The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/57575

Please be advised that this information was generated on 2020-04-25 and may be subject to change.
The recent identification of the epithelial Ca2+ channel, TRPV5, in kidney represents a major step forward in our knowledge of renal Ca2+ handling. This membrane channel protein is the first member of a new family of Ca2+-selective cation channels. It consists of 6 transmembrane spanning domains, including a pore forming hydrophobic stretch between domain 5 and 6. TRPV5 constitutes the apical entry mechanism of active, transcellular Ca2+ reabsorption. In contrast to the paracellular route, this transcellular pathway enables the organism to actively control the net amount of Ca2+ reabsorption. In vivo studies indicated a specific regulation of TRPV5 by calcitriol, oestrogens and dietary Ca2+. The central role of TRPV5 in active Ca2+ reabsorption makes it a prime target for pharmacological manipulation and several disorders related to Ca2+ homeostasis could benefit from such developments. This review highlights the identification, characteristics and the clinical impact of the epithelial calcium channel, TRPV5.

Key words: active Ca2+ transport, channel (in)activation, kidney, oestrogens, trafficking, TRP regulation, vitamin D

IMPORTANCE OF CA2+ HOMEOSTASIS

The maintenance of the Ca2+ balance within the physiological range is pivotal for life. Ca2+ is the most abundant cation in the human body where it is essential for many physiological functions, such as synaptic transmission in neurons, muscle contraction, blood clotting, fertilization and bone mineralization. The extracellular Ca2+ concentration should, therefore, be tightly regulated. Hypercalcemia reduces membrane excitability causing lethargy, fatigue and memory loss, whereas hypocalcemia causes muscle cramps, convulsions and other symptoms of increased neuromuscular excitability1. Ca2+ homeostasis in humans is achieved through hormonal control that concerts three physiological functions: intestinal Ca2+ absorption, renal Ca2+ reabsorption and Ca2+ exchange of the bone mass2. In this physiological process the kidneys play an important role because they determine the final excretion of Ca2+ in the urine.

ACTIVE RENAL TRANSPORT TO FINE-TUNING THE EXCRETION OF CA2+

In the kidney, ~8 g Ca2+ is filtered at the glomerulus on a daily basis, of which less than 2% is excreted into the urine. There are two pathways for Ca2+ to pass through renal epithelial tissues and reach the blood compartment. The major one is by passive paracellular transport together with Na+ in the proximal tubules and the second is by active transcellular Ca2+ transport in the distal convoluted (DCT) and connecting (CNT) tubules3-5 (Fig. 1A). Even though the distal part of the nephron realizes only ~15% of total renal Ca2+ reabsorption, it is generally regarded as the site for fine-tuning of the urinary Ca2+ excretion. Active Ca2+ transport allows the body to regulate Ca2+ reabsorption independently of the Na+ balance and thus the organism can respond immediately to dietary fluctuations of nutritional Ca2+, while it can also adapt to the body’s demand during long-lasting situations like growth, development and aging6,7.

MOLECULAR DETERMINANTS OF TRANSCELLULAR TRANSPORT IN RENAL EPITHELIAL CELLS

At the cellular level, active Ca2+ reabsorption is generally envisaged as a 3-step process (Fig. 1B) consisting of passive entry of Ca2+ across the luminal or apical membrane, cytosolic diffusion of Ca2+ bound to vitamin D\textsubscript{3}-sensitive Ca2+-binding proteins (calbindin-D\textsubscript{28K} and/or calbindin-