Abstract. For a closed subspace D of ℓ^∞ over a non-archimedean valued base field we study in this paper the property

1. There exists a continuous linear projection P from ℓ^∞ onto D with $\|P\| \leq 1$ (D is orthocomplemented in ℓ^∞)

as related to the properties 2, 3, 4 below,

2. For every continuous linear functional $f \in D'$ there exists a continuous linear extension $\tilde{f} \in (\ell^\infty)'$ with $\|\tilde{f}\| = \|f\|$ (D has the Hahn-Banach property in ℓ^∞).

3. The canonical quotient map $\pi_E : E \to E/D$ is strict, i.e. for each $z \in E/D$ there exists $x \in E$ with $\pi_E(x) = z$ and $\|x\| = \|z\|$ (D is strict in ℓ^∞).

4. D is weakly closed in ℓ^∞.

Also, certain duality arguments allow us to obtain several descriptions of the orthocomplemented subspaces of c_0. In particular it is shown (Theorem 4.3) that, if K is not spherically complete, a closed hyperplane H in c_0 having the Hahn-Banach property in c_0 is orthocomplemented.

1. PRELIMINARIES. Throughout K is a non-archimedean valued field that is complete with respect to the metric induced by the non-trivial valuation $\cdot \cdot$. Also, $(E, \|\cdot\|)$ will be a (non-archimedean) Banach space over K.

For a Banach space F over K and a continuous linear map T from E into F, the kernel of T is the set

$$\text{Ker } T = \{x \in E : Tx = 0\}.$$

Also, the norm of T is given by

$$\|T\| = \sup \left\{ \frac{\|Tx\|}{\|x\|} : x \in E \setminus \{0\} \right\}$$

When there exists a linear isometry from E onto F we say that E and F are isometrically isomorphic and we write $E \simeq F$.

Research partially supported by Comision Mixta Caja Cantabria-Universidad de Cantabria.
The dual space E' of E consisting of all the continuous linear maps from E to K is again a Banach space. We set

$$J_E(x)(x') = x'(x) \quad (x \in E, x' \in E').$$

E is called reflexive is J_E is an isometry from E onto E''.

For a closed subspace D of E we say that

a) D has the HB-property (resp. HB$^+$-property) in E if for every $f \in D'$ (resp. for every $\varepsilon > 0$ and for every $f \in D'$) there exists a continuous linear map $\tilde{f} \in E'$ extending f such that $\|\tilde{f}\| = \|f\|$ (resp. $\|\tilde{f}\| \leq (1 + \varepsilon)\|f\|$).

b) D is strict in E if the quotient map $\pi_E : E \to E/D$ is strict (i.e. for every $z \in E/D$ there exists an $x \in E$ for which $\pi_E(x) = z$ and $\|x\| = \|z\|$).

c) D is orthocomplemented in E if there exists a closed subspace G of E such that $D \cap G = \{0\}$, $E = D + G$ and

$$\|x + y\| = \max(\|x\|, \|y\|) \quad (x \in D, y \in G)$$

(such a G is called an orthogonal complement of D in E).

It is not difficult to prove the two following Propositions which include some elementary (but useful) descriptions for the orthocomplemented and the strict subspaces of an arbitrary Banach space.

Proposition 1.1. For a closed subspace D of E the following are equivalent.

i) D is orthocomplemented in E.

ii) There exists a continuous linear isometry $\varphi : E/D \to E$ such that $\pi_E \circ \varphi$ is the identity on E/D.

iii) There exists a continuous linear projection P from E onto D with $\|P\| = 1$ (This P is called an orthoprojection from E onto D).

Proposition 1.2. For a closed subspace D of E the following properties are equivalent:

i) D is strict in E.

ii) There exists a (non-necessarily linear) map $\varphi : E/D \to E$ such that $\|\varphi(x)\| = \|x\|$ for all $x \in E/D$ and $\pi_E \circ \varphi$ is the identity on E/D.

iii) For each $x \in E$, D is orthocomplemented in $D + Kx$.

Clearly, D is orthocomplemented in E if D has the HB-property and D is strict in E.

If E' separates the points of E then D is orthocomplemented in E if D is weakly closed in E.

Most of what we are about to do concerns converses of the above implications when $E = \ell^\infty$ or c_0. Firstly we consider (co)finite-dimensional subspaces (sections 3, 4) and
later on arbitrary closed subspaces of ℓ^∞ and c_0 (section 5). We assume that K is not spherically complete, since if K is spherically complete every closed subspace of E is weakly closed and has the HB-property in E ([3], Theorems 4.2, 4.7) and also every finite-dimensional subspace of E is orthocomplemented ([7], Lemma 4.35). The basic machinery to our purpose is included in section 2.

The following problem arises in a natural way in this paper (see Problem 4 in section 5):

Problem. Suppose K is not spherically complete. Let D be a weakly closed subspace of ℓ^∞ such that D is strict and has the HB-property in ℓ^∞. Does it follow that D is orthocomplemented in ℓ^∞?

In fact we do not know the answer of this problem for any infinite-dimensional Banach space E (instead of ℓ^∞) over a non-spherically complete field K.

However, if K is spherically complete, the situation is completely different. Indeed, suppose that $|K| = [0, \infty)$. By a standard construction we can make a strict quotient map $\pi : c_0(I) \to \ell^\infty$ if I has adequate cardinal. Now, $D = \text{Ker } \pi$ is a weakly closed subspace which is strict and has the HB-property in $c_0(I)$. If D were orthocomplemented then ℓ^∞ would be isometrically isomorphic to a closed subspace of $c_0(I)$ and so ℓ^∞ has an orthogonal base: a contradiction ([7], Corollary 5.18).

For some other unexplained concepts and notations that we will use in the sequel, we refer to [3] and [7].

2. **GENERAL FACTS**

In this section we include some general results which will be useful in the rest of the paper.

