, y)f(y)$ is continuous so the expression $\mu(h_x)$ makes sense. Rather than $\mu(h_x)$ we shall use the more convenient notation $\int G(x, y)h(y)d\mu(y)$.

Theorem 1.1. With the above notations, the formula

$$(Tf)(x) = \int G(x, y)f(y)d\mu(y)$$

defines a compact operator $T : C(Y \rightarrow K) \rightarrow C(X \rightarrow K)$.
Proof. We have seen already that \((Tf)(x)\) is well-defined. To prove continuity of
\(Tf\), let \(a \in X\), \(\epsilon > 0\). By compactness there is a neighbourhood \(U\) of \(a\) such that
\(|G(x, y) - G(a, y)| \leq \epsilon\) for all \(x \in U\) and \(y \in Y\). Then, for \(x \in U\)
\[|(Tf)(x) - (Tf)(a)| = \left| \int (G(x, y) - G(a, y))f(y)d\mu(y) \right| \leq \epsilon \|f\|_\infty \|\mu\|
\]
and the continuity of \(Tf\) follows; we even have equicontinuity of \(TB_{C(Y - K)}\). From
\(\|Tf\| \leq \|G\|_\infty \|f\|_\infty \|\mu\|\) we obtain (uniform) boundedness of \(TB_{C(Y - K)}\) implying com-

In the next sections we shall interpret \(T\) as a map \(C^n(Y \to K) \to C^n(X \to K)\). To this end we need some preliminary definitions and results that will be treated in §2 and §3.

2. \(C^n\)-FUNCTIONS OF ONE VARIABLE
We recall some definitions of [5], §29. For a subset \(X\) of \(K\) and \(n \in \mathbb{N}\) we set
\[\nabla^n X := \{(x_1, x_2, \ldots, x_n) \in X^n : \text{if } i \neq j \text{ then } x_i \neq x_j\}.
\]
The \(n\)th difference quotient \(\Phi_n f : \nabla^{n+1} X \to K\) of a function \(f : X \to K\) is inductively
given by \(\Phi_0 f := f\) and, for \(n \in \mathbb{N}\), by the formula
\[(\Phi_n f)(x_1, x_2, \ldots, x_{n+1}) = \frac{(\Phi_{n-1} f)(x_1, x_3, \ldots, x_{n+1}) - (\Phi_{n-1} f)(x_2, x_3, \ldots, x_{n+1})}{x_1 - x_2}.
\]
We say that \(f\) is a \(C^n\)-function (\(f \in C^n(X \to K)\), or shortly \(f \in C^n\)) if \(\Phi_n f\) can be
extended to a continuous function \(X^{n+1} \to K\). If \(X\) has no isolated points the above
extension is unique and denoted \(\overline{\Phi}_n f\). We set
\[D_n f(x) := (\overline{\Phi}_n f)(x, x, \ldots, x) \quad (x \in X).
\]
Then ([5] Theorem 29.5) \(n! D_n f = f^{(n)}\) (so that \(D_n f = f^{(n)}/n!\) if the characteristic of
\(K\) is zero). The set \(C^n(X \to K)\) is a \(K\)-algebra under pointwise operations.

Now assume that \(X\) is a compact subset of \(K\) without isolated points. Then for an
\(f \in C^n(X \to K)\) the functions \(f, \Phi_1 f, \ldots, \Phi_n f\) are all bounded so one may define
\[\|f\|_n := \max(\|f\|_\infty, \|\Phi_1 f\|_\infty, \ldots, \|\Phi_n f\|_\infty)
\]
\[= \max(\|f\|_\infty, \|\overline{\Phi}_1 f\|_\infty, \ldots, \|\overline{\Phi}_n f\|_\infty).
\]
It is shown in [4], Theorem 8.5 that \(f \| f \|_n \) is a norm on \(C^n(X \rightarrow K) \) making it into a \(K \)-Banach space. Because also \(\| fg \|_n \leq \| f \|_n \| g \|_n \) holds for \(f, g \in C^n(X \rightarrow K) \) the space \(C^n(X \rightarrow K) \) is even a \(K \)-Banach algebra.

Observe that, if \(f \in C^n(X \rightarrow K) \) the functions \(f, \Phi_1 f, \ldots, \Phi_n f \) are uniformly continuous.

