The Orlicz-Pettis property in \(p \)-adic analysis

Cristina Perez-Garcia

Department of Mathematics, Universidad de Cantabria

Avda de los Castros, 39071 Santander, Spain

W.H. Schikhof

Department of Mathematics, University of Nijmegen

Toernooiveld, 6525 ED Nijmegen, The Netherlands

Received December 15, 1992. Revised June 16, 1993

Abstract

For a non-archimedean locally convex space \(E \) the property (O.P.): “every weakly convergent sequence in \(E \) is convergent” is studied. Examples are given (1.3, 2.4-2.7). If the scalar field \(K \) is spherically complete every \(E \) has (O.P.) (1.2). If not, the property (O.P.) is closely related to “\(E \) does not contain \(\ell^\infty \)” (3.2).

Terminology

Throughout \(K \) is a non-archimedean nontrivially valued field that is complete with respect to the metric induced by the valuation \(||\). For notations, definitions, ... we refer to [5] for normed spaces and to [6] for general locally convex spaces. However, we recall the following. Let \(E, F \) be \(K \)-linear spaces. The \(K \)-linear span of a set \(X \subset E \) is denoted \([X]\), the (algebraic) dual of \(E \) is \(E^* \). If \(p, q \) are (non-archimedean) seminorms on \(E, F \) respectively we denote by \(p \otimes q \) the seminorm

1 Research partially supported by Grant DGICYT PS90-100

225
$z \mapsto \inf \left\{ \max_{1 \leq i \leq n} p(x_i) q(y_i) : n \in \mathbb{N}, z = \sum_{i=1}^{n} x_i \otimes y_i : x_i \in E, y_i \in F \right\}$ on $E \otimes F$. A seminorm p on E is polar if $p = \sup \{ |f| : f \in E^*, |f| \leq p \}$.

Now let E, F be locally convex spaces over K. The topological dual of E is E', the weak topology on E is $\sigma(E, E')$. E is called of countable type if for every continuous seminorm p on E the normed space $E / \ker p$ is of countable type. E is called a polar space if the topology is generated by polar seminorms whereas E is called strongly polar if every continuous seminorm is polar. On the tensor product $E \otimes F$ we always consider the topology generated by the seminorms $p \otimes q$ where p, q are continuous seminorms on E, F respectively.

From now on in this paper “locally convex” will mean “Hausdorff locally convex”.

1. (O.P.)-spaces

The classical Banach space ℓ^1 (over \mathbb{R} or \mathbb{C}) has the property that every weakly convergent sequence is norm convergent, which is known as the Orlicz-Pettis Theorem. In our non-archimedean theory we therefore define

DEFINITION 1.1. A locally convex space over K is called Orlicz-Pettis space ((O.P.)-space) if every weakly convergent sequence is convergent.

We first consider some immediate examples. It was shown by Monna in [3] that c_0 is an (O.P.)-space (observe that in our case the dual of c_0 is no longer ℓ^1 but ℓ^∞). By straightforward arguments one can prove that subspaces, products and locally convex direct sums of (O.P.)-spaces are again (O.P.)-spaces. ([4], Propositions 1.2, 1.4.) As every space of countable type is a subspace of some power of c_0 we obtain the (O.P.)-property for every space of countable type. Now let E be any locally convex space and let x_1, x_2, \ldots be a sequence in E converging weakly to 0, and set $D = [x_1, x_2, \ldots]$. If also $x_n \to 0$ in $\sigma(D, D')$ then, as D is of countable type, it would follow that $x_n \to 0$ in the original topology of E. Now $\sigma(E, E')|D = \sigma(D, D')$ as soon as every $f \in D'$ has an extension $\tilde{f} \in E'$. Such extensions exist certainly if K is spherically complete, by Ingleton’s Theorem. Hence,

Theorem 1.2

If K is spherically complete every locally convex space over K is an (O.P.)-space.
Theorem 1.3

The following spaces are (O.P.)-spaces.

(i) Every strongly polar space.
(ii) Every space of countable type.
(iii) Every Banach space with a base.
(iv) Any K-vector space equipped with the strongest locally convex topology.

Proof. All the spaces indicated in (i), (ii), (iii) have the property that every continuous linear function on a subspace of countable type can be extended to a continuous linear function on the whole space ([6], Definition 3.5, Theorem 4.4 and [5], Corollary 3.18). To prove (iv) just observe that the space is linearly homeomorphic to the locally convex direct sum of a collection of onedimensional spaces. □

Because of Theorem 1.2 we assume from this point on in this paper that K is not spherically complete.