First, we are going to see (Propositions 2.1 - 2.7) that strictness and the HB-property behave sometimes as "opposites" of one another.

Proposition 2.1. Let D be a closed subspace of E.

i) If D is strict in E and $E/D \simeq c_0(I; s)$ for some set I and $s : I \to (0, +\infty)$, then D is orthocomplemented in E.

ii) If D has the HB-property in E and $D \simeq \ell^\infty(I; s)$ for some set I and some $s : I \to (0, +\infty)$, then D is orthocomplemented in E (compare Theorem 1.2 of [5]).

Proof.

i) Let $\{u_i : i \in I\}$ be an orthogonal base of E/D. By strictness, there exists $\{z_i : i \in I\} \subset E$ such that $\pi_E(z_i) = u_i$ and $\|z_i\| = \|u_i\|$ for all $i \in I$. A standard argument shows that $\varphi : E/D \to E$ given by the formula $\sum_{i \in I} \lambda_i z_i \to$
\[\sum_{i \in I} \lambda_i z_i \] is a linear isometry for which \(\pi_E \circ \varphi \) is the identity on \(E/D \). Hence, \(D \) is orthocomplemented.

ii) For each \(i \in I \) the coordinate function \(f_i \in D' \) given by \(f_i(x) = x_i \) (\(x = (x_i)_{i \in I} \in \ell^\infty(I, s) \)) has norm \(s(i)^{-1} \). By the HB-property, \(f_i \) extends to an \(\tilde{f}_i \in E' \) with \(\| \tilde{f}_i \| = s(i)^{-1} \). Then, \(P : E \to D; x \to (\tilde{f}_i(x))_{i \in I} \) is an orthoprojection from \(E \) onto \(D \).

As a special case we obtain

Corollary 2.2. If \(D \) is a closed hyperplane (resp. a one-dimensional subspace) in \(E \), then \(D \) is strict (resp. \(D \) has the HB-property) in \(E \) iff \(D \) is orthocomplemented in \(E \).

Remarks 2.3.

1.- Observe that if \(D \) is a closed hyperplane of \(E \), there is an \(f \in E' \setminus \{0\} \) such that \(D = \text{Ker} \ f \). Then, \(D \) is orthocomplemented iff \(\|f\| = \max \left\{ \frac{|f(x)|}{\|x\|} : x \in E \setminus \{0\} \right\} \).

In fact, if \(a \in E \) one can easily see that \(Ka \) is an orthogonal complement of \(D \) iff \(\|f\| = \frac{|f(a)|}{\|a\|} \).

2.- If \(K \) is spherically complete the finite (co)dimensional version of the above Corollary 2.2 holds.

Indeed, observe that if \(\dim E/D < \infty \), then \(E/D \) has an orthogonal base ([7], Lemma 5.5). Also, every finite-dimensional subspace of \(E \) is orthocomplemented ([7], Lemma 4.35).

3.- But, for non-spherically complete fields \(K \) the generalization in Remark 2 does not hold. In fact, let \(\pi : c_0 \to K_2^2 \) be a strict surjection ([6], 2.3, Remark 1). Then, \(\text{Ker} \pi \) is a strict two-codimensional subspace of \(c_0 \) that cannot be orthocomplemented since \(K_2^2 \) has no orthogonal base ([7], p.68).

On the other hand, the adjoint of \(\pi \) is an isometry \(\pi' : (K_2^2)' \to \ell^\infty \) and by construction \(\text{Im} \pi' \) has the HB-property in \(\ell^\infty \). But it will follow from Theorem 3.3 that it is not orthocomplemented in \(\ell^\infty \).

However we do have the following related statement.

Proposition 2.4.

i) If \(D \) is a closed subspace of \(E \) of finite codimension and if all hyperplanes \(H \) containing \(D \) are strict (orthocomplemented) in \(E \), then \(D \) is orthocomplemented in \(E \).

ii) If \(D \) is a finite-dimensional subspace of \(E \) and if every one-dimensional subspace of \(D \) has the HB-property (is orthocomplemented) in \(E \), then \(D \) is orthocomplemented in \(E \).
Proof.
i) For a proof by induction with respect to the codimension of \(D \) it suffices to show that, for closed subspaces \(D_1, D_2 \) of finite codimension, containing \(D \) from
\[
D_1 \subset D_2, \dim D_2/D_1 = 1 \text{ and } \quad D_2 \text{ is orthocomplemented in } E,
\]
it follows that \(D_1 \) is orthocomplemented in \(E \).
To see that, let \(P \) be an orthoprojection from \(E \) onto \(D_2 \). Then, \(\dim \ker P = \text{codim } D_1 - 1 \) and so \(D_1 + \ker P \) is a closed hyperplane of \(E \). There is an orthoprojection \(Q \) from \(E \) onto \(D_1 + \ker P \). Hence, \(PQ \) is an orthoprojection from \(E \) onto \(D_1 \).

ii) Almost identical to the proof of Lemma 4.35,iii) of [7].

The next two Propositions stress the duality between strictness and the HB-property.

Proposition 2.5. For a closed subspace \(D \) of \(E \) and its polar \(D^0 \) we have

i) If \(D \) is orthocomplemented in \(E \), then \(D^0 \) is orthocomplemented in \(E' \).

ii) If \(D \) has the HB-property in \(E \), then \(D^0 \) is strict in \(E' \).

iii) If \(D \) is strict in \(E \) and \(E/D \) is reflexive, then \(D^0 \) has the HB-property in \(E' \).