3. \(C^n \)-FUNCTIONS OF TWO VARIABLES

Throughout §3 let \(n, m \in \{0, 1, 2, \ldots\} \).

Let \(X \) be a subset of \(K \), let \(Y \) be just a set and let \(H : X \times Y \rightarrow K \). The \(n \)th difference quotient of \(H \) with respect to the first variable is by definition the function

\[
(x_1, \ldots, x_{n+1}, y) \mapsto (\Phi_n H)_{y}(x_1, \ldots, x_{n+1})
\]

defined on \(\nabla^{n+1}X \times Y \), where \(h_y(x) := H(x, y) \) (\(x \in X, y \in Y \)).

Similarly, for a set \(X \), a subset \(Y \) of \(K \) and a function \(J : X \times Y \rightarrow K \) we define the \(m \)th difference quotient of \(J \) with respect to the second variable to be the map

\[
(x, y_1, y_2, \ldots, y_{m+1}) \mapsto (\Phi_m J)^x(y_1, \ldots, y_{m+1})
\]

defined on \(X \times \nabla^{m+1}Y \) where \(j^x(y) := J(x, y) \) (\(x \in X, y \in Y \)).

We leave the proof of the following elementary lemma to the reader.

Lemma 3.1. Let \(X, Y \) be subsets of \(K \), let \(G : X \times Y \rightarrow K \). Then

\[
\Phi_m^{(2)} \Phi_n^{(1)} G = \Phi_n^{(1)} \Phi_m^{(2)} G.
\]

Now let \(X, Y \) be subsets of \(K \) without isolated points, and let \(G : X \times Y \rightarrow K \). We say that \(G \in C^{n,m}(X \times Y \rightarrow K) \) (or simply \(G \in C^{n,m} \)) if the function \(\Phi_m^{(2)} \Phi_n^{(1)} G \) (or, equivalently, \(\Phi_n^{(1)} \Phi_m^{(2)} G \)) can be extended to a continuous function \(X^{n+1} \times Y^{m+1} \rightarrow K \).

This extension is unique and denoted \(\Phi_m^{(2)} \Phi_n^{(1)} G \) or \(\Phi_n^{(1)} \Phi_m^{(2)} G \). Special cases are

\[
D_n^{(1)} G(x, y) := (\Phi_n^{(2)} \Phi_n^{(1)} G)(x, x, \ldots, x, y)
\]

\[
D_m^{(2)} D_n^{(1)} G(x, y) := (\Phi_m^{(2)} \Phi_n^{(1)} G)(x, x, \ldots, x, y, y, \ldots, y)
\]

and also expressions like \(D_m^{(2)} \Phi_n^{(1)} G, \Phi_m^{(2)} D_n^{(1)} G \) make sense. The following facts are easily established. If \(G \in C^{n,m} \) and \(j, k \in \{0, 1, \ldots\}, j \leq n, k \leq m \) then \(G \in C^{j,k} \). If \(G \in C^{n,m} \) then

\[
n!m! D_n^{(1)} D_m^{(2)} = \frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial y^m} G
\]
and in particular we have equality of mixed partial derivatives: \(\frac{\partial^m}{\partial y^m} \frac{\partial^n}{\partial x^n} G = \frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial y^m} G \).

If \(G \in C^{n,0}(X \times Y) \) then for each \(y \in Y \) the function \(x \mapsto G(x, y) \) is in \(C^n(X \to K) \).

4. INTEGRAL OPERATORS ON \(C^n \)

Theorem 4.1. Let \(X, Y \) be compact subsets of \(K \) without isolated points. Let \(G \in C^{n,m}(X \times Y \to K) \) and let \(\mu \in C^m(Y \to K)' \). Then the formula

\[
(Tf)(x) = \int G(x, y)f(y)d\mu(y)
\]

defines a continuous linear map \(T : C^m(Y \to K) \to C^n(X \to K) \). We have \(\|T\| \leq \|\mu\|\|G\|_{n,m} \) where

\[
\|G\|_{n,m} := \sup \{\|\Phi_j^{(2)}\Phi_j^{(1)}G\|_{\infty} : 0 \leq j \leq n, 0 \leq k \leq m\}.
\]