To obtain a space which is not (O.P.), take $E := \ell^\infty$. In fact, since $(\ell^\infty)' \approx c_0$ (see [5], Theorem 4.17) it follows that $(1,0,0,...),(0,1,0,...),(0,0,1,0,...),...$ tends weakly to 0 but, of course, is not norm convergent. This example also tells us that the class of the (O.P.)-spaces is not closed for forming of quotients: Every Banach space (in particular ℓ^∞) is a quotient of a Banach space with a base. The space ℓ^∞ will play a key role in characterizing (O.P.)-spaces (Theorem 3.2).

The following observation will be used in the sequel several times. If E is an (O.P.)-space then the weak topology $\sigma(E,E')$ is Hausdorff. Indeed, if $x \in E$ and $f(x) = 0$ for all $f \in E'$ then $0,x,0,x,...$ converges weakly, hence strongly, so $x = 0$. Obviously the converse does not hold (again, take $E := \ell^\infty$).

2. (O.P.)-spaces of continuous functions

To establish the (O.P.)-property for some spaces of (vector valued) continuous functions we first prove three structure theorems.

Theorem 2.1

If E and F are (O.P.)-spaces then so is $E \otimes F$.
Proof. Let z_1, z_2, \ldots be a sequence in $E \otimes F$ converging weakly to 0. Let p resp. q be a continuous seminorm on E resp. F. We shall prove that $(p \otimes q)(z_n) \to 0$. Let $0 < t < 1$. By an obvious modification of [5], Theorem 4.30(ii) (see also [1], Lemma 2.1) for each $n \in \mathbb{N}$ there exists $x_1^n, \ldots, x_{m_n}^n, y_1^n, \ldots, y_{m_n}^n \in E$ such that

1. $z_n = \sum_{k=1}^{m_n} x_k^n \otimes y_k^n$,
2. $y_1^n, \ldots, y_{m_n}^n$ are t-orthogonal with respect to q,
3. $1 \leq q(y_k^n) \leq 2 (k \in \{1, \ldots, m_n\})$.

Now let $f \in E'$. The map $f \otimes 1 : E \otimes F \to F$ sends z_1, z_2, \ldots into a weakly convergent, hence convergent, sequence in F, i.e.,

$$\lim_{n \to \infty} q \left(\sum_{k=1}^{m_n} f(x_k^n) y_k^n \right) = 0.$$

By t-orthogonality and (iii)

$$\lim_{n \to \infty} \max_{1 \leq k \leq m_n} |f(x_k^n)| = 0.$$

As the latter is true for every $f \in E'$ the sequence $x_1^1, x_2^1, \ldots, x_{m_1}^1, x_1^2, \ldots, x_{m_2}^2, \ldots$ converges weakly to 0 in the (O.P.)-space E, hence with respect to p so that

$$(p \otimes q)(z_n) \leq \max_{1 \leq k \leq m_n} p(x_k^n)q(y_k^n) \leq 2 \max_{1 \leq k \leq m_n} p(x_k^n) \to 0 \quad \text{for } n \to \infty$$

implying $(p \otimes q)(z_n) \to 0$. □

Theorem 2.2

Let (E, τ) be a metrizable locally convex space and let D be a dense subspace of E. If D is an (O.P.)-space then so is E.

Proof. There is an invariant metric d on E inducing τ. Let x_1, x_2, \ldots be a sequence in E such that $\lim_{n \to \infty} x_n = 0$ in $\sigma(E, E')$. For each $n \in \mathbb{N}$, choose a $y_n \in D$ with $d(x_n, y_n) < 1/n$. Then $x_n - y_n \overset{\tau}{\to} 0$ so $x_n - y_n \to 0$ in $\sigma(E, E')$ so that $y_n = x_n - (x_n - y_n) \to 0$ in $\sigma(E, E')$, hence in $\sigma(D, D')$. Now D is an (O.P.)-space, so $y_n \overset{\tau}{\to} 0$. But then also $x_n = (x_n - y_n) + y_n \overset{\tau}{\to} 0$. □

Problem. Does the conclusion hold if we drop the metrizability condition?