Proof.

i) If \(S \) is an orthogonal complement of \(D \) in \(E \), then \(S^0 \) is an orthogonal complement of \(D^0 \) in \(E' \).

ii) If \(i : D \hookrightarrow E \) is the canonical inclusion then its adjoint \(i' : E' \rightarrow D' \) is a strict map. Hence, its kernel, \(D^0 \), is strict in \(E' \).

iii) The quotient map \(\pi_E : E \rightarrow E/D \) has an isometrical adjoint \(\pi'_E : (E/D)' \rightarrow E' \) for which \(\pi'_E((E/D)') = D^0 \). Hence, to show that \(D^0 \) has the HB-property in \(E' \) it suffices to prove that for any \(\varphi \in (E/D)' \) there exists a \(\tilde{\varphi} \in E'' \) such \(||\tilde{\varphi}|| = ||\varphi|| \) and \(\tilde{\varphi} \circ \pi'_E = \varphi \). By the reflexivity of \(E/D \), there is a \(z \in E/D \) such that \(\varphi = J_{E/D}(z) \) and \(||z|| = ||\varphi|| \). Also, by strictness there is an \(x \in E \) with \(\pi_E(x) = z \) and \(||x|| = ||z|| \). Then, \(\tilde{\varphi} = J_E(x) \) satisfies the required conditions.

Now, we consider the converse of Proposition 2.5.

Proposition 2.6. Let \(D \) be a closed subspace of \(E \).

i) Let \(D^0 \) be orthocomplemented (resp. \(D^0 \) have the HB-property in \(E \)). If in addition \(E \) is reflexive and \(D \) is weakly closed then \(D \) is orthocomplemented (resp. \(D \) is strict) in \(E \).

ii) If \(D^0 \) is strict in \(E' \) and \(D \) has the HB⁺-property in \(E \), then \(D \) has the HB-property in \(E \).
Proof.
i) By the previous Proposition the bipolar of \(D, D^{00} \), is orthocomplemented (strict) in \(E'' \). By reflexivity and weak closedness \(D \) is orthocomplemented (strict) in \(E \).

ii) Let \(i': E' \to D' \) be the adjoint map of the canonical inclusion \(i : D \to E \) and let \(\rho : D' \to E'/D^0 \) the natural map making the diagram

\[
\begin{array}{ccc}
E' & \xrightarrow{i'} & D' \\
\pi_{E'} \downarrow & & \downarrow \rho \\
E'/D^0
\end{array}
\]

commute. It follows easily from the HB\(^{+}\)-property of \(D \) that \(\rho \) is an isometrical isomorphism. Now, \(\pi_{E'} \) is strict. Hence, so is \(i' \), i.e. \(D \) has the HB-property.

Although in the above results the HB-property and strictness seem dual properties, sometimes they have similar behaviour. This is the case in the next few propositions.

Observe that if \(D \) is a closed subspace of \(E \) and \(S \) is a closed subspace of \(D \), then we have in a natural way the following commutative diagram

\[
\begin{array}{ccc}
D & \xrightarrow{i_1} & E \\
\downarrow \pi_D & & \downarrow \pi_E \\
D/S & \xrightarrow{i_2} & E/S
\end{array}
\]

where \(i_1, \pi_E, \pi_D \) are the obvious maps and \(i_2 \) makes the diagram commute.

Proposition 2.7. Let \(D \) be a closed subspace of \(E \) and let \(S \) be a closed subspace of \(D \). If \(D \) is strict (resp. has the HB-property, is orthocomplemented) in \(E \), then \(i_2(D/S) \) is strict (resp. has the HB-property, is orthocomplemented) in \(E/S \).

Proof. Suppose that \(D \) is strict. Let \(x \in E \). There is a \(d \in D \) such that

\[
\|x - i_1(d)\| \leq \|x - i_1(d')\| \quad (d' \in D).
\]

Now, for all \(s' \in S, d' \in D \), we have

\[
\|\pi_E(x) - i_2\pi_D(d)\| = \|\pi_E(x) - \pi_E(i_1(d))\|
\]

\[
\leq \|x - i_1(d)\| \leq \|x - i_1(d') - s'\|
\]

Hence, \(\|\pi_E(x) - i_2\pi_D(d)\| \leq \|\pi_E(x) - i_2\pi_D(d')\| \) for all \(d' \in D \) and we see that the distance of \(\pi_E(x) \) to \(i_2(D/S) \) is attained, which means that \(i_2(D/S) \) is strict in \(E/S \).
Now, assume that D has the HB-property and let $f \in (D/S)'$. Then $f \circ \pi_D \in D'$ so by assumption there is a $g \in E'$ such that $\|g\| = \|f \circ \pi_D\| = \|f\|$ and $g \circ i_1 = f \circ \pi_D$. Since $S \subset \text{Ker} \ g$ there is a unique $\tilde{f} \in (E/S)'$ such that $\tilde{f} \circ \pi_E = g$ (see the diagram).

One verifies without pain that then also $\tilde{f} \circ i_2 = f$ and that $\|\tilde{f}\| = \|f\|$.

Finally, suppose that D is orthocomplemented and let $P : E \to D$ be an orthoprojection from E onto D. Since $S \subset \text{Ker}(\pi_D \circ P)$, there is a unique continuous linear map $Q : E/S \to D/S$ such that $Q \circ \pi_E = \pi_D \circ P$ and $\|Q\| \leq 1$. Also, $Q \circ i_2 \pi_D(x) = \pi_D(x)$ for all $x \in D$. So, since π_D is surjective, we conclude that $Q \circ i_2$ is the identity on D/S, which implies that $i_2(D/S)$ is orthocomplemented in E/S.

A partial converse of Proposition 2.7 is the following.

Proposition 2.8. Let D be a closed subspace of E. If for each closed subspace S of D with $\dim D/S = 1$ we have that $i_2(D/S)$ has the HB-property in E/S, then D has the HB-property in E.

Proof. Let $f \in D' \setminus \{0\}$ and let $S = \text{Ker} \ f$. Then $f = \rho_1 \circ \pi_D$ where $\rho_1 : D/S \to K$ is a similarity (i.e. there exists a nonzero real number c such that $|\rho_1(z)| = c\|z\|$ for all $z \in D/S$). By assumption and Corollary 2.2, there is an orthoprojection $\rho_2 : E/S \to D/S$ such that $\rho_2 \circ i_2$ is the identity on D/S. Now set $\tilde{f} = \rho_1 \cdot \rho_2 \circ \pi_E$. Then, $\|\tilde{f}\| = \|f\|$ and $\tilde{f} \circ i_1 = f$, and we are done.