Proof. Since \(G \in C^{0,m} \) the function \(y \mapsto G(x, y) \) is \(C^m \) for every \(x \in X \). So for \(f \in C^m(Y \to K) \) the product \(y \mapsto G(x, y)f(y) \) is a \(C^m \)-function on \(Y \). It follows that

\[
(Tf)(x) = \int G(x, y)f(y)d\mu(y)
\]

defines a \(K \)-linear map of \(C^m(Y \to K) \) into the space of all functions on \(X \). To check that \(Tf \) is a \(C^m \)-function let \(\varepsilon > 0 \). By uniform continuity there exists a \(\delta > 0 \) such that for all \(j \in \{0, 1, \ldots, n\}, k \in \{0, 1, \ldots, m\} \), all \((x_1, \ldots, x_{j+1}, y_1, \ldots, y_{k+1}) \in X^{j+1}, \) all \((y_1, \ldots, y_{k+1}) \in Y^{k+1}, \)

\[
|G(x_1, \ldots, x_{j+1}, y_1, \ldots, y_{k+1}) - G(x_1', \ldots, x_{j+1}', y_1, \ldots, y_{k+1})| < \varepsilon
\]

whenever \(|x_1 - x_1'| < \delta, \ldots, |x_{j+1} - x_{j+1}'| < \delta \). Then for such \((x_1, \ldots, x_{n+1}, y_1, \ldots, y_{k+1}) \) and \((x_1', x_2', \ldots, x_{n+1}')\) in \(\nabla^{n+1}X \) we have

\[
\Delta := |(\Phi_nTf)(x_1, \ldots, x_{n+1}) - (\Phi_nTf)(x_1', \ldots, x_{n+1}')| = |\int G(x_1, \ldots, x_{n+1}, y) - G(x_1', \ldots, x_{n+1}', y)f(y)d\mu(y)| \leq \|h\|_m\|f\|_m\|\mu\|
\]

where

\[
h(y) = \Phi_n^{(1)}G(x_1, \ldots, x_{n+1}, y) - \Phi_n^{(1)}G(x_1', \ldots, x_{n+1}', y) \quad (y \in Y).
\]

Now \(\|h\|_m = \max\{\|\Phi_kh\|_{\infty} : 0 \leq k \leq m\} \) which is \(< \varepsilon \) by \((\Lambda)\). We see that \(\Delta \leq \|f\|_m\|\mu\|\varepsilon \). It follows that \(Tf \) is \(C^n \); we even may conclude that \(\{\Phi_nTf : f \in C^m(Y \to K), \|f\|_m \leq 1\} \) is equicontinuous. To estimate \(\|T\| \), let \(j \in \{0, 1, \ldots, n\} \) and \((x_1, \ldots, x_{j+1}) \in \nabla^{j+1}X \). Then

30
\[|\Phi_j T f(x_1, \ldots, x_{j+1})| = \left| \int \Phi_j^{(1)} G(x_1, \ldots, x_{j+1}, y) f(y) d\mu(y) \right| \]
\[\leq \|\mu\| \|f\|_m \sup\{\|\Phi_j^{(2)} \Phi_j^{(1)} G\|_\infty : 0 \leq k \leq m\} \]
\[\leq \|\mu\| \|f\|_m \|G\|_{n,m}. \]

We see that \(\|T\| \leq \|\mu\| \|G\|_{n,m}. \)

Corollary 4.2. For all \(f \in C^n(Y \rightarrow K) \) and \(x \in X \)
\[\frac{d^n(Tf)(x)}{dx^n} = \int \frac{\partial^n G(x, y)}{\partial x^n} f(y) d\mu(y). \]

Proof. It is shown in the previous proof that
\[z \mapsto \Phi_n^{(1)} G(z, \cdot) \quad (z \in \nabla^{n+1} X) \]
has a continuous extension \(X^{n+1} \rightarrow C^n(Y \rightarrow K) \). Then, for \(x \in X \) we have (with \(z \in \nabla^{n+1} X \))
\[D_n(Tf)(x) = \Phi_n^{(1)} (Tf)(x, x, x, \ldots, x) = \lim_{z \rightarrow (x, x, \ldots)} \Phi_n^{(1)} (Tf)(z) \]
\[= \lim_{z \rightarrow (x, x, \ldots)} \int \Phi_n^{(1)} G(z, y) f(y) d\mu(y) = \]
\[= \int \lim_{z \rightarrow (x, x, \ldots)} \Phi_n^{(1)} G(z, y) f(y) d\mu(y) = \int D_n^1 G(x, y) f(y) d\mu(y). \]

5. **COMPACTNESS OF INTEGRAL OPERATORS**

To prove compactness of the operator \(T : C^n(Y \rightarrow K) \rightarrow C^n(X \rightarrow K) \) of the previous section we shall combine the \(p \)-adic Ascoli Theorem with the following.