Theorem 2.3

Every metrizable (O.P.)-space is polar.
Proof. Let p_1, p_2, \ldots be seminorms defining the topology τ of a (metrizable) locally convex space E. For each $n \in \mathbb{N}$ define the seminorm \tilde{p}_n by
\[
\tilde{p}_n = \sup \{|f| : f \in E', |f| \leq p_n\}.
\]
Then the topology $\tilde{\tau}$ induced by the \tilde{p}_n is polar. From the first inclusion in
\[
(\ast) \quad \sigma(E, E') \subset \tilde{\tau} \subset \tau
\]
we obtain that $\tilde{\tau}$ is Hausdorff, so $(E, \tilde{\tau})$ is metrizable. Since (E, τ) is (O.P.) we conclude from (\ast) that τ and $\tilde{\tau}$ have the same convergent sequences implying $\tau = \tilde{\tau}$ by metrizability. We see that τ is polar. □

Remark. There exist (nonmetrizable) (O.P.)-spaces that are not polar ([4], Proposition 4.1).

Now we turn to function spaces. For a Hausdorff zerodimensional topological space X and a locally convex space E over K we define
\begin{align*}
PC(X, E) & : \text{The space of all continuous functions } f : X \to E \text{ for which } f(X) \text{ is precompact, endowed with the topology } \tau_u \text{ of uniform convergence,} \\
C(X, E) & : \text{The space of all continuous functions } X \to E, \text{ endowed with the topology } \tau_c \text{ of compact convergence,} \\
Cb(X, E) & : \text{The space of all bounded continuous functions } X \to E, \text{ endowed with the strict topology } \tau_\beta. \text{ This is the topology generated by all seminorms } f \mapsto \sup_{x \in X} |\phi(x)|p(f(x)) (f \in C_b(X, E)) \text{ where } \phi : X \to K \text{ is a bounded function vanishing at infinity and } p \text{ is a continuous seminorm on } E.
\end{align*}

In the sequel we shall often restrict to Fréchet spaces E as we need the Theorems 2.2 and 2.3.

Theorem 2.4

Let E be a Fréchet space. Then $PC(X, E)$ is an (O.P.)-space if and only if E is an (O.P.)-space.

Proof. The constant functions form a subspace of $PC(X, E)$ that is linearly homeomorphic to E which proves the “only if”. To complete the proof, let E be an (O.P.)-space. Then, as $PC(X, K)$ has a base ([5], Cor. 5.23), we have by Theorems 1.3(iii) and 2.1 that $PC(X, K) \otimes E$ is a metrizable (O.P.)-space. It is easily seen that the map $T : PC(X, K) \otimes E \to PC(X, E)$, given by the formula
\[
T\left(\sum_{j=1}^{n} f_j \otimes a_j\right)(x) = \sum_{j=1}^{n} f_j(x)a_j \quad (x \in X)
\]
is a linear homeomorphism onto a dense subspace of $PC(X, E)$. Then $PC(X, E)$ is an (O.P.)-space by Theorem 2.2. □
Corollary 2.5

Let \(E \) be a Fréchet space. Then \(C(X, E) \) is an (O.P.)-space if and only if \(E \) is an (O.P.)-space.

Proof. We prove the “if”. Let \(E \) be an (O.P.)-space, let \(f_1, f_2, \ldots \) be a sequence in \(C(X, E) \) converging weakly to \(0 \). Then, for every compact set \(H \) in \(X \), the sequence \(n \mapsto f_n|H \) converges weakly to \(0 \) in \(PC(H, E) \). By Theorem 2.4 \(f_n \to 0 \) uniformly on \(H \) and the conclusion follows. \(\square \)

Corollary 2.6

Let \(E \) be a Fréchet space. Then \(C_b(X, E) \) is an (O.P.)-space if and only if \(E \) is an (O.P.)-space.

Proof. Again we prove the “if”. Let \(E \) be an (O.P.)-space, let \(f_1, f_2, \ldots \) converge weakly to \(0 \) in \(C_b(X, E) \). Since \(\tau_c \subset \tau_\beta \) this sequence converges also weakly to zero in \((C_b(X, E), \tau_c) \). The latter, being a subspace of \((C(X, E), \tau_c) \) is (O.P.) by Corollary 2.5, so \(f_n \to 0 \) uniformly on compacts. Further, \(E \) is polar and so is \((C_b(X, E), \tau_\beta) \) implying that \(\{f_1, f_2, \ldots\} \) is \(\tau_\beta \)-bounded. Now apply Proposition 2.11 and Corollary 2.12 of [2] to conclude that \(f_n \to 0 \) in \(\tau_\beta \). \(\square \)

The picture changes if we endow \(C_b(X, E) \) with the uniform topology \(\tau_u \):

Corollary 2.7

Let \(E \) be a Fréchet space. Then \((C_b(X, E), \tau_u) \) is an (O.P.)-space \(\iff X \) is pseudocompact and \(E \) is an (O.P.)-space.