Remark 2.9. Putting together Propositions 2.7 and 2.8 we derive that a closed subspace D of E has the HB-property in E iff for every closed hyperplane S of D, $i_2(D/S)$ has the HB-property in E/S. (Compare with Theorem 2.3 of [1]).

Observe that if S, D are closed subspaces of E with $S \subset D$, then the formula

$$\pi_{E/D}(\pi_1(x)) = \pi_2 \circ \pi_E(x) \quad (x \in E)$$

defines an isometrica! isomorphism $\pi_{E/D} : E/D \to (E/S)/(D/S)$ making the diagram

$$
\begin{array}{ccc}
D & \xrightarrow{i_1} & E \\
\downarrow \pi_D & & \downarrow \pi_E \\
D/S & \xrightarrow{i_2} & E/S \\
\end{array}
\quad (I)
\begin{array}{ccc}
& & \downarrow \pi_{E/D} \\
& & (E/S)/(D/S)
\end{array}
$$

59
Proposition 2.10 Let $S \subset D$ be closed subspaces of E. If S is strict (resp. has the HB-property, is orthocomplemented) in E and D/S is strict (resp. has the HB-property, is orthocomplemented) in E/S, then D is strict (resp. has the HB-property, is orthocomplemented) in E.

Proof.

a) Strictness: Let $z \in E/D$. Then, in the diagram (I), $\pi_{E/D}(z)$ admits a $y \in E/S$ such that $\pi_2(y) = \pi_{E/D}(z)$ and $\|y\| = \|\pi_{E/D}(z)\| = \|z\|$. Also, there is an $x \in E$ with $\pi_E(x) = y$ and $\|x\| = \|y\|$. Then, $\pi_1(x) = z$ and $\|x\| = \|y\| = \|z\|$. Hence, D is strict in E.

b) HB-property: Let $f \in D'$ and let $g \in E'$ be such that the restrictions $g|S$ and $f|S$ coincide and $\|g\| = \|f|S\|$. Now consider $h = f - g|D \in D'$. Since $h = 0$ on S there is a $h_1 \in (D/S)'$ with $h = h_1 \circ \pi_D$ and $\|h_1\| = \|h\|$. By assumption h_1 extends to a $h_2 \in (E/S)'$ (I.e. $h_2 \circ i_2 = h_1$) with $\|h_2\| = \|h_1\|$ (see the diagram).

Now set $j = h_2 \circ \pi_E$. We have that $\|j\| \leq \|f\|$ and $j \circ i_1 = h$. Then, $\tilde{f} = j + g$ is a continuous linear extension of f with $\|\tilde{f}\| = \|f\|$ and we are done.

c) Orthocomplementation: By using diagram (I), there is by assumption a $\rho_2 : (E/S)/(D/S) \to E/S$ such that $\pi_2 \circ \rho_2$ is the identity and also a $\rho_1 : E/S \to E$ such that $\pi_E \circ \rho_1$ is the identity, ρ_1 and ρ_2 being linear isometries. Now define $\tau : E/D \to E$ by $\tau = \rho_1 \circ \rho_2 \circ \pi_{E/D}$. We have that τ is a linear isometry for which $\pi_{E/D} \circ (\pi_1 \circ \tau) = \pi_{E/D}$, and so $\pi_1 \circ \tau$ is the identity.

3. FINITE-(CO)DIMENSIONAL ORTHOCOMPLEMENTED SUBSPACES OF ℓ^∞

As we have already announced in the Preliminaries,

FROM NOW ON IN THIS PAPER (EXCEPT IN 3.2) WE ASSUME THAT K IS NOT SPHERICALLY COMPLETE.
The results given in §2 can be applied now to obtain several descriptions of the finite-(co)dimensional subspaces of ℓ^∞ that have an orthogonal complement.

For subspaces of finite codimension the situation is satisfactory.

Proposition 3.1. Every closed finite-codimensional subspace of ℓ^∞ is orthocomplemented.

Proof. By reflexivity the map $D \to D^0$ is a bijection between the set of all finite-dimensional subspaces of c_0 and the set of all finite-codimensional subspaces of ℓ^∞. Since every finite-dimensional subspace of c_0 is orthocomplemented, we can apply Propositions 2.5 and 2.6 to derive our conclusion.

Remark 3.2. If K is spherically complete the conclusion above no longer holds.

Indeed, suppose that the valuation on K is dense. Let X be a maximal orthogonal subset of ℓ^∞ and let H be a closed hyperplane of ℓ^∞ containing X. Then H is not orthocomplemented in ℓ^∞.

The pictures changes when we consider finite-dimensional subspaces of ℓ^∞.

Theorem 3.3. For a finite-dimensional subspace D of ℓ^∞, the following properties are equivalent.

i) D is orthocomplemented in ℓ^∞.

ii) Every one-dimensional subspace of D is orthocomplemented (has the H.B-property) in ℓ^∞.

iii) For each $x = (x_n) \in D$, $\max_n |x_n|$ exists.

Proof. i) \Rightarrow ii): By Proposition 2.5, there exists an orthogonal complement S of D^0 in c_0. Then, $D \simeq S'$ in a natural way, and since S is finite-dimensional, there is an $n \in \mathbb{N}$ such that $D \simeq K^n$. So, every one-dimensional subspace of D is orthocomplemented in D (and hence in ℓ^∞, by i)).

ii) \Rightarrow i): It follows from Proposition 2.4 ii).

ii) \iff iii): Let $f \in c_0'$. By Propositions 2.5 and 2.6 we have that Kf is orthocomplemented in c_0' iff $\text{Ker } f$ is orthocomplemented in ℓ^∞, and this happens iff $\|f\| = \max \{ |f(x)| : \|x\| \leq 1 \}$ (Remark 2.4.1). So, we conclude that Kf is orthocomplemented in c_0' iff $\|f\| = \max |f(e_n)|$ (where e_1, e_2, \ldots is the canonical base of c_0). This is precisely ii) \iff iii) (Recall that $c_0' \simeq c_0^\infty$, [7]. Exercise 3.4.1))

For one-dimensional subspaces we prove the following curious Theorem, which will be useful in the sequel.