Lemma 5.1. Let \(X \) be a subset of \(K \), without isolated points. Let \(n \in \{0, 1, 2, \ldots\} \).
The map
\[\tau_n : f \mapsto (f, \Phi_1 f, \Phi_2 f, \ldots, \Phi_n f) \]
embeds \(C^n(X \rightarrow K) \) linearly and isometrically into \(C(X) \times C(X^2) \times \ldots \times C(X^{n+1}) \).

Proof. Direct verification.

Lemma 5.2. Let \(Z_1, \ldots, Z_k \ (k \in \mathbb{N}) \) be compact topological spaces and let, for each \(i \in \{1, \ldots, k\} \), \(\pi_i \) be the obvious projection \(\prod_{j=1}^k C(Z_j \rightarrow K) \rightarrow C(Z_i \rightarrow K) \). Then a
subset S of $\prod_{j=1}^{k} C(Z_j \to K)$ is a compactoid if and only if for each $i \in \{1, \ldots, k\}$, $\pi_i(S)$ is bounded and equicontinuous in $C(Z_i \to K)$.

Proof. If S is a compactoid and $i \in \{1, \ldots, k\}$ then, since π_i is linear and continuous, $\pi_i(S)$ is a compactoid in $C(Z_i \to K)$, hence bounded and equicontinuous by the p-adic Ascoli Theorem. Conversely, if every $\pi_i(S)$ is bounded and equicontinuous then each $\pi_i(S)$ is a compactoid by the p-adic Ascoli Theorem, hence $\pi_1(S) \times \pi_2(S) \times \ldots \times \pi_k(S)$ is a compactoid. But then so is its subset S.

Theorem 5.3. The map T of Theorem 4.1. is compact.

Proof. By Lemma 5.1 it is enough to prove that $\tau_n \circ T$ is compact; from Lemma 5.2 we see that it suffices to show that, for each $i \in \{0, 1, \ldots, n\}$ the set

$$\{ \tilde{\mathcal{F}}_i T f : f \in C^m(Y \to K), \|f\|_m \leq 1 \}$$

is (pointwise) bounded and equicontinuous in $C(X^{i+1} \to K)$. But this was already observed in the proof of Theorem 4.1 for $i = n$; a similar argument works for each $i \in \{0, 1, \ldots, n\}$.

6. INTEGRAL OPERATORS ON C^∞

Let X, Y be compact subsets of K without isolated points. The space

$$C^\infty(X \to K) := \bigcap_n C^n(X \to K)$$

has a natural locally convex topology induced by the norms $\|\|_n$ ($n \in \{0, 1, 2, \ldots\}$). If $G : X \times Y \to K$ is C^∞ (i.e. $G \in C^{n,m}(X \times Y \to K)$ for each $n, m \in \{0, 1, \ldots\}$) and $\mu \in C^\infty(X \to K)'$ the formula

$$(*) \quad (Tf)(x) = \int G(x, y) f(y) d\mu(y)$$

defines a linear map $C^\infty(Y \to K) \to C^\infty(X \to K)$. By construction there is an $m \in \{0, 1, \ldots\}$ and a $C > 0$ such that $|\mu(f)| \leq C\|f\|_m$ for all $f \in C^\infty(Y \to K)$. For each $n \in \{0, 1, \ldots\}$ (\ast) is the restriction of a compact integral operator $C^m(Y \to K) \to C^n(X \to K)$. It follows that T maps $\{ f \in C^m(Y \to K) : \|f\|_m \leq 1 \}$ into a compactoid of $C^\infty(X \to K)$ i.e. that T is a compact map $C^\infty(Y \to K) \to C^\infty(X \to K)$.

32
REFERENCES