Proof. \(\Rightarrow \). If \(X \) is not pseudocompact we can find a countably infinite clopen partition \(X = \bigcup_n X_n \). Choose \(e \in E \) and define \(T: \ell^\infty \to C_b(X, E) \) by the formula

\[
T(\alpha_1, \alpha_2, \ldots)(x) = \alpha_n e \quad \text{if } n \in \mathbb{N}, \ x \in X_n.
\]

It is easily seen that \(T \) is a linear homeomorphism of \(\ell^\infty \) onto a subspace of \((C_b(X, E), \tau_u) \) which yields a contradiction as \(\ell^\infty \) is not (O.P.). For the other conclusion, consider again the constant functions.

\(\Leftarrow \). One verifies that, if \(X \) is pseudocompact, then \(C_b(X, E) = PC(X, E) \). Now apply Theorem 2.4. \(\square \)
3. Fréchet (O.P.)-spaces

An (O.P.)-space cannot contain a copy of ℓ^∞ as ℓ^∞ itself is not (O.P.). This simple observation is the starting point of Theorem 3.2 that characterizes Fréchet (O.P.)-spaces. The key result is Proposition 3.1 in which we describe polar spaces that do not contain ℓ^∞.

Proposition 3.1

For a polar locally convex space E the following are equivalent.

(a) E does not contain a subspace linearly homeomorphic to ℓ^∞.

(b) Every continuous linear map $\ell^\infty \to E$ is compact.

(γ) E does not contain a complemented subspace linearly homeomorphic to ℓ^∞.

Proof. (α) ⇒ (β). Let $T : \ell^\infty \to E$ be a noncompact continuous linear map; we derive a contradiction. Let e_1, e_2, \ldots be the unit vectors of ℓ^∞. Then $\{Te_1, Te_2, \ldots\}$ is not a compactoid (otherwise the weak closure of the absolutely convex hull of Te_1, Te_2, \ldots would be a compactoid ([6], Theorem 5.13) hence so would its subset $T(\{x \in \ell^\infty : \|x\| \leq 1\})$ implying compactness of T). So, there exists a continuous polar seminorm p such that $\{Te_1, Te_2, \ldots\}$ is not a p-compactoid. By [7], Theorem 2 there exists a $t \in (0, 1)$ and a subsequence z_1, z_2, \ldots of Te_1, Te_2, \ldots that is t-orthogonal with respect to p and such that $\inf_n p(z_n) > 0$. Without loss, assume $p(z_n) \geq 1$ for each n.

Now, inductively we shall construct a subsequence u_1, u_2, \ldots of z_1, z_2, \ldots and $f_1, f_2, \ldots \in E'$ such that $|f_n| \leq 2t^{-1}p$ for all n and

$$|f_m(u_n)| = \begin{cases} 0 & \text{if } m > n \\ 1 & \text{if } m = n \end{cases} \quad |f_m(u_n)| \leq \frac{1}{2} \text{ if } m < n$$

To do that, observe that the function $h_1 : \lambda z_1 \mapsto \lambda (\lambda \in K)$ satisfies $|h_1| \leq p$. By polarity it can be extended to an $f_1 \in E'$ such that $|f_1| \leq 2p$. Set $u_1 := z_1$. Suppose f_1, \ldots, f_{m-1} and u_1, \ldots, u_{m-1} are chosen with the required properties. Since $Te_n \to 0$ weakly we have $z_n \to 0$ weakly. So we can find a k (larger than the indexes with respect to z of u_1, \ldots, u_{m-1}) such that $|f_1(z_n)| \leq 1/2, \ldots, |f_{m-1}(z_n)| \leq 1/2$ for $n \geq k$. Choose $u_m := z_k$. The function $h_m : \lambda_1 u_1 + \ldots + \lambda_m u_m \mapsto \lambda_m (\lambda_1, \ldots, \lambda_m \in K)$ satisfies $|h_m| \leq t^{-1}p$ so it can be extended to a function $f_m \in E'$ such that $|f_m| \leq 2t^{-1}p$. We see that f_1, \ldots, f_m and u_1, \ldots, u_m have the required properties.
Now we have that \(u_1, u_2, \ldots \) is a subsequence, say \(T e_{i_1}, T e_{i_2}, \ldots \) of \(T e_1, T e_2, \ldots \). Define a linear isometry \(\Omega : \ell^\infty \to \ell^\infty \) by the formula