Theorem 3.4. A one-dimensional subspace of ℓ^∞ is strict iff it is orthocomplemented.
Proof. Clearly the orthocomplementation property implies strictness (see the Preliminaries).
Now suppose that $D = Kx$ ($x = (x_1, x_2, \ldots) \in \ell^\infty, x \neq 0$). If D is not orthocomplemented then $|x_n| < \|x\|$ for all n (Theorem 3.3). We are going to prove that there exists a $y \in \ell^\infty$ such that the linear hull $[x, y]$ of $\{x, y\}$ has no orthogonal base and by Proposition 1.2 we are done.

Let $K = B_0$ and let $B_1 \supset B_2 \supset \ldots$ be bounded discs in K whose intersection is empty. For each $n \in \mathbb{N}$ let $r_n = \text{diam } B_n$ (the diameter of B_n). Define a function $\varphi : K \to [0, +\infty)$ by the formula

$$\varphi(\lambda) = \lim_{n \to \infty} \text{dist}(\lambda, B_n) \quad (\lambda \in K).$$

Then $\inf\{\varphi(\lambda) : \lambda \in K\} = d$, where $d = \lim_{n \to \infty} r_n > 0$, but d is not attained (observe that $d \neq r_n$ for each $n \in \mathbb{N}$). We shall construct $c_1, c_2, \ldots \in K$ such that

$$\|y - \lambda x\| = \varphi(\lambda)\|x\| \quad (\lambda \in K)$$

with $y := (c_1 x_1, c_2 x_2, \ldots)$ (Then, $\text{dist}(y, Kx)$ is not attained and it follows easily that $[x, y]$ has no orthogonal base).

Let $n \in \mathbb{N}$. If $x_n = 0$ we set $c_n = 0$. Now let $x_n \neq 0$. Then, we may choose a $k(n) \in \mathbb{N}$ for which

$$r_{k(n)} \leq \frac{\|x\|d}{|x_n|} \quad (II)$$

and take $c_n \in B_{k(n)} \setminus B_{k(n)+1}$.

Now let $\lambda \in K$. First we prove that $\|y - \lambda x\| \leq \varphi(\lambda)\|x\|$, i.e. that, for each $n \in \mathbb{N}$, $|c_n - \lambda| |x_n| \leq \varphi(\lambda)\|x\|$. This is obvious when $x_n = 0$, so let $x_n \neq 0$. There is a unique $m \in \{0, 1, 2, \ldots\}$ such that $\lambda \in B_m \setminus B_{m+1}$. We distinguish two cases.

a) $m \geq k(n)$. Then $c_n \in B_{k(n)}$ and $\lambda \in B_m \subset B_{k(n)}$. Hence, by (II) we obtain

$$|c_n - \lambda| |x_n| \leq r_{k(n)} |x_n| \leq \|x\| \varphi(\lambda).$$

b) $m < k(n)$. Then $c_n \in B_{k(n)} \subset B_{m+1}$ while $\lambda \not\in B_{m+1}$ so that $|c_n - \lambda| = \varphi(\lambda)$ and

$$|c_n - \lambda| |x_n| = \varphi(\lambda) |x_n| \leq \varphi(\lambda)\|x\|.$$

To finish, we prove that $\|y - \lambda x\| \geq \varphi(\lambda)\|x\|$. Let $\varepsilon > 0$. Without loss we can assume $\varepsilon < r_m - d$. From our assumption on x it follows that $J := \{n \in \mathbb{N} : \|x\|d < |x_n|(d+\varepsilon)\}$ is infinite. If $n \in J$, then by (II)

$$r_{k(n)} < d + \varepsilon < r_m$$

62
so that \(k(n) > m \). Thus we are in case b) of above, so \(|c_n - \lambda| |x_n| > \frac{d}{2\pi} \varphi(\lambda) \|x\| \) and we are done.

Remark 3.5. Taking into account Corollary 2.2 and Theorem 3.4, for a one-dimensional subspace \(D \) of \(\ell^\infty \) one verifies

\(D \) is orthocomplemented \(\iff \) \(D \) is strict \(\iff \) \(D \) has the HB-property.

We know that the implication

\(D \) has the HB-property \(\Rightarrow \) \(D \) is orthocomplemented

does not hold for every finite-dimensional subspace \(D \) of \(\ell^\infty \). Next we will see (Corollary 3.7) that the implication

\(D \) is strict \(\Rightarrow \) \(D \) has the HB-property

holds for every finite-dimensional (in fact for every weakly closed subspace) \(D \) of \(\ell^\infty \).

This will be a consequence of the following result.

Theorem 3.6. (Compare Theorem 2.3 of [5]). Let \(M \) be a closed subspace of \(\ell^\infty \). The following are equivalent.

i) \(M \) is weakly closed in \(\ell^\infty \).

ii) \(\ell^\infty /M \simeq K^n \) for some \(n \in \mathbb{N} \) or \(\ell^\infty /M \simeq \ell^\infty \).

iii) \(\ell^\infty /M \) is reflexive.

iv) For every (for some) closed subspace \(S \) of \(M \) with \(\dim M/S = 1 \), \(S \) is weakly closed in \(\ell^\infty \).

Proof. The implications ii) \(\Rightarrow \) iii) and iii) \(\Rightarrow \) i) are obvious.

i)\(\Rightarrow\)ii): For a closed subspace \(D \) of \(c_0 \) the adjoint of the inclusion map \(D \rightarrow c_0 \) is a quotient map, so \(D' \simeq c_0/D^0 \). By applying this for \(D := M^0 \) and by using \(M^{00} = M \) we obtain \((M^0)' \simeq c_0/M^{00} \simeq \ell^\infty /M \). Since \(M^0 \) is a closed subspace of \(c_0 \), we have that \(M^0 \simeq K^n \) for some \(n \in \mathbb{N} \) (and so \(\ell^\infty /M \simeq K^n \)) or \(M^0 \simeq c_0 \) (and so \(\ell^\infty /M \simeq \ell^\infty \)).

i)\(\Rightarrow\)iv): If \(S \) is a closed subspace of \(M \) with \(\dim M/S = 1 \), then \(S \) is weakly closed in \(M \). By (c)\(\Rightarrow\)(h) in Theorem 2.3 of [5], it follows that \(S \) is also weakly closed in \(\ell^\infty \).

iv)\(\Rightarrow\)i): Let \(S \) be a closed subspace of \(M \) as in iv). Since \((\ell^\infty /S)' \) separates the points of \(\ell^\infty /S \) and \(\dim M/S = 1 \), we have that \(((\ell^\infty /S)/(M/S))' \) separates also the points of \((\ell^\infty /S)/(M/S) \) which is isometrically isomorphic to \(\ell^\infty /M \) (see diagram (I)). Hence, \(M \) is weakly closed in \(\ell^\infty \).

Corollary 3.7. If \(D \) is a weakly closed subspace of \(\ell^\infty \) and \(D \) is strict in \(\ell^\infty \), then \(D \) has the HB-property in \(\ell^\infty \).

Proof. Let \(S \) be a closed subspace of \(D \) with \(\dim D/S = 1 \). It suffices to prove that \(t_2(D/S) \) has the HB-property in \(\ell^\infty /S \) (Proposition 2.8).
By strictness and Proposition 2.7, $\iota_2(D/S)$ is a one-dimensional and strict subspace of ℓ^∞/S. But $\ell^\infty/S \simeq K^n$ for some n or $\ell^\infty/S \simeq \ell^\infty$ (Theorem 3.6). Now, the conclusion follows by Theorem 3.4.

Remark 3.8. Looking at Theorem 3.4 and Corollary 3.7 the following question arises in a natural way.

Problem 1. Is every finite-dimensional and strict subspace of ℓ^∞ orthocomplemented in ℓ^∞?

Observe that this problem is equivalent to each one of the following questions.

Problem 2. Let D be a finite-dimensional strict subspace of ℓ^∞. Is there any one-dimensional subspace $K \{x \in D \setminus \{0\}\}$ of D that is strict (orthocomplemented) in ℓ^∞, i.e. $\|x\| = \max_n |x_n|$?

Problem 3. Let D be a finite-dimensional strict subspace of ℓ^∞, $\dim D \geq 2$. Is there any closed subspace G of D with $0 \subseteq G \subsetneq D$ such that G is strict (orthocomplemented) in ℓ^∞?

Indeed, it follows by Theorems 3.3 and 3.4 that if Problem 1 has an affirmative answer then so has Problem 2. Also, it is obvious to pass from Problem 2 to Problem 3. Finally, suppose that Problem 3 has an affirmative answer. We prove by induction that Problem 1 has also an affirmative answer. Let D be a n-dimensional strict subspace of ℓ^∞. We may assume that $n \geq 2$ (Theorem 3.4). Let $0 \subseteq G \subsetneq D$ be such that G is strict (and hence orthocomplemented, by the induction hypothesis) in ℓ^∞. Since D/G is strict in ℓ^∞/G (Proposition 2.7) and $\ell^\infty/G \simeq \ell^\infty$ (Theorem 3.6) it follows by the induction hypothesis that D/G is orthocomplemented in ℓ^∞/G. Now the orthocomplementation of D follows from Proposition 2.10.

4. **FINITE-(CO)DIMENSIONAL ORTHOCOMPLEMENTED SUBSPACES OF c_0**

It is well known that every finite-dimensional subspace of c_0 is orthocomplemented (see [7]).

We now translate the results we have found in the above section about orthocomplemented finite-dimensional subspaces of ℓ^∞ into statements about finite-codimensional subspaces of c_0. The next lemma, which is a direct consequence of Propositions 2.5 and 2.6, contains the key to do that.
Lemma 4.1. Let D be a closed subspace of c_0 (resp. a weakly closed subspace of ℓ^∞). Then,

$$
D \begin{cases}
\text{is orthocomplemented} \\
\text{is strict} \\
\text{has the HB-property}
\end{cases}
in c_0 \text{ (resp. in } \ell^\infty),
$$

iff $D^0 \begin{cases}
\text{is orthocomplemented} \\
\text{has the HB-property} \\
\text{is strict}
\end{cases}
in \ell^\infty \text{ (resp. in } c_0),$

(observe that every weakly closed subspace of ℓ^∞ has the HB$^+$-property, [5], Theorem 2.3).

Theorem 3.3 admits the following "dual":

Theorem 4.2. Let S be a closed subspace of c_0 with finite codimension. Then the following properties are equivalent

i) S is orthocomplemented in c_0.

ii) Every hyperplane containing S is orthocomplemented (strict) in c_0.

iii) If $f \in c_0$ and $f = 0$ on S, then $\|f\| = \max_n |f(e_n)|$ (where e_1, e_2, \ldots is the canonical base of c_0).

Analogously, Theorem 3.4 converts into the following result for closed hyperplanes of c_0.

Theorem 4.3. A closed hyperplane in c_0 has the HB-property in c_0 iff it is orthocomplemented in c_0.

In the same line, from Corollary 3.7 we deduce

Corollary 4.4. Every closed subspace of c_0 with the HB-property in c_0, is strict in c_0.

Finally, Problems 1-3 of the previous section give rise to the following equivalent questions.

Let S be a closed subspace of c_0 that has finite codimension and the HB-property in c_0.

Problem I. Is S orthocomplemented in c_0?

Problem II. Is there any closed hyperplane H in c_0 with $H \supset S$ such that H has the HB-property (is orthocomplemented) in c_0?
Problem III. If $2 \leq \text{codim } S$, is there a closed subspace T of c_0 with $S \subsetneq T \subsetneq c_0$ such that T has the HB-property (is orthocomplemented) in c_0?

5. SOME CONSEQUENCES AND REMARKS

Next we shall apply the results proved in the previous sections to study orthocomplementation for arbitrary closed subspaces of ℓ^∞ and c_0.

Theorem 5.1. Let D be a closed subspace of ℓ^∞. Then the following are equivalent.

i) D is orthocomplemented in ℓ^∞.

ii) $D \simeq K^n$ for some $n \in \mathbb{N}$ or $D \simeq \ell^\infty$ and D is strict (has the HB-property) in ℓ^∞.

iii) D is weakly closed and strict (has the HB-property) in ℓ^∞ and D' has an orthogonal base.

iv) D is weakly closed and for every closed subspace F of D with $\dim D/F < \infty$, D/F is orthocomplemented in ℓ^∞/F.

v) D is strict and there exists a closed subspace F of D with $\dim D/F = 1$ such that F is orthocomplemented in ℓ^∞.

vi) There exists a closed subspace F of D with $\dim D/F = 1$ such that F is orthocomplemented in ℓ^∞ and D/F is orthocomplemented (strict) in ℓ^∞/F.

Proof. i) \Rightarrow ii): Clearly D is strict and weakly closed. By Corollary 3.7, D has the HB-property in ℓ^∞.

Also, D' is isometrically isomorphic to a closed subspace of c_0 and so $D' \simeq K^n$ (for some $n \in \mathbb{N}$) or $D' \simeq c_0$. Since D is reflexive ([5], Lemma 2.2) we derive that $D \simeq K^n$ or $D \simeq \ell^\infty$.

ii) \Rightarrow iii): Follows from Theorem 2.3 of [5] and Corollary 3.7.

iii) \Rightarrow i): By reflexivity of D ([5], Lemma 2.2), $D \simeq \ell^\infty(I; s)$ for some set I and some $s : I \to (0, +\infty)$. Now, apply Proposition 2.1.

i) \Rightarrow iv): Follows from Proposition 2.7.

iv) \Rightarrow iii): By Proposition 2.8, D has the HB-property in ℓ^∞.

On the other hand, since $D' \simeq c_0/D^0$ is of countable type, it is enough to see that every finite-dimensional subspace G of c_0/D^0 has an orthogonal base. Let $\pi_0 : c_0 \to c_0/D^0$ be the canonical surjection. There is a finite-dimensional subspace M of c_0 with $\pi_0(M) = G$. Since $D^0 + M$ is weakly closed in c_0 ([7], Lemma 3.14 and [3], Theorem 4.7), there exists a weakly closed subspace S of ℓ^∞ such that $D^0 + M = S^0$. By assumption and Proposition 2.7 we conclude that D^0 is orthocomplemented in S^0 (observe that $(\ell^\infty/S)' \simeq S^0$ and under this isometry $(D/S)^0$ maps onto D^0). Then, there is a closed subspace M_1 of c_0 which is an orthogonal complement of D^0 in S^0. In
particular, \(D^0 + M = D^0 + M_1 \). So, \(\pi_0(M_1) = G \). But \(M_1 \), being a subspace of \(c_0 \), has an orthogonal base. Hence, so has \(G \).

i) \(\Rightarrow \) v): Clearly \(D \) is strict in \(\ell^\infty \).

Now, let \(F \) be a closed subspace of \(D \) with \(\dim D/F = 1 \). By i) \(\Rightarrow \) ii) and Proposition 3.1 it follows that \(F \) is orthocomplemented in \(D \) (and hence in \(\ell^\infty \)).

v) \(\Rightarrow \) vi): Let \(F \) be a closed subspace of \(D \) with \(\dim D/F = 1 \). By strictness of \(D \) and Proposition 2.7 it follows that \(D/F \) is strict in \(\ell^\infty/F \). Since \(F \) is weakly closed in \(\ell^\infty \), we can apply Theorem 3.4 and Theorem 3.6 i) \(\Rightarrow \) ii) to conclude that \(D/F \) is orthocomplemented in \(\ell^\infty/F \).

vi) \(\Rightarrow \) i): Follows by Proposition 2.10.

Recall that an absolutely convex set \(A \) of a locally convex space over \(K \) is called:

a) \(c' \)-compact: if for each neighbourhood \(U \) of 0 there exists a finite set \(B \subset A \) such that \(A \subset U + \text{co}B \) (where \(\text{co}B \) is the absolutely convex hull of \(B \)).

b) \(KM \)-compactoid: if it is complete and there exists a compact set \(X \subset A \) such that \(A \) is the closed absolutely convex hull of \(X \) (for the general properties of such sets see [4]).

By using Proposition 2.3 of [2] and a proof similar to the one given for (d) \(\iff \) (i) in Theorem 2.3 of [5], it is not difficult to obtain the following.

Theorem 5.2. Let \(D \) be a closed subspace of \(\ell^\infty \). Then, properties i) - vi) of Theorem 5.1 are equivalent to

vii) \(D \) is strict (has the HB-property) in \(\ell^\infty \) and \(B_D = \{ x \in D : \|x\| \leq 1 \} \) is weakly \(KM \)-compactoid in \(\ell^\infty \).

viii) \(D \) is strict (has the HB-property) in \(\ell^\infty \) and \(B_D \) is weakly closed and weakly \(c' \)-compact in \(\ell^\infty \).

As in section 4, we can now dualize Theorems 5.1 and 5.2 to describe the orthocomplemented subspaces of \(c_0 \).

Observe that as a direct consequence of Propositions 2.7 and 2.8, we have

Lemma 5.3. Let \(D \) be a weakly closed subspace of \(\ell^\infty \) and let \(F \) be a closed subspace of \(D \) with \(\dim D/F < \infty \) (so, \(F \) is weakly closed, Theorem 3.6). Then, \(D/F \) is orthocomplemented (resp. is strict, has the HB-property) in \(\ell^\infty/F \) iff \(D^0 \) is orthocomplemented (resp. has the HB-property, is strict) in \(F^0 \).

Then, putting together Lemmas 4.1 and 5.3 we have that Theorems 5.1 and 5.2 convert into the following descriptions of the orthocomplemented subspaces of \(c_0 \).

Theorem 5.4. For a closed subspace \(S \) of \(c_0 \) the following properties are equivalent.
i) S is orthocomplemented in c_0.

ii) $c_0/S \simeq K^n$ for some $n \in \mathbb{N}$ or $c_0/S \simeq c_0$ and S has the HB-property (is strict) in c_0.

iii) S has the HB-property (is strict) in c_0 and c_0/S has an orthogonal base.

iv) S is orthocomplemented in any closed subspace T of c_0 with $T \supset S$ and $\dim T/S < \infty$.

v) S has the HB-property in c_0 and there exists a closed subspace T of c_0 with $T \supset S$ and $\dim T/S = 1$ such that T is orthocomplemented in c_0.

vi) There exists a closed subspace T of c_0 with $T \supset S$ and $\dim T/S = 1$ such that S is orthocomplemented in T and T is orthocomplemented in c_0.

vii) S has the HB-property (is strict) in c_0 and $B(c_0/S)'$ is weakly-\ast KM-compactoid in $(c_0/S)'$.

viii) S has the HB-property (is strict) in c_0 and $B(c_0/S)'$ is weakly-\ast c'-compact in $(c_0/S)'$.

Remarks 5.5.

1. There is a closed subspace D of ℓ^∞ with $D \simeq \ell^\infty$ (and hence D is weakly closed [5], Theorem 2.3) such that D is not orthocomplemented in ℓ^∞.

Example: Choose $\lambda_1, \lambda_2, \ldots$ in K with $0 < |\lambda_1| < |\lambda_2| < \ldots \uparrow 1$. There are z_1, z_2, \ldots in c_0 with $|\lambda_1| \leq \|z_i\| < 1$ for all i such that every $x \in c_0$ with $\|x\| < 1$ can be written as $x = \sum_{i=1}^\infty \mu_i z_i$ where $|\mu_i| \leq 1$ for all i and $\mu_i \to 0$. Now, the map $T: c_0 \to c_0$ given by $T(\sum_{i=1}^\infty \lambda_i e_i) = \sum_{i=1}^\infty \lambda_i z_i$ is a continuous linear function mapping $\{x \in c_0 : \|x\| \leq 1\}$ onto $\{x \in c_0 : \|x\| < 1\}$: if $x \in c_0$ is such that $\|Tx\| = 1$, then $\|x\| > 1$. So T (and hence Ker T) is not strict. Thus, $D = (\text{Ker } T)^0$ satisfies the required conditions (Lemma 4.1).

2. There exists a closed subspace D of ℓ^∞ such that $D \simeq K$ (hence D is weakly closed) and such that D is not orthocomplemented in ℓ^∞.

Example: We know (Remark 2.3.3) that there exists a linear isometry i from K_2^2 into ℓ^∞ (Recall that $K_2^2 \simeq (K_2^2)'$). Since K_2^2 does not contain non-trivially mutually orthogonal elements, we derive that every one-dimensional subspace D of K_2^2 satisfies our requirements.

3. There exists a closed subspace D of ℓ^∞ with the HB-property in ℓ^∞ such that D' has an orthogonal base but D is not orthocomplemented in ℓ^∞.

Example: Take for D the closed subspace of ℓ^∞ constructed in [7], 4.J (observe that since D is not reflexive, it is not orthocomplemented in ℓ^∞).

4. Looking at Theorem 5.1 and the above Remark the following question arises in a natural way.
Problem. Can we without harm remove the weak closedness of D in property iii) (when D is strict) or in property iv) of Theorem 5.1?

5. *There is a weakly closed subspace D of ℓ^∞ such that D' has an orthogonal base but D is not orthocomplemented in ℓ^∞.***

Example: Take $D = H^0$, where H is a closed hyperplane of c_0 which is not orthocomplemented in c_0 and apply Lemma 4.1.

6. *There is a finite-dimensional (and hence weakly closed) subspace D of ℓ^∞ such that D has the HB-property in ℓ^∞ but is not orthocomplemented in ℓ^∞.***

Example: See Remark 2.3.3.

7. Finally observe that Problems 1-3 appearing in Remark 3.8 are equivalent to

Problem 4. Let D be a weakly closed subspace of ℓ^∞ such that D is strict and has the HB-property in ℓ^∞. Does it follow that D is orthocomplemented in ℓ^∞?

Indeed, clearly if Problem 4 has an affirmative answer then so has Problem 1 (recall that every finite-dimensional and strict subspace of ℓ^∞ has the HB-property in ℓ^∞, Corollary 3.7).

Conversely, assume Problem 1 has an affirmative answer and let D be a weakly closed subspace of ℓ^∞ such that D is strict. Let F be a closed subspace of D with $\dim D/F < \infty$. By Theorem 5.1 i) \iff iv) it is enough to prove that D/F is orthocomplemented in ℓ^∞/F. For that observe that it follows from Proposition 2.7 that D/F is a one-dimensional and strict subspace of ℓ^∞/F. But F is weakly closed in ℓ^∞ and so $\ell^\infty/F \simeq K^n$ (for some n) or $\ell^\infty/F \simeq \ell^\infty$ (Theorem 3.6). By assumption D/F is orthocomplemented in ℓ^∞/F and we are done.

REFERENCES