\[
(\Omega(y_1, y_2, \ldots))_n = \begin{cases}
0 & \text{if } n \not\in \{i_1, i_2, \ldots\} \\
y_{i_m} & \text{if } m \in \mathbb{N}, n = i_m
\end{cases}
\]

and set \(S := T \circ \Omega \). Then obviously \(S \) is continuous and \(S \) is described by the formula

\[
S(y_1, y_2, \ldots) = \sigma(E, E') - \sum_{n=1}^{\infty} y_n u_n.
\]

Finally let \(y = (y_1, y_2, \ldots) \in \ell^\infty, y \neq 0 \). There is an \(m \in \mathbb{N} \) such that \(|y_m| > \frac{1}{2} ||y|| \). We have \(p(Sy) \geq \frac{1}{2} t |f_m(Sy)| = \frac{1}{2} t |\sum_{n \geq m} y_n f_m(u_n)| \). If \(n > m \) we have \(|y_m f_m(u_n)| \leq \frac{1}{2} |y_n| \leq \frac{1}{2} ||y|| \) whereas \(|y_m f_m(u_m)| = |y_m| > \frac{1}{2} ||y|| \) so \(p(Sy) \geq \frac{1}{2} ||y|| \) implying that \(S \) is a linear homeomorphism from \(\ell^\infty \) onto \(S(\ell^\infty) \subset E \) which gives the desired contradiction.

\((\beta) \Rightarrow (\gamma)\) is obvious. The implication \((\gamma) \Rightarrow (\alpha)\) was proved in [8], Theorem 1.2 for (polar) Banach spaces \(E \). From here the step to locally convex \(E \) is easy ([4], Lemma 4.6). □

Theorem 3.2

For a Fréchet space \(E \) the following are equivalent.

\((a) \) \(E \) is an \((O.P.) \)-space.

\((\beta) \) \(E \) is polar, weakly sequentially complete and \(E \) does not contain a subspace linearly homeomorphic to \(\ell^\infty \).

\((\gamma) \) \(E \) is polar, weakly sequentially complete and \(E \) does not contain a complemented subspace linearly homeomorphic to \(\ell^\infty \).

\((\delta) \) \(E \) is polar, weakly sequentially complete and every continuous linear map \(\ell^\infty \to E \) is compact.

Proof. The equivalence of \((\beta), (\gamma), (\delta) \) follows from Proposition 3.1.

\((a) \Rightarrow (\beta) \). Theorem 2.3 yields polarness of \(E \). Now let \(x_1, x_2, \ldots \) be a weakly Cauchy sequence. Then \(x_{n+1} - x_n \to 0 \) weakly, hence strongly. As \(E \) is complete, there is an \(x \in E \) with \(x_n \to x \) strongly, hence weakly. Thus, \(E \) is weakly sequentially complete. Obviously, \(E \) does not contain \(\ell^\infty \).
(δ) ⇒ (α). Let \(x_1, x_2, \ldots \) be a sequence in \(E \) tending weakly to 0. By weak sequential completeness the formula

\[
(\eta_1, \eta_2, \ldots) \mapsto T \sigma(E, E') - \lim_{n \to \infty} \sum_{i=1}^{n} \eta_i x_i
\]

defines a linear map \(T : \ell^\infty \to E \). \(E \) is polar and \(\{x_1, x_2, \ldots\} \) is weakly bounded hence bounded (\([6]\), Cor. 7.7) and it follows that \(T \) is continuous. By (δ), \(T \) is compact. Then \(\{x_1, x_2, \ldots\} \) is a compactoid on which the weak and strong topologies coincide (\([6]\), Theorem 5.12). Thus, \(x_n \to 0 \) strongly and the theorem is proved. □

Problem. Does there exist a Banach (or Fréchet) space that is polar, is not (O.P.), and does not contain \(\ell^\infty \)? In other words, may we drop the condition of weak sequential completeness in Theorem 3.2?

References